Devoir maison 3 - corrigé

Exercice 1.

1. Pour $x \in \mathbb{R}$, $\operatorname{ch}(x) > 0$ (en tant que somme d'exponentielles), donc le dénominateur ne s'annule jamais et th' est bien définie sur \mathbb{R} . Pour $x \in \mathbb{R}$, $\operatorname{ch}(-x) = \frac{\mathrm{e}^{-x} + \mathrm{e}^x}{2} = f(x)$ donc ch' est une fonction paire.

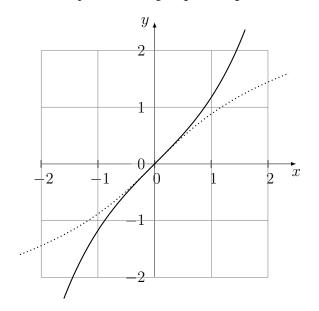
Pour $x \in \mathbb{R}$, $\operatorname{sh}(-x) = \frac{\operatorname{e}^{-x} - \operatorname{e}^{x}}{2} = -\frac{\operatorname{e}^{x} - \operatorname{e}^{-x}}{2} = -\operatorname{sh}(x)$, donc sh est une fonction impaire.

Par quotient, th est une fonction impaire.

2. (a) La fonction $\underline{\operatorname{sh}}$ est continue $\operatorname{sur} \mathbb R$ et on a vu en cours que $\operatorname{sh}' = \operatorname{ch}$ et ch est strictement positive $\operatorname{sur} \mathbb R$ (comme somme d'exponentielles), donc $\underline{\operatorname{sh}}$ est strictement croissante $\operatorname{sur} \mathbb R$ qui est un intervalle.

Ainsi sh réalise une bijection de \mathbb{R} vers $]\lim_{-\infty}$ sh, $\lim_{+\infty}$ sh $[=\mathbb{R}$ (calcul de limites sans forme indéterminée).

(b) Graphe de la fonction sh et de sa bijection réciproque (en pointillé).



(c) Pour $y \in \mathbb{R}$, on a

 $\operatorname{sh}(x) = y \quad \Leftrightarrow \quad \operatorname{e}^{x} - \operatorname{e}^{-x} = 2y \quad \Leftrightarrow \quad (\operatorname{e}^{x})^{2} - 2y\operatorname{e}^{x} - 1 = 0 \quad \Leftrightarrow \quad \operatorname{e}^{x} = y + \sqrt{y^{2} + 1}$

car le polynôme du second degré $X^2-2yX-1$ a pour racines $y+\sqrt{y^2+1}$ et $y-\sqrt{y^2+1}$ et seule la première est strictement positive (et $e^x>0$). Ainsi,

$$\operatorname{sh}(x) = y \quad \Longleftrightarrow \quad x = \ln\left(y + \sqrt{y^2 + 1}\right).$$

Autrement dit, l'unique antécédent de y par sh est $\ln(y + \sqrt{1+y^2})$, ou encore

$$argsh(y) = \ln\left(y + \sqrt{y^2 + 1}\right).$$

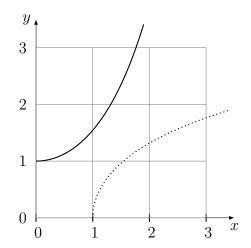
(d) Soit $y \in \mathbb{R}$. Alors :

$$\begin{aligned} \operatorname{argsh}(-y) + \operatorname{argsh}(y) &= \ln\left(-y + \sqrt{1 + y^2}\right) + \ln\left(y + \sqrt{1 + y^2}\right) \\ &= \ln\left((-y + \sqrt{1 + y^2})(y + \sqrt{1 + y^2})\right) = \ln\left((1 + y^2) - y^2\right)\right) = 0 \end{aligned}$$

donc argsh est impaire sur \mathbb{R}

Autre justification (sans calcul): la bijection réciproque d'une fonction impaire est toujours impaire. Preuve: si $y \in \mathbb{R}$, $\operatorname{argsh}(-y)$ est par définition l'antécédent de -y par sh. Or comme sh est impaire, on a $\operatorname{sh}\left(-\operatorname{argsh}(y)\right) = -\operatorname{sh}\left(\operatorname{argsh}(y)\right) = -y$. Donc $-\operatorname{argsh}(y)$ est un antécédent de -y par sh et par unicité de l'antécédent on a $\operatorname{argsh}(-y) = -\operatorname{argsh}(y)$. Ainsi, argsh est impaire.

