Transformations du plan complexe

On note a un nombre complexe, λ un réel non nul, θ un réel, et ω l'affixe d'un point quelconque du plan Ω .

Transformation	Action géométrique	Réciproque	Action sur les distances	Action sur les angles	Ensemble des points fixes
$z\mapsto \overline{z}$	symétrie d'axe Ox	$z\mapsto \overline{z}$	préserve les distances	renverse les angles	\mathbb{R}
$z \mapsto z + a$	translation de vecteur d'affixe a	$z \mapsto z - a$	préserve les distances	préserve les angles	Ø
$z\mapsto \lambda z$	homothétie vectorielle $egin{array}{c} ext{de rapport } \lambda \ & ext{(et de centre 0)} \end{array}$	$z\mapsto rac{1}{\lambda}z$	multiplie les distances $\operatorname{par} \lambda $	préserve les angles	$\begin{cases} \mathbb{C} & \text{si } \lambda = 1 \\ \{0\} & \text{sinon.} \end{cases}$
$z\mapsto \mathrm{e}^{i\theta}z$	rotation vectorielle $egin{aligned} & & & & \ & & & \ & & & \ & & & \ & & \ & & \ & $	$z \mapsto e^{-i\theta}z$	préserve les distances	préserve les angles	$\begin{cases} \mathbb{C} & \text{si } \theta = 0 \left[2\pi \right] \\ \{0\} & \text{sinon.} \end{cases}$
$z \mapsto \omega + \lambda(z - \omega)$	homothétie ponctuelle $ m de\ rapport\ {\it \lambda}$ et de centre $ m \Omega$	$z \mapsto \omega + \frac{1}{\lambda}(z - \omega)$	multiplie les distances $\operatorname{par} \lambda $	préserve les angles	$\begin{cases} \mathbb{C} & \text{si } \lambda = 1 \\ \{\Omega\} & \text{sinon.} \end{cases}$
$z \mapsto \omega + e^{i\theta}(z - \omega)$	rotation ponctuelle $$	$z \mapsto \omega + e^{-i\theta}(z - \omega)$	préserve les distances	préserve les angles	$\begin{cases} \mathbb{C} & \text{si } \theta = 0 [2\pi] \\ \{\Omega\} & \text{sinon.} \end{cases}$

À retenir : on peut composer une homothétie et une rotation sans se soucier de l'ordre ssi elles ont même centre (ou si l'une ou l'autre est en fait l'identité).