Exercise 1.

1. Show that $u(x)=|x|$ belongs to $W^{1,2}(]-1,1[)$ but not to $W^{2,2}(]-1,1[)$.
2. Show that $v(x)=\frac{\sin \left(x^{2}\right)}{\sqrt{1+x^{2}}}$ belongs to $L^{2}(\mathbb{R})$ but not to $W^{1,2}(\mathbb{R})$.

Exercise 2. Let Ω_{1}, Ω_{2} be two open subsets of \mathbb{R}^{d} and $p \in[1,+\infty]$. Let $f: \Omega_{1} \rightarrow \Omega_{2}$ be a C^{1}-diffeomorphism such that the differential of both f and f^{-1} is bounded. We define

$$
\begin{array}{ccc}
F: \quad W^{1, p}\left(\Omega_{1}\right) & \rightarrow W^{1, p}\left(\Omega_{2}\right) \\
u & \mapsto & u \circ f^{-1} .
\end{array}
$$

Prove that F is well-defined and that there exist $C_{1}, C_{2}>0$ such that, for all $u \in W^{1, p}\left(\Omega_{1}\right)$,

$$
C_{2}\|u\|_{W^{1, p}\left(\Omega_{1}\right)} \leqslant\|F(u)\|_{W^{1, p}\left(\Omega_{2}\right)} \leqslant C_{1}\|u\|_{W^{1, p}\left(\Omega_{1}\right)} .
$$

Exercise 3. Let $p \in\left[1,+\infty\left[\right.\right.$ and let Ω be an open subset of \mathbb{R}^{d}. Assume that Ω is bounded in one direction, meaning that Ω is contained in the region between two parallel hyperplanes. Prove Poincaré's inequality: there exists $c>0$ such that for every $f \in W_{0}^{1, p}(\Omega)$,

$$
\|f\|_{L^{p}} \leqslant c\|\nabla f\|_{L^{p}}
$$

where $\|\nabla f\|_{L^{p}}=\left(\sum_{i=1}^{d}\left\|\partial_{i} f\right\|_{L^{p}}^{p}\right)^{1 / p}$. Hint: consider first the case $\Omega \subset[-M, M] \times \mathbb{R}^{d-1}$.
Remark: This shows that $f \mapsto\|\nabla f\|_{L^{p}}$ defines a norm on $W_{0}^{1, p}(\Omega)$, which is equivalent to $\|\cdot\|_{W^{1, p}(\Omega)}$.

Exercise 4. Let Ω be an open subset of $\mathbb{R}^{d}, p \in[1,+\infty]$ and $k \in \mathbb{N}^{*}$. Prove the following integration by parts formula: for all $f \in W^{k, p}(\Omega), g \in W_{0}^{k, q}(\Omega)$ (with $\left.\frac{1}{p}+\frac{1}{q}=1\right)$ and all multi-index α such that $|\alpha| \leqslant k$,

$$
\int_{\Omega} g D^{\alpha} f \mathrm{~d} x=(-1)^{|\alpha|} \int_{\Omega} f D^{\alpha} g \mathrm{~d} x .
$$

Exercise 5. Show that the spaces $W^{k, p}, C_{b}(\bar{\Omega}), C^{\alpha}(\bar{\Omega})$ defined in the lesson are Banach spaces.

Exercise 6. Let Ω be an open subset of \mathbb{R}^{d} and let $\left.p \in\right] 1,+\infty[$.

1. Prove that for all $F \in\left(W_{0}^{1, p}(\Omega)\right)^{*}$, there exist $f_{0}, f_{1}, \ldots, f_{d} \in L^{q}(\Omega)$ (with $\frac{1}{p}+\frac{1}{q}=1$) such that for all $g \in W_{0}^{1, p}(\Omega)$,

$$
\langle F, g\rangle=\int_{\Omega} f_{0} g \mathrm{~d} x+\sum_{i=1}^{d} \int_{\Omega} f_{i} \partial_{i} g \mathrm{~d} x .
$$

2. Prove that we also have

$$
\|F\| \leqslant\left(\sum_{i=0}^{d}\left\|f_{i}\right\|_{L^{q}}^{q}\right)^{\frac{1}{q}}
$$

3. Assuming that Ω is bounded, prove that we may take $f_{0}=0$.

Exercise 7. Let I be an interval of $\mathbb{R}, p \in(1,+\infty]$ and $f \in W^{1, p}(I)$.