- 3. (a) La fonction ch étant paire, on a ch(-1) = ch(1), avec $-1 \neq 1$, donc ch(1) a plusieurs antécédents et ch n'est pas bijective sur ch.
 - (b) Pour $x \in [0, +\infty[$, $\operatorname{ch}'(x) = \operatorname{sh}(x) \geqslant 0$ car $\operatorname{e}^x \geqslant \operatorname{e}^{-x}$. De plus, sh ne s'annule qu'en 0. Ainsi, la fonction ch est continue et strictement croissante sur $[0, +\infty[$, et elle réalise donc une bijection de $[0, +\infty[$ vers l'intervalle $[\operatorname{ch}(0), \lim_{+\infty} \operatorname{ch}[= [1, +\infty[$.
 - (c) Graphe de la fonction ch et de sa bijection réciproque (en pointillé).



(d) Pour $x \in \mathbb{R}$, $ch(x) + sh(x) = e^x$.

De plus, pour $x \in \mathbb{R}_+$, $\operatorname{sh}(x) = \sqrt{\operatorname{ch}(x)^2 - 1}$ puisque $\operatorname{ch}^2 - \operatorname{sh}^2 = 1$ et $\operatorname{sh}(x) \geqslant 0$. Ainsi, pour $y \in [1, +\infty[$,

$$\operatorname{ch}(x) = y \quad \Rightarrow \quad \operatorname{ch}(x) + \operatorname{sh}(x) = y + \sqrt{y^2 - 1} \quad \Rightarrow \quad x = \ln\left(y + \sqrt{y^2 - 1}\right).$$

L'implication réciproque est aussi vraie car on sait que y admet au moins un antécédent.

2

(e) D'après la question précédente, $\ln(2+\sqrt{3})$ est un antécédent de 2 par ch (l'unique antécédent positif) et par parité de ch, $-\ln(2+\sqrt{3})$ est l'unique antécédent négatif.

 $\frac{1}{2}$ n'admet pas d'antécédent par f car il n'est pas dans l'intervalle image.

4. (a) La fonction the est dérivable sur \mathbb{R} , puisque c'est le quotient de deux fonctions dérivables sur \mathbb{R} avec le dénominateur qui ne s'annule pas. Si $x \in \mathbb{R}$,

$$\operatorname{th}'(x) = \frac{\operatorname{sh}'(x)\operatorname{ch}(x) - \operatorname{sh}(x)\operatorname{ch}'(x)}{\operatorname{ch}^2(x)} = \frac{\operatorname{ch}^2(x) - \operatorname{sh}^2(x)}{\operatorname{ch}^2(x)} = \boxed{\frac{1}{\operatorname{ch}^2(x)}}.$$

Cette dérivée étant strictement positive pour tout $x \in \mathbb{R}$, th est strictement croissante sur \mathbb{R} .

(b) Pour $x \to +\infty$, on écrit :

$$th(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{1 - e^{-2x}}{1 + e^{-2x}}.$$

Quand $x\to +\infty$, les deux exponentielles dans le dernier quotient tendent vers 0, et on obtient donc $h(x) \to 1$.

Pour $x \to -\infty$, on écrit :

$$th(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1}.$$

Quand $x \to -\infty$, les deux exponentielles dans le dernier quotient tendent vers 0, et on obtient donc $th(x) \to -1$.

Comme th est strictement croissante, elle n'atteint par exemple pas la valeur 2 (sinon sa limite en $+\infty$ serait strictement supérieure à 2), donc th n'est pas surjective.

- (c) La fonction the est continue et strictement croissante sur l'intervalle \mathbb{R} . D'après le théorème de la limite monotone, elle réalise donc une bijection de \mathbb{R} dans J=]-1,1[au vu des limites déterminées dans la question précédente.
- (d) Pour $y \in]-1,1[$,

$$\operatorname{th}(x) = y \quad \iff \quad \frac{\mathrm{e}^{2x} - 1}{\mathrm{e}^{2x} + 1} = y \quad \iff \quad \mathrm{e}^{2x} = \frac{1 + y}{1 - y} \quad \iff \quad \mathrm{car} \, \frac{1 + y}{1 - y} > 0 \right) x = \frac{1}{2} \ln \left(\frac{1 + y}{1 - y} \right).$$

On a une expression explicite de la fonction réciproque : si $y \in]-1,1[$, $argth(y)=\frac{1}{2}\ln\left(\frac{1+y}{1-y}\right)$.

