Sheet 8 - Distributions - Episode 2: the return of supports, convolution and the Fourier transform

Exercise 1. Let $T \in \mathcal{D}'(\mathbb{R}^d)$.

- 1. Let $\varphi \in \mathcal{D}(\mathbb{R}^d)$, show that if supp $T \cap \text{supp } \varphi = \emptyset$ then $\langle T, \varphi \rangle = 0$. Is the converse true?
- 2. Suppose that T has compact support and take $\psi \in \mathcal{D}(\mathbb{R}^d)$ such that $\psi = 1$ in a neighbourhood of supp T. Show that $\psi T = T$.
- 3. Let $\varphi \in C^{\infty}(\mathbb{R}^d)$ and assume that supp $T \cap \text{supp } \varphi$ is compact. Show that $\langle T, \varphi \rangle$ can be defined in a meaningful way.
- 4. Let $T, S \in D'(\mathbb{R}^d)$ and suppose T and S satisfy the following: for every compact K in \mathbb{R}^d ,

$$\left\{ (x,y) \in \mathbb{R}^d \times \mathbb{R}^d \ \middle| \ x \in \operatorname{supp} T, \ y \in \operatorname{supp} S, \ x+y \in K \right\}$$

is compact. Show that in this case, T * S and S * T are well-defined.

Exercise 2. Show that the convolution product is not associative without assumptions on the supports by considering the distributions 1, δ'_0 and H in $\mathcal{D}'(\mathbb{R})$, where H is the Heaviside function (see Sheet 7).

Exercise 3. Compute the following convolutions:

1.
$$\delta_a * \delta_b$$
 in \mathbb{R}^d ,

4.
$$(x^p \delta_0^{[q]}) * (x^m \delta_0^{[n]}),$$

7.
$$\mathbb{1}_{[a,b]} * \mathbb{1}_{[c,d]}$$
,

2.
$$T * \delta_a$$
 with $T \in \mathcal{D}'(\mathbb{R}^d)$,

5.
$$\delta_0^{[k]} * (x^m H)$$
,

8.
$$\mathbb{1}_{[0,1]} * (xH)$$
,

3.
$$H * H$$
 (Heaviside),

6.
$$(x^p H) * (x^q H)$$
,

9.
$$\delta_{S(0,r)} * |x|^2 \text{ in } \mathbb{R}^3$$
.

Exercise 4. 1. If $d \ge 3$, show that $u_0(x) = (-d(d-2)\operatorname{Vol}(B(0,1))\|x\|^{d-2})^{-1}$ is a fundamental solution for the Laplacian, *i.e.* $\Delta u_0 = \delta_0$ in the sense of distributions.

- 2. Give a solution of $\Delta u = f$ in the sense of distributions for f in $\mathcal{E}'(\mathbb{R}^d)$.
- 3. What can you say about the regularity of u if f is a function in $\mathcal{S}(\mathbb{R}^d)$?
- 4. Consider the linear PDE $u \Delta u = f$ for $f \in \mathcal{S}(\mathbb{R}^d)$. Express in terms of the Bessel kernel $B = \mathcal{F}^{-1}\left((1+|\xi|^2)^{-1}\right)$ a solution in $\mathcal{S}(\mathbb{R}^d)$.

Exercise 5. Define $\mathcal{D}'_{+}(\mathbb{R}) = \{ T \in \mathcal{D}'(\mathbb{R}) \mid \text{supp } T \subset \mathbb{R}^+ \}.$

- 1. Show that the convolution of two elements of $\mathcal{D}'_{+}(\mathbb{R})$ is well-defined and gives an element of $\mathcal{D}'_{+}(\mathbb{R})$. See Exercise 1. In the following we will assume that the convolution is associative and commutative in $\mathcal{D}'_{+}(\mathbb{R})$. What is the identity element for the convolution on $\mathcal{D}'_{+}(\mathbb{R})$?
- 2. Show that for all $a \in \mathbb{R}$ and all $T, S \in \mathcal{D}'_{+}(\mathbb{R})$, we have $(e^{ax}T) * (e^{ax}S) = e^{ax}(T * S)$.
- 3. For $T \in \mathcal{D}'_{+}(\mathbb{R})$, let T^{-1} denote the inverse of T in $\mathcal{D}'_{+}(\mathbb{R})$ for the convolution whenever it exists. Show that T^{-1} is indeed unique and compute $(\delta'_{0})^{-1}$, $(H)^{-1}$ and $(\delta'_{0} \lambda \delta_{0})^{-1}$ for $\lambda \in \mathbb{R}$.
- 4. Let P a polynomial that splits in \mathbb{R} , compute $[P(\frac{\mathrm{d}}{\mathrm{d}x})\delta_0]^{-1}$.
- 5. Solve the following system in $\mathcal{D}'_{+}(\mathbb{R})$

$$\begin{cases} \delta_0'' * X + \delta_0' * Y &= \delta_0 \\ \delta_0' * X + \delta_0'' * Y &= 0. \end{cases}$$

Exercise 6. We will study the behaviour of the convergence of distributions with respect to the convolution product.

