841 - Lycée du Parc Année 2023-2024

Feuille d'exercices 17

POLYNÔMES

Coefficients et degré

Ex 1. Déterminer le degré, le coefficient dominant et le coefficient constant des polynômes suivants :

$$(X+1)^3(X-2)(X+3)^2$$
 et $P = \sum_{k=0}^{n-1} \binom{n}{k} X^{k+1}$, pour $n \in \mathbb{N}^*$.

Ex 2. Soit $(P_n)_{n\in\mathbb{N}^*}$ la suite de polynômes définie par

$$P_1 = X - 2, \quad \forall n \in \mathbb{N}^*, \ P_{n+1} = P_n^2 - 2.$$

Pour $n \in \mathbb{N}^*$, donner le degré, le coefficient dominant, et le coefficient constant de P_n . Déterminer ensuite le coefficient devant X dans P_n .

Ex 3. 1. Déterminer les polynômes P de $\mathbb{R}_3[X]$ tels que $P(X+1)-P(X-1)=X^2+1$.

- 2. Déterminer les polynômes P de $\mathbb{C}[X]$ tels que $P'(X)^2 = 4P(X)$.
- 3. Quels sont les polynômes $P, Q \in \mathbb{K}[X]$ qui vérifient $P^2 = XQ^2$?
- 4. Montrer que si $P \in \mathbb{K}[X]$ vérifie P(X) = P(-X), alors il existe $Q \in \mathbb{K}[X]$ tel que $P(X) = Q(X^2)$.
- 5. Déterminer tous les polynômes non nuls de $\mathbb{C}[X]$ tels que 18P = P'P''.

Ex 4. Soient n et $m \in \mathbb{N}$.

- 1. Donner une expression développée des polynômes $(1+X)^n$, $(1+X)^m$ et $(1+X)^{n+m}$.
- 2. Rappeler la forme du coefficient de degré ℓ du produit de deux polynômes.
- 3. Démontrer, à l'aide des questions précédentes, l'identité de Vandermonde : pour tout $\ell \in [0, n+m]$,

$$\binom{n+m}{\ell} = \sum_{k=0}^{\ell} \binom{n}{k} \binom{m}{\ell-k} .$$

Division euclidienne

Ex 5. Effectuer la division euclidienne de A par B dans les cas suivants:

1.
$$A = -16X^4 - 64X^2 - 100$$
, $B = 4X^2 + 4X + 10$. 2. $A = X^3 + iX^2 + X$, $B = X - i + 1$.

Ex 6. Effectuer la division euclidienne de $P=2X^4-4X^3-7X-14$ par $B=X^2-2X-2$. En déduire la valeur de $P(1+\sqrt{3})$.

Ex 7. Déterminer $(\lambda, \mu) \in \mathbb{K}^2$ tels que $X^2 + 2$ divise $X^4 + X^3 + \lambda X^2 + \mu X + 2$.

Ex 8. Soit $n \ge 2$, on note $P_n = X^n - 4X + 1$. Déterminer le reste de la division euclidienne de P_n par A dans les cas suivants.

1.
$$A = X^2 + X - 2$$
.

2.
$$A = (X - 1)^2$$
.

3.
$$A = X^3 - 2X^2 - X + 2$$
.

Ex 9. Soit $(\theta, n) \in \mathbb{R} \times \mathbb{N}^*$. Déterminer le reste de la division de $(\cos \theta + X \sin \theta)^n$ par $X^2 + 1$.

Ex 10. Soit (n, p) dans \mathbb{N}^2 .

- 1. Déterminer le quotient et le reste de la division euclidienne de $X^n 1$ par $X^p 1$.
- 2. Montrer l'équivalence : $X^p 1 \mid X^n 1 \Leftrightarrow p \mid n$.

Ex 11. Soit $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{K})$ une matrice vérifiant $A^2 - 3A + 2I_n = 0_n$. Calculer A^k , pour tout $k \in \mathbb{N}$.

Racines et factorisation

Ex 12. Factoriser dans $\mathbb{R}[X]$ les polynômes suivants :

1.
$$P = X^4 - 1$$

2.
$$Q = (X^2 - X + 1)^2 + 1$$

3.
$$R = X^8 - 2\cos(2a)X^4 + 1$$
, avec $a \in \mathbb{R}$.

Ex 13. On note $P = X^5 + 2X^4 + 2X^3 + 4X^2 + 5X + 2$. Calculer les dérivées successives de P, montrer que P admet une racine de multiplicité 3 et en déduire la forme factorisée de P.

Ex 14. Pour un entier
$$n \ge 2$$
, on note $P = (1 + X)(1 - X^n) + (2 - n)X^n - n^2X^n(1 - X) + n - 2$.

- 1. Donner l'expression de tous les coefficients de P et son degré.
- 2. Montrer que 1 est une racine double de P.

Ex 15. Soit n un entier supérieur ou égal à 2. Montrer que :

1.
$$X^2 - 3X + 2$$
 divise $X^n - 2X^{n-1} - X + 2$,

2.
$$(X-1)^2$$
 divise $X^{2n} - 2X^{n-1} - 2X + 3$.

Ex 16. Déterminer la multiplicité de la racine 1 pour les polynômes suivants :

$$P = X^{2n} - nX^{n+1} + nX^{n-1} - 1,$$

$$Q = X^{2n+1} - (2n+1)X^{n+1} + (2n+1)X^n - 1.$$

Ex 17. Soient $n \in \mathbb{N}^*$, et $P = \sum_{k=0}^n \frac{X^k}{k!}$. Montrer que P n'admet pas de racine multiple.

Ex 18. Soit $P \in \mathbb{R}[X]$ un polynôme scindé de degré $n \geq 2$.