À titre de vérification, on observe que cette dernière expression est bien définie exactement sur le domaine voulu, et que les limites en ± 1 sont égales à $\pm \infty$, en cohérence avec les limites de th en ± 1 .

Exercice 2. • L'équation caractéristique associée à la suite $(u_n)_{n\in\mathbb{N}}$ est $r^2 - \frac{(1+i)}{2}r - \frac{(1-i)}{2} = 0$. Le discriminant de ce polynôme de degré 2 est

$$\Delta = \left(\frac{(1+i)}{2}\right)^2 + 4\frac{(1-i)}{2} = \frac{2i}{4} + 4\frac{(1-i)}{2} = \frac{4-3i}{2}.$$

Déterminons les racines carrés de Δ sous forme algébrique : si $(x,y) \in \mathbb{R}^2$, alors

$$(x+iy)^{2} = \Delta \iff \begin{cases} x^{2} + y^{2} = |\Delta| = \frac{\sqrt{4^{2} + 3^{2}}}{2} = \frac{5}{2} \\ x^{2} - y^{2} = 2 \\ 2xy = -\frac{3}{2} \end{cases}$$

Comme Δ est un complexe non nul, il admet exactement deux racines carrées complexes, opposées l'une de l'autre. Si x+iy est une telle racine, en sommant les deux premières lignes, on obtient $2x^2=\frac{9}{2}$, c'est-à-dire $x^2=\frac{9}{4}$, et la deuxième ligne nous donne $y^2=x^2-2=\frac{1}{4}$. La troisième ligne indique que x et y sont nécessairement de signes opposés. Les deux racines carrées de Δ sont donc $\pm \frac{3-i}{2}$. Par conséquence, les racines de l'équation caractéristiques sont

$$r_1 = \frac{1}{2} \left(\frac{1+i}{2} + \frac{3-i}{2} \right) = 1$$
 et $r_2 = \frac{1}{2} \left(\frac{1+i}{2} - \frac{3-i}{2} \right) = \frac{-1+i}{2}$.

Il existe alors deux constantes complexes A et B telles que le terme général de la suite s'écrit à l'aide de ces racines :

$$\forall n \in \mathbb{N}, u_n = Ar_1^n + Br_2^n.$$

Déterminons ces constantes à l'aide des données initiales : si

$$\begin{cases} \frac{3}{2} + i = u_0 = A + B \\ \frac{3}{2}i = u_1 = Ar_1 + Br_2, \end{cases}$$

alors en ôtant la deuxième ligne à la première, comme $r_1 = 1$, on obtient

$$\frac{3}{2} + i - \frac{3}{2}i = B(1 - r_2) = B\left(1 - \frac{-1 + i}{2}\right) = B\left(\frac{3}{2} - \frac{i}{2}\right)$$

donc en divisant à gauche et à droite par $\frac{3}{2} - \frac{i}{2}$ qui est un complexe non nul, il vient B = 1. Ensuite la première ligne donne $A = \frac{3}{2} + i - B = \frac{1}{2} + i$. Ainsi si A et B sont les constantes associées à (u_n) , on a nécessairement $(A, B) = (\frac{1}{2} + i, 1)$. On peut donc conclure :

$$\forall n \in \mathbb{N}, \quad u_n = Ar_1^n + Br_2^n = \frac{1}{2} + i + \left(\frac{-1+i}{2}\right)^n.$$

On met comme conseillé $\frac{i-1}{2}$ sous forme exponentielle : $\frac{i-1}{2} = \frac{1}{\sqrt{2}} \left(-\frac{\sqrt{2}}{2} + \frac{i}{2} \right) = \frac{1}{\sqrt{2}} \exp(3i\pi/4)$. On a alors que les points d'affixes $u_n = \left(\frac{1}{2} + i\right) + \frac{1}{\sqrt{2}^n} \exp(i3n\pi/4)$ forment une spirale s'enroulant asymptotiquement sur le point limite L d'affixe $\frac{1}{2} + i$, voir Figure 1.