- 1. Let $T \in \mathcal{E}'(\mathbb{R}^d)$, $V \in \mathcal{D}'(\mathbb{R}^d)$ and (V_n) be a sequence of distributions in $\mathcal{D}'(\mathbb{R}^d)$. Prove that if $V_n \to V$ in $\mathcal{D}'(\mathbb{R}^d)$ then $V_n * T \to V * T$ in $\mathcal{D}'(\mathbb{R}^d)$.
- 2. Let $T \in \mathcal{D}'(\mathbb{R}^d)$, $V \in \mathcal{E}'(\mathbb{R}^d)$ and (V_n) be a sequence of distributions in $\mathcal{E}'(\mathbb{R}^d)$. Prove that if $V_n \to V$ in $\mathcal{E}'(\mathbb{R}^d)$ then $V_n * T \to V * T$ in $\mathcal{D}'(\mathbb{R}^d)$.
- 3. Show that there exist two sequences of distributions T_n and V_n tending to 0 in $\mathcal{D}'(\mathbb{R})$ and such that $T_n * V_n \to \delta_0$.

Sheet 8 - Distributions - Episode 2: the return of supports, convolution and the Fourier transform

Exercise 7. Let $F: \mathcal{D}(\mathbb{R}^d) \to C^{\infty}(\mathbb{R}^d)$ be a continuous linear map. We say that F commutes with translations if, for all $x \in \mathbb{R}^d$, $\tau_x \circ F = F \circ \tau_x$, i.e.

$$\forall \varphi \in \mathcal{D}(\mathbb{R}^d), \forall y \in \mathbb{R}^d, \quad F(\varphi)(x+y) = \tau_x(F(\varphi))(y) = F(\tau_x \varphi)(y) = F(z \mapsto \varphi(x+z))(y).$$

- 1. Show that if there exists $T \in \mathcal{D}'(\mathbb{R}^d)$ such that, for all $\varphi \in \mathcal{D}(\mathbb{R}^d)$, $F(\varphi) = T * \varphi$, then F commutes with translations.
- 2. Show that for all $T \in \mathcal{D}'(\mathbb{R}^d)$, and all $\varphi \in \mathcal{D}(\mathbb{R}^d)$, we have $\langle T, \varphi \rangle = T * \check{\varphi}(0)$ where $\check{\varphi}(x) = \varphi(-x)$.
- 3. Show that if F commutes with translations, there exists $T \in \mathcal{D}'(\mathbb{R}^d)$ such that, for all $\varphi \in \mathcal{D}(\mathbb{R}^d)$, $F(\varphi) = T * \varphi$.

Exercise 8.

- 1. Let $p \in [1, +\infty]$ and $f \in L^p(\mathbb{R}^d)$. Prove that f defines a tempered distribution.
- 2. Let $P \in \mathbb{R}[X_1, \dots, X_d]$ and $f : \mathbb{R}^d \to \mathbb{R}$ be a measurable function such that $|f| \leq |P|$. Prove that f defines a tempered distribution.

Exercise 9. Prove that the following distributions are tempered and compute their Fourier transform, with the following convention: for $f \in L^1(\mathbb{R}^d)$,

$$\mathcal{F}(f)(\xi) = \frac{1}{(2\pi)^{\frac{d}{2}}} \int_{\mathbb{R}^d} f(x)e^{-ix\cdot\xi} dx.$$

1. δ_0 in \mathbb{R}^d ,

4. p. v.(1/x),

2. $e^{-\frac{|x|^2}{2\sigma}}$ in \mathbb{R} with $\sigma > 0$,

5. $\delta_0^{[n]}$ in \mathbb{R} ,

3. H (Heaviside),

6. |x| in \mathbb{R} ,

Exercise 10. Let k > 0 and $T \in \mathcal{S}'(\mathbb{R})$ such that $T^{[4]} + kT \in L^2(\mathbb{R})$. Show that for every $j \in [0, 4]$, $T^{[j]} \in L^2(\mathbb{R})$.

Exercise 11. Let $U \in \mathcal{S}'(\mathbb{R}^d)$. Prove that if $\Delta U = 0$ then U is a polynomial.

Exercise 12. We define 4 notions of support:

- for $T \in \mathcal{D}'(\mathbb{R}^d)$, $\operatorname{supp}_{dist} T = \text{complement of the biggest open set } \Omega_1 \text{ on which: } \forall \varphi \in \mathcal{D}(\Omega_1), \ \langle T, \varphi \rangle = 0 \ ;$
- for $\mu \in \mathcal{M}(\mathbb{R}^d)$ (the set of signed Radon measures, i.e., Borel measures on \mathbb{R}^d , with values in $\overline{\mathbb{R}}$ which are finite on compact sets), supp_{mes} $\mu = \text{complement of the biggest open set } \Omega_2 \text{ on which: } \forall A \subset \Omega_2, \ \mu(A) = 0$;
- for $f \in L^1_{loc}(\mathbb{R}^d)$, supp_{int} $f = \text{complement of the biggest open set } \Omega_3 \text{ on which: } f_{|\Omega_3} = 0 \text{ almost everywhere};$
- for $g \in C^0(\mathbb{R}^d)$, $\operatorname{supp}_{cont} g = \overline{\{x \in \mathbb{R}^d \mid f(x) \neq 0\}}.$
- 1. Let $g \in C^0(\mathbb{R}^d)$, prove that $\operatorname{supp}_{cont} g = \operatorname{supp}_{int} g$.
- 2. Let $f \in L^1_{loc}(\mathbb{R}^d)$, we define a Radon measure by means of a density function $\mu = f dx$, prove that $\operatorname{supp}_{int} f = \operatorname{supp}_{mes} \mu$.
- 3. Let $\mu \in \mathcal{M}(\mathbb{R}^d)$ and let T be the distribution associated with μ , prove that $\operatorname{supp}_{dist} T \subset \operatorname{supp}_{mes} \mu$.
- 4. Let $g \in C^0(\mathbb{R}^d)$ and let T be the distribution associated with g, prove that $\operatorname{supp}_{dist} T = \operatorname{supp}_{cont} g$.