Exercise 1. Let H be a Hilbert space with an orthonormal basis $(e_n)_{n \in \mathbb{N}}$. Show that (e_n) converges weakly towards 0.

Exercise 2. Let E be a Banach space, (x_n) a sequence in E and (f_n) a sequence in E^* . In each one of the following cases, is it true that $f_n(x_n)$ converges to f(x)?

1.
$$\begin{cases} x_n \to x \\ f_n \to f \end{cases}$$
2.
$$\begin{cases} x_n \to x \\ f_n \stackrel{*}{\rightharpoonup} f \end{cases}$$
3.
$$\begin{cases} x_n \to x \\ f_n \to f \end{cases}$$
4.
$$\begin{cases} x_n \to x \\ f_n \stackrel{*}{\rightharpoonup} f \end{cases}$$

Exercise 3 (Weak but not strong convergence: three crucial examples). Let ϕ be a nonzero function of $\mathcal{D}(\mathbb{R})$ (which is the set of compactly supported C^{∞} functions from \mathbb{R} to \mathbb{R}).

- 1. (Evanescence) Show that $u_n(x) = \phi(x-n) \rightarrow 0$ in $L^2(\mathbb{R})$, but does not converge strongly.
- 2. (Concentration) Show that $v_n(x) = \sqrt{n}\phi(nx) \rightarrow 0$ in $L^2(\mathbb{R})$, but does not converge strongly.
- 3. (Oscillation) Let $w \in L^2(0, 2\pi)$ be a 2π -periodic non constant function and define $w_n(x) = w(nx)$. Show that $w_n \rightharpoonup \frac{1}{2\pi} \int_0^{2\pi} w$ in $L^2(0, 2\pi)$, but does not converge strongly.

Exercise 4. Let E be a Banach space. We recall that H is an affine hyperplane of E^* if and only if there exists a nonzero linear form φ on E^* and $\alpha \in \mathbb{R}$ such that

$$H = \{ f \in E^* \mid \varphi(f) = \alpha \}$$

1. (a) Show that φ is weakly-* continuous if and only if there exists $x \in E$ such that

$$\varphi = ev_x \ (i.e. \ \forall f \in E^*, \varphi(f) = f(x)).$$

- (b) Show that φ is weakly continuous if and only if φ is strongly continuous.
- 2. (a) Show that an affine hyperplane H of E^* is weakly-* closed if and only if it is of the form

$$H = \{ f \in E^* \mid f(x) = \alpha \},\$$

for some $x \in E$ and some $\alpha \in \mathbb{R}$.

(b) Show that an affine hyperplane H of E^* is weakly closed if and only if it is of the form

$$H = \{ f \in E^* \mid \varphi(f) = \alpha \},\$$

for some (strongly) continuous linear form φ and some $\alpha \in \mathbb{R}$.

Exercise 5. Let $p, q \in [1, +\infty]$ be such that $\frac{1}{p} + \frac{1}{q} = 1$. We introduce the map

$$\begin{array}{rccc} I_p: & \ell^q & \to & (\ell^p)^* \\ & & (a_n) & \mapsto & \left((x_n) \mapsto \sum_{n=0}^{+\infty} a_n x_n \right) \end{array}$$

and the canonical family of sequences e^k of ℓ^p , for which every term is zero, except the k^{th} which is 1.

- 1. For $p < +\infty$, show that J_p is a surjective isometry.
- 2. Show that J_{∞} is a non-surjective isometry.
- 3. For $1 , deduce that <math>e^k$ converges weakly but not strongly towards the null sequence when $k \to +\infty$.
- 4. We still assume that $1 , and consider the following subset of <math>\ell^p$:

$$E = \{e^n + ne^m \mid n, m \in \mathbb{N}, \ m > n\}.$$

- (a) Show that E is a closed subset for the strong topology.
- (b) Show that 0 is in the weak closure of E.
- (c) Show that a sequence of E cannot converge weakly towards 0.

Exercise 6 (The weak topology is not metrizable). Let E be an infinite dimensional Banach space. The purpose of this exercise is to prove that there does not exist a distance on E that generates the weak topology.

- 1. Suppose first that every weakly convergent sequence is strongly convergent (i.e. for the norm). Prove that if such a distance existed, then the weak topology and the norm topology would be the same.
- 2. Now we assume that there exists a weakly convergent sequence that does not converge in norm.
 - (a) Prove that there exists a sequence $(e_n) \subset E$ such that e_n converges weakly to 0, and $||e_n|| = 1$ for all $n \in \mathbb{N}$.
 - (b) Define $y_{n,m} = e_n + ne_m$ and prove that the set $F = \{y_{n,m} : m > n\}$ is closed for the norm.
 - (c) Prove that 0 lies in the weak closure of F, but there is no sequence in F converging weakly to 0.
 - (d) Conclude that the weak topology is not metrizable.

Exercise 7. We denote by c_0 the space of real sequences converging to 0 endowed with the uniform norm $\|\cdot\|_{\infty}$ and by e^k the sequence for which every term is zero, except the k^{th} which is 1, and

$$S = \left\{ \varphi \in c_0^* \mid \sum_{k=1}^{+\infty} \varphi(e^k) = 0 \right\}.$$

- 1. Show that S is strongly closed (*i.e.* closed for the topology induced by the norm).
- 2. Show that S is weakly closed (*i.e.* closed for the topology $\sigma(c_0^*, c_0^{**})$).
- 3. Show that S is not weakly-* closed (*i.e.* not closed for the topology $\sigma(c_0^*, c_0)$).

Exercise 8 (Schur's property for ℓ^1).

1. Recall why weak and strong topologies always differ in an infinite dimensional norm vector space.

The aim is to prove that a sequence of ℓ^1 converges weakly if and only if it converges strongly. Take $u^n = (u_k^n)_{k \in \mathbb{N}}$ a sequence of ℓ^1 weakly converging to 0.

- 2. Show that for all k, $\lim_{n\to\infty} u_k^n \to 0$.
- 3. Show that if $u_n \not\rightarrow 0$ in ℓ^1 , one can additionally assume that $||u^n||_{\ell^1} = 1$.
- 4. Define via a recursive argument two increasing sequences of \mathbb{N} , (a_k) and (n_k) , such that

$$\forall k, \quad \sum_{j=a_k}^{a_{k+1}-1} |u_j^{n_k}| \ge \frac{3}{4}.$$

5. Show that there exists $v \in \ell^{\infty}$ such that $(v, u^{n_k}) \geq \frac{1}{2}$ for all k. Conclude.

Out of topic:

Exercise 9. Let E be a \mathbb{K} (= \mathbb{R} or \mathbb{C}) topological vector space and F be a finite dimensional subspace of E. Pick a basis (e_i) on F, and consider the linear injection $f : \mathbb{K}^n \to E$ mapping the canonical basis of \mathbb{K}^n on (e_i) .

- 1. Why is f continuous? Give its range.
- 2. Show that there exists a balanced neighbourhood V of 0_E such that $f^{-1}(V) \subset B$ the open unit ball of \mathbb{K}^n .
- 3. Deduce that F is closed in E.