• L'équation caractéristique associée à la suite $(v_n)_{n\in\mathbb{N}}$ est $r^2-3\sqrt{3}r+9=0$. Le discriminant de ce polynôme de degré 2 est

$$\Delta = (3\sqrt{3})^2 - 4 \times 9 = -9.$$

Le discriminant est réel et strictement négatif, ses racines carrées sont donc $\pm 3i$ et les racines de l'équation caractéristiques sont complexes conjuguées :

$$r = \frac{3\sqrt{3} + 3i}{2} \operatorname{et}\bar{r} = \frac{3\sqrt{3} - 3i}{2}$$

On met r sous forme exponentielle par identification d'une $e^{i\theta}$ bien connue :

$$r = \frac{3\sqrt{3} + 3i}{2} = 3\left(\frac{\sqrt{3}}{2} + \frac{i}{2}\right) = 3e^{i\pi/6}$$

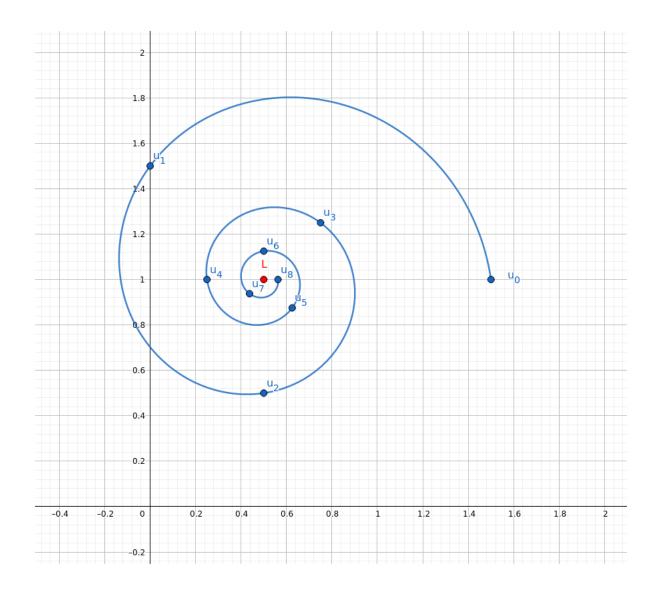


Figure 1: Les 8 premiers termes de la suite u_n , dessinés avec GeoGebra

Il existe alors des constantes réelles A et B telles que le terme général de la suite s'écrit :

$$\forall n \in \mathbb{N}, v_n = A3^n \cos(n\pi/6) + B3^n \sin(n\pi/6).$$

Déterminons ces constantes à l'aide des données initiales :

$$\begin{cases} 1 = v_0 = A \\ 0 = v_1 = 3A\cos(\pi/6) + 3B\sin(\pi/6) \end{cases} \iff \begin{cases} A = 1 \\ 0 = 3A\frac{\sqrt{3}}{2} + 3B\frac{1}{2} \end{cases} \iff \begin{cases} A = 1 \\ 0 = \sqrt{3} + B \end{cases}$$

Ainsi si A et B sont les constantes associées à (v_n) , on a nécessairement $(A, B) = (1, -\sqrt{3})$. On peut donc conclure :

$$\forall n \in \mathbb{N}, \quad v_n = 3^n \cos(n\pi/6) - \sqrt{3} \times 3^n \sin(n\pi/6).$$

Exercice 3.

1. (a) $(E_2): z^2+z+1=0$ est une équation polynomiale de degré 2, dont le discriminant est $\Delta=-3=(i\sqrt{3})^2$. Ainsi, ses solutions sont

$$\boxed{j = \frac{-1 + i\sqrt{3}}{2}} \quad \text{et} \quad \boxed{\bar{j} = \frac{-1 - i\sqrt{3}}{2}}.$$

Ce sont aussi les deux racines 3-ièmes de l'unité différentes de 1.

- (b) Comme j et \overline{j} sont racines de l'unité, en particulier $|j| = |\overline{j}| = 1 < \sqrt{2}$, donc les solutions de (E_2) sont toutes de module strictement inférieur à $\sqrt{2}$.
- 2. (a) La fonction f est polynomiale donc dérivable sur \mathbb{R} avec $\forall x \in \mathbb{R}$, $f'(x) = 3x^2 + 1 > 0$.

