841 - Lycée du Parc Année 2023-2024

Devoir de révisions n+2

DÉRIVATION

Problème 1. Soit I un intervalle de \mathbb{R} , soit $f:I\to\mathbb{R}$ deux fois dérivable, et soient $a,b,c\in I$ tels que a< b< c.

I. 1. Déterminer $p, q, r \in \mathbb{R}$ tels que la fonction $g: I \to \mathbb{R}$ définie par :

$$\forall x \in I, \quad g(x) = f(x) - p(x - b)(x - c) - q(x - a)(x - c) - r(x - a)(x - b)$$

s'annule en a, b et c. Dans la suite, p, q, r gardent ces valeurs.

- 2. En déduire qu'il existe $\alpha < \beta \in]a, c[$ tels que $g'(\alpha) = g'(\beta) = 0.$
- 3. En déduire qu'il existe $\gamma \in I$ tel que :

$$\frac{f(a)}{(a-b)(a-c)} + \frac{f(b)}{(b-a)(b-c)} + \frac{f(c)}{(c-a)(c-b)} = \frac{1}{2}f''(\gamma).$$

Justifier que ce résultat reste valable quel que soit l'ordre de a, b, c.

- II. 1. Soit $h: x \mapsto \frac{\sin x}{x}$.
 - i. Quel est le domaine de définition de h? Montrer qu'on peut prolonger h par continuité sur \mathbb{R} .
 - ii. En appliquant la propriété démontrée en I.3. à $f=\sin$ et à c=0, montrer que la fonction h est $\frac{1}{2}$ -lipschitzienne sur \mathbb{R} .
 - 2. En étudiant la fonction $j: x \mapsto x^2 \sin(x)$, montrer que l'équation $\sin(x) = x^2$ a deux solutions sur \mathbb{R} , dont une évidente. On appelle δ l'autre solution. Montrer que $\delta \in [0, 1]$.
- III. On considère la suite (u_n) définie par : $\left\{ \begin{array}{l} u_0=1 \\ \forall n\in\mathbb{N},\ u_{n+1}=\frac{\sin u_n}{u_n} \end{array} \right. .$
 - 1. Montrer que : $\forall n \in \mathbb{N}, u_n \in]0,1]$.
 - 2. Montrer que : $\forall n \in \mathbb{N}, \ |u_{n+1} \delta| \le \frac{1}{2} |u_n \delta|, \ \text{puis que } |u_n \delta| \le \frac{1}{2^n}.$
 - 3. En déduire que la suite (u_n) converge vers δ . À partir de quel rang n le terme u_n est-il une valeur approchée de δ à 10^{-3} près ?