Exercise 1. Let $p, q \in [1, +\infty]$ be such that $\frac{1}{p} + \frac{1}{q} = 1$. We introduce the map

and the canonical family of sequences e^k of ℓ^p , for which every term is zero, except the k^{th} which is 1.

- 1. For $p < +\infty$, show that J_p is a surjective isometry.
- 2. Show that J_{∞} is a non-surjective isometry.
- 3. For $1 , deduce that <math>e^k$ converges weakly but not strongly towards the null sequence when $k \to +\infty$.
- 4. We still assume that $1 , and consider the following subset of <math>\ell^p$:

$$E = \{e^n + ne^m \mid n, m \in \mathbb{N}, \ m > n\}.$$

- (a) Show that E is a closed subset for the strong topology.
- (b) Show that 0 is in the weak closure of E.
- (c) Show that a sequence of E cannot converge weakly towards 0.

Exercise 2. Let E, F be two Banach spaces and $T: E \to F$ be a linear map.

- 1. Show that T is strongly continuous (*i.e.* continuous from $(E, \|\cdot\|_E)$ to $(F, \|\cdot\|_F)$) if and only if T is weakly continuous (*i.e.* continuous from $(E, \sigma(E, E^*))$ to $(F, \sigma(F, F^*))$). **Hint:** Show that T is weakly continuous if and only if $f \circ T : (E, \sigma(E, E^*)) \to \mathbb{R}$ is continuous for all $f \in F^*$.
- 2. If T is a continuous isomorphism, show that E is reflexive if and only if F is reflexive.

Exercise 3. Let E be a Banach space.

- 1. Assume that E is separable. Show that every bounded sequence of E^* admits a subsequence which converges in the weak-* topology.
- 2. Assume that E is reflexive and separable. Show that every bounded sequence of E admits a subsequence which converges in the weak topology.

Exercise 4. 1. Let $I \subset \mathbb{R}$ be an interval. Show that the unit closed ball of $L^1(I)$ does not admit extreme points.

- 2. Deduce that $L^{1}(I)$ is not the dual of a Banach space.
- 3. Is $L^1(I)$ reflexive?

Exercise 5. The aim of this exercise is to prove by two different methods that the space $(C([0,1]), \|\cdot\|_{\infty})$ of continuous real-valued functions on [0,1] is not reflexive.

- 1. By compactness.
 - (a) Prove that if E is a reflexive Banach space and $\varphi \in E^*$, then there exists $x \in E$ with ||x|| = 1 such that $\langle \varphi, x \rangle = ||\varphi||$.
 - (b) Define $\varphi \in C([0,1])^*$ by

$$\langle \varphi, f \rangle = \int_0^{\frac{1}{2}} f(t) dt - \int_{\frac{1}{2}}^1 f(t) dt, \quad \forall f \in C([0,1]),$$

and show that $\|\varphi\| = 1$.

- (c) Prove that $\langle \varphi, f \rangle < 1$ for all $f \in C([0, 1])$ such that $||f||_{\infty} \leq 1$.
- (d) Conclude that C([0, 1]) is not reflexive.

2. By separability.

- (a) Show that if E is a Banach space and its dual E^* is separable, then E is separable. **Hint:** Take a dense subset (φ_n) of E^* and chose $x_n \in E$ such that $||x_n|| = 1$ and $\langle \varphi_n, x_n \rangle \ge \frac{1}{2} ||\varphi_n||$.
- (b) Show that C([0,1]) is separable.
- (c) Show that $C([0,1])^*$ is not separable. **Hint:** Consider the functions $\delta_t : C([0,1]) \to \mathbb{R}$ defined by $\langle \delta_t, f \rangle = f(t)$ for each $t \in [0,1]$.
- (d) Conclude that C([0,1]) is not isomorphic to $C([0,1])^{**}$ as Banach spaces. Remark: This is stronger than not being reflexive.

Definition. A Banach space is called *uniformly convex* if for all $\varepsilon > 0$, there exists $\delta > 0$ such that

$$(x, y \in E, ||x|| \le 1, ||y|| \le 1, ||x - y|| > \varepsilon) \implies \left(||\frac{x + y}{2}|| < 1 - \delta. \right)$$

Theorem (Milman-Pettis). Let E be a Banach space. If it is uniformly convex, then it is reflexive.

Proof. See Analyse fonctionnelle, Brézis.

Exercise 6. Let (X, μ) be a measure space, $p, q \in]1, +\infty[$ be such that $\frac{1}{p} + \frac{1}{q} = 1$ and

$$\varphi_p: \quad L^p(X,\mu) \quad \to \quad (L^q(X,\mu))^* \\ f \qquad \mapsto \quad \left(g \mapsto \int fg \mathrm{d}\mu\right).$$

- 1. Show that φ_p is a well-defined and continuous isometry. Deduce that $\varphi_p(L^p)$ is a closed subset of $(L^q)^*$.
- 2. Assume that $p \ge 2$.

(a) Show that $\forall \alpha, \beta \ge 0, \ \alpha^p + \beta^p \le (\alpha^2 + \beta^2)^{\frac{p}{2}}$. Deduce that $\forall a, b \in \mathbb{R}$,

$$\left|\frac{a+b}{2}\right|^p + \left|\frac{a-b}{2}\right|^p \leqslant \frac{1}{2}|a|^p + \frac{1}{2}|b|^p.$$

(b) Show that L^p is uniformly convex. Deduce that L^p is reflexive.

- 3. Show that L^p is reflexive for every $p \in]1, +\infty[$.
- 4. Show that φ_p is onto. Deduce that L^p is isometrically isomorphic to $(L^q)^*$.