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Exercise 1.

1. Show that u(x) = |x| belongs to W 1,2(]− 1, 1[) but not to W 2,2(]− 1, 1[).

2. Show that v(x) = sin(x2)√
1+x2

belongs to L2(R) but not to W 1,2(R).

Exercise 2. Let Ω1, Ω2 be two open subsets of Rd and p ∈ [1,+∞]. Let f : Ω1 → Ω2 be a C1-diffeomorphism such that
the differential of both f and f−1 is bounded. We define

F : W 1,p(Ω1) → W 1,p(Ω2)
u �→ u ◦ f−1.

Prove that F is well-defined and that there exist C1, C2 > 0 such that, for all u ∈ W 1,p(Ω1),

C2�u�W 1,p(Ω1) � �F (u)�W 1,p(Ω2) � C1�u�W 1,p(Ω1).

Exercise 3. Let p ∈ [1,+∞[ and let Ω be an open subset of Rd. Assume that Ω is bounded in one direction, meaning
that Ω is contained in the region between two parallel hyperplanes. Prove Poincaré’s inequality: there exists c > 0 such
that for every f ∈ W 1,p

0 (Ω),
�f�Lp � c�∇f�Lp ,

where �∇f�Lp =

�
d�

i=1

�∂if�pLp

�1/p

. Hint: consider first the case Ω ⊂ [−M,M ]× Rd−1.

Remark: This shows that f �→ �∇f�Lp defines a norm on W 1,p
0 (Ω), which is equivalent to � · �W 1,p(Ω).

Exercise 4. Let Ω be an open subset of Rd, p ∈ [1,+∞] and k ∈ N∗. Prove the following integration by parts formula:
for all f ∈ W k,p(Ω), g ∈ W k,q

0 (Ω) (with 1
p + 1

q = 1) and all multi-index α such that |α| � k,

�

Ω

gDαfdx = (−1)|α|
�

Ω

fDαgdx.

Exercise 5. Show that the spaces W k,p, Cb(Ω̄), Cα(Ω̄) defined in the lesson are Banach spaces.

Exercise 6. Let Ω be an open subset of Rd and let p ∈]1,+∞[.

1. Prove that for all F ∈
�
W 1,p

0 (Ω)
�∗

, there exist f0, f1, . . . , fd ∈ Lq(Ω) (with 1
p +

1
q = 1) such that for all g ∈ W 1,p

0 (Ω),

�F, g� =
�

Ω

f0gdx+

d�

i=1

�

Ω

fi∂igdx.

2. Prove that we also have

�F� �
�

d�

i=0

�fi�qLq

� 1
q

.

3. Assuming that Ω is bounded, prove that we may take f0 = 0.
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Exercise 7. Let I be an interval of R, p ∈ (1,+∞] and f ∈ W 1,p(I).

1. Let a ∈ I, show that the function T , given by

T (x) =

� x

a

f �(t)dt,

is well-defined, continuous and differentiable almost everywhere. You may use Lebesgue’s differentiation theorem: if
u ∈ L1

loc(Rd) then for almost every x ∈ Rd,

1

|B(x, r)|

�

B(x,r)

u(y)dy
r→0−→ u(x).

2. Prove that T � = f � almost everywhere and in the sense of distributions.

3. Deduce that there exists c ∈ R such that for almost every x ∈ R,

f(x) = c+

� x

a

f �(t)dt.

In particular, f admits a continuous and almost everywhere differentiable representative.

4. Show that f is Hölder-continuous, and Lipschitz-continuous if p = +∞.

5. Show that W 1,p(R) �→ L∞(R), meaning that there exists a constant c > 0 such that for all f ∈ W 1,p(R), f belongs
to L∞(R) and

�f�L∞ � c�f�W 1,p .

We say that W 1,p(I) embeds continuously into L∞(I).
Hint: For p < ∞, consider G(t) = t|t|p−1 and study the function G ◦ g for g ∈ D(R).

6. Prove that, more generally, W 1,p(I) �→ L∞(I). You may use the fact that there exists a bounded linear map
P : W 1,p(I) → W 1,p(R) (p < ∞) such that Pf |I = f for all f ∈ W 1,p(I).

7. Suppose that I is bounded.

(a) Show that W 1,p(I) is closed under multiplication.
(b) Show that the embedding W 1,p(I) �→ C(I) is compact, meaning that every element of W 1,p(I) is in C(I), and

that every bounded sequence in (W 1,p(I), � · �W 1,p), possesses a subsequence which converges uniformly on I
to a limit in C(I).

8. If I is unbounded, prove that
lim

|x|→+∞
x∈I

f(x) = 0.

Exercise 8. Let f ∈ L2([0, 1]). Our aim is to solve the following equation (Dirichlet problem)




−u�� + u = f in ]0,1[,
u(0) = 0
u(1) = 0.

In what follows, we will write Hk = W k,2(]0, 1[) and H1
0 = W 1,2

0 (]0, 1[).

1. Show that the Dirichlet problem admits a weak solution, i.e. there exists u ∈ H1
0 such that for all v ∈ H1

0 ,
� 1

0

u�v�dt+
� 1

0

uvdt =

� 1

0

fvdt.

2. Show that if u ∈ C2(]0, 1[) ∩ C([0, 1]) is a classical solution, then u is also a weak solution.

3. Show that if u is a weak solution, then u ∈ H2.

4. Show that if f ∈ Hk, then every weak solution u is in Hk+2.

5. Assume that f ∈ C([0, 1]). Show that if u is a weak solution, then u is C2 and is a solution in the classical sense.