1. Let $a \in I$, show that the function T, given by

$$
T(x)=\int_{a}^{x} f^{\prime}(t) \mathrm{d} t
$$

is well-defined, continuous and differentiable almost everywhere. You may use Lebesgue's differentiation theorem: if $u \in L_{l o c}^{1}\left(\mathbb{R}^{d}\right)$ then for almost every $x \in \mathbb{R}^{d}$,

$$
\frac{1}{|B(x, r)|} \int_{B(x, r)} u(y) \mathrm{d} y \quad \xrightarrow{r \rightarrow 0} u(x) .
$$

2. Prove that $T^{\prime}=f^{\prime}$ almost everywhere and in the sense of distributions.
3. Deduce that there exists $c \in \mathbb{R}$ such that for almost every $x \in \mathbb{R}$,

$$
f(x)=c+\int_{a}^{x} f^{\prime}(t) \mathrm{d} t
$$

In particular, f admits a continuous and almost everywhere differentiable representative.
4. Show that f is Hölder-continuous, and Lipschitz-continuous if $p=+\infty$.
5. Show that $W^{1, p}(\mathbb{R}) \hookrightarrow L^{\infty}(\mathbb{R})$, meaning that there exists a constant $c>0$ such that for all $f \in W^{1, p}(\mathbb{R})$, f belongs to $L^{\infty}(\mathbb{R})$ and

$$
\|f\|_{L^{\infty}} \leqslant c\|f\|_{W^{1, p}}
$$

We say that $W^{1, p}(I)$ embeds continuously into $L^{\infty}(I)$.
Hint: For $p<\infty$, consider $G(t)=t|t|^{p-1}$ and study the function $G \circ g$ for $g \in \mathcal{D}(\mathbb{R})$.
6. Prove that, more generally, $W^{1, p}(I) \hookrightarrow L^{\infty}(I)$. You may use the fact that there exists a bounded linear map $P: W^{1, p}(I) \rightarrow W^{1, p}(\mathbb{R})(p<\infty)$ such that $\left.P f\right|_{I}=f$ for all $f \in W^{1, p}(I)$.
7. Suppose that I is bounded.
(a) Show that $W^{1, p}(I)$ is closed under multiplication.
(b) Show that the embedding $W^{1, p}(I) \hookrightarrow C(\bar{I})$ is compact, meaning that every element of $W^{1, p}(I)$ is in $C(\bar{I})$, and that every bounded sequence in $\left(W^{1, p}(I),\|\cdot\|_{W^{1, p}}\right)$, possesses a subsequence which converges uniformly on \bar{I} to a limit in $C(\bar{I})$.
8. If I is unbounded, prove that

$$
\lim _{\substack{|x| \rightarrow+\infty \\ x \in I}} f(x)=0 .
$$

Exercise 8. Let $f \in L^{2}([0,1])$. Our aim is to solve the following equation (Dirichlet problem)

$$
\left\{\begin{aligned}
&-u^{\prime \prime}+u= \\
& f \\
& u(0)=0 \\
& u(1)=0
\end{aligned}\right.
$$

In what follows, we will write $H^{k}=W^{k, 2}(] 0,1[)$ and $H_{0}^{1}=W_{0}^{1,2}(] 0,1[)$.

1. Show that the Dirichlet problem admits a weak solution, i.e. there exists $u \in H_{0}^{1}$ such that for all $v \in H_{0}^{1}$,

$$
\int_{0}^{1} u^{\prime} v^{\prime} \mathrm{d} t+\int_{0}^{1} u v \mathrm{~d} t=\int_{0}^{1} f v \mathrm{~d} t .
$$

2. Show that if $u \in C^{2}(] 0,1[) \cap C([0,1])$ is a classical solution, then u is also a weak solution.
3. Show that if u is a weak solution, then $u \in H^{2}$.
4. Show that if $f \in H^{k}$, then every weak solution u is in H^{k+2}.
5. Assume that $f \in C([0,1])$. Show that if u is a weak solution, then u is C^{2} and is a solution in the classical sense.