Ainsi, f est strictement croissante et continue sur \mathbb{R} , elle réalise donc une bijection de \mathbb{R} vers $f(\mathbb{R}) = \mathbb{R}$ (car $\lim_{n \to \infty} f = -\infty$ et $\lim_{n \to \infty} f = +\infty$).

On en déduit que 0 admet un unique antécédent par f que l'on note a. Cela signifie que pour $x \in \mathbb{R}$,

$$f(x) = 0 \iff x^3 + x + 1 = 0 \iff x = a$$

ou autrement dit, a est l'unique solution réelle de (E_3) .

- (b) On a $f(-\frac{1}{2}) = \frac{3}{8} > 0$ et f(-1) = -1 < 0, donc $f(-1) < f(a) < f(-\frac{1}{2})$, et par croissance de f, on en déduit que $1 < a < -\frac{1}{2}$.
- (c) Supposons que $b \in \mathbb{C}$ est solution de (E_3) , c'est à dire $b^3 + b + 1 = 0$.

On a alors, d'après les règles de calcul du conjugué, $0 = \overline{0} = \overline{b^3 + b + 1} = \overline{b}^3 + \overline{b} + 1$, ce qui montre que \overline{b} est solution de (E_3) .

- (d) D'après la factorisation admise, et en évaluant pour z=0, on obtient $1=(-a)(-b)(-\overline{b})=-ab\overline{b}$.
- (e) D'après la question précédente, $|b|^2 = b\bar{b} = \frac{1}{-a}$, et d'après (b), $1 < \frac{1}{-a} < 2$ car la fonction inverse est décroissante sur \mathbb{R}_{-}^{\star} où vivent -1, a et $-\frac{1}{2}$.

6

Ainsi, $|b| = |\bar{b}| < \sqrt{2}$, et comme $|a| < 1 < \sqrt{2}$, on a bien vérifié que toutes les solutions de (E_3) sont de module strictement inférieur à $\sqrt{2}$.

- 3. (a) Supposons que $z \in \mathbb{C}$ est une solution de (E_n) . On a donc $z^n = -z 1$ et donc $|z|^n = |z^n| = |-z 1| = |z + 1| \le |z| + 1$ d'après l'inégalité triangulaire.
 - (b) La fonction g_n est dérivable (car polynomiale) et $\forall x \in \mathbb{R}_+, g'_n(x) = nx^{n-1} 1$. Ainsi

$$g'_n(x) \geqslant 0 \iff nx^{n-1} \geqslant 1 \iff x \geqslant \left(\frac{1}{n}\right)^{\frac{1}{n-1}}$$

On note $a_n = \left(\frac{1}{n}\right)^{\frac{1}{n-1}}$ et le tableau de variation de g_n sur \mathbb{R}_+ est:

x	0		a_n		$+\infty$
$g'_n(x)$		_	0	+	
g_n	-1	\	$g_n(a_n)$		+∞

- (c) On rappel que $n \ge 4$, donc $\sqrt{2}^n \ge \sqrt{2}^4 = 2^2 = 4$ et ainsi $g_n(\sqrt{2}) \ge 4 \sqrt{2} 1 > 0$ car $3 > \sqrt{2}$. D'après le tableau de variation de la question précédente, g_n est négative sur $[0, a_n]$ et comme $g_n(\sqrt{2}) > 0$, on a nécessairement $\sqrt{2} > a_n$. Ainsi, g_n est croissante sur $[\sqrt{2}, +\infty[$ (car $(a_n, +\infty[)$) et donc strictement positive sur cet intervalle (toujours car $g_n(\sqrt{2}) > 0$).
- (d) Si $|z| \ge 2$, on a d'après la question précédente $g_n(|z|) > 0$, c'est à dire $|z|^n |z| 1 > 0$. La contraposée du résultat obtenu en 3.(a) permet alors de déduire que |z| n'est pas solution de (E_n) .

Autrement dit, on a montré que

$$|z| \geqslant \sqrt{2} \implies z$$
 n'est pas solution de (E_n) ,

ce qui est bien équivalent (par contraposée) à

$$z$$
 est solution de $(E_n) \implies |z| < \sqrt{2}$.