- 1. Dans cette question, on suppose que P est à racines simples. Montrer que P' est scindé.
- 2. Soit x_0 une racine de P de multiplicité $m \in \mathbb{N}^*$. Montrer que x_0 est une racine de P' de multiplicité m-1.
- 3. En déduire que P' est scindé.

Ex 19. Soit $P \in \mathbb{C}[X]$ un polynôme de degré $n \in \mathbb{N}$.

(a) Si
$$P$$
 a n racines distinctes r_1, \ldots, r_n , montrer que $\frac{P'}{P} = \sum_{k=1}^n \frac{1}{X - r_k}$.

(b) Si
$$P$$
 a m racines distinctes r_1, \ldots, r_m de multiplicités $\alpha_1, \ldots, \alpha_m$, montrer que $\frac{P'}{P} = \sum_{k=1}^m \frac{\alpha_k}{X - r_k}$.

Ex 20. Soit $\alpha \in \mathbb{R}$ et $n \in \mathbb{N}^*$.

- 1. Déterminer les racines du polynôme $P_n = (X+1)^n e^{2in\alpha}$.
- 2. En déduire la valeur de $\prod_{k=0}^{n-1} \sin\left(\alpha + \frac{k\pi}{n}\right)$.

Problèmes divers

Ex 21. Déterminer les solutions polynomiales des équations différentielles suivantes sur \mathbb{R} :

(a)
$$xy'' + 2xy' - 3y = x^3 + 2x^2 - 2$$
,

(b)
$$xy'' + 2xy' - 8y = 0$$
.

Ex 22. Soit $n \in \mathbb{N}$. Montrer qu'il existe un unique $P \in \mathbb{K}_n[X]$ tel que : $\forall k \in [0, n], \ P^{(k)}(1) = k$.

Ex 23. Montrer qu'il n'existe pas de polynôme $P \in \mathbb{C}[X]$ tel que $\forall z \in \mathbb{C}, P(z) = \overline{z}$.

Ex 24. Soit $P \in \mathbb{K}[X]$ de degré $n \geq 2$. Montrer que la fonction polynomiale associée admet au plus n points fixes.

Ex 25. 1. Déterminer tous les polynômes $P \in \mathbb{K}[X]$ tels que P(0) = 0 et $P(X^2 + 1) = P(X)^2 + 1$.

- 2. Déterminer les polynômes à coefficients réels P vérifiant $P(X^2) = (X^2 + 1)P$.
- 3. Déterminer les polynômes P de $\mathbb{C}[X]$ tels que $(X^2+1)P''(X)-6P(X)=0$.

Ex 26. Donner une condition sur $n \in \mathbb{N}$ pour que $X^2 + X + 1$ divise $X^{2n} + X^n + 1$.

Ex 27. Soit $P \in \mathbb{K}[X]$ un polynôme non nul tel que

$$P(X^2) = P(X)P(X+1).$$

- (a) Montrer que si $a \in \mathbb{C}$ est une racine de P, alors a^2 et $(a-1)^2$ le sont aussi.
- (b) En déduire que si a est une racine de P, alors a=0 ou a est une racine de l'unité.
- (c) Montrer que les racines de P appartiennent à l'ensemble $\{0,1,-j,-j^2\}$.
- (d) Déterminer alors tous les polynômes vérifiant la relation de départ.

Ex 28. On définit la suite de polynômes (T_n) , appelés polynômes de Tchebychev, par

$$T_0 = 1$$
, $T_1 = X$ et $\forall n \in \mathbb{N}$, $T_{n+2} = 2XT_{n+1} - T_n$.

- 1. Calculer T_2 , T_3 et T_4 .
- 2. Montrer, à l'aide d'une récurrence double, que pour tout $n \in \mathbb{N}$, $\deg(T_n) = n$.
- 3. Déterminer une expression du coefficient dominant de T_n en fonction de n.
- 4. (a) Montrer que pour a et $b \in \mathbb{R}$, on a $\cos(a+b) \cos(a-b) = 2\cos(a)\cos(b)$.
 - (b) Soit $\theta \in \mathbb{R}$. Montrer que pour tout $n \in \mathbb{N}$, $T_n(\cos(\theta)) = \cos(n\theta)$.
 - (c) Soit $n \in \mathbb{N}^*$. Montrer que pour tout $k \in [1, n]$, $\alpha_k = \cos\left(\frac{1+2k}{2n}\pi\right)$ est une racine de T_n .
 - (d) Conclure que $T_n = 2^n \prod_{k=1}^n (X \alpha_k)$.

Décomposition en éléments simples

Ex 29. Déterminer la décomposition en éléments simples des fractions rationnelles suivantes :

(a)
$$\frac{X^2+1}{X(X^2-1)}$$
,

(b)
$$\frac{3X^2+3}{X^3+2X^2-X-2}$$
, (c) $\frac{5}{(X+1)^5-X^5-1}$, (d) $\frac{X^2+1}{X^2+4}$.

(c)
$$\frac{5}{(X+1)^5 - X^5 - 1}$$
,

(d)
$$\frac{X^2+1}{X^2+4}$$

Ex 30. Calculer les primitives suivantes :

(a)
$$\int_{-\infty}^{\infty} \frac{\cos^3 t + \cos^5 t}{\sin^2 t + \sin^4 t} dt,$$
 (b)
$$\int_{-\infty}^{\infty} \frac{\sin^3 t}{1 + \cos t} dt,$$

(b)
$$\int_{-\infty}^{\infty} \frac{\sin^3 t}{1 + \cos t} \, \mathrm{d}t$$

(c)
$$\int_{-\infty}^{\infty} \frac{\cos t - \sin t}{1 + \cos^2 t} \, \mathrm{d}t.$$