
Optimization with constraint(s)

Exercise 1: qualification
Check that each admissible point for the following constraints are qualified.

1. 2x+ y ≤ 2, x ≥ 0, y ≥ 0,

2. x2 + y2 ≤ 1, x ≥ 0, y ≥ 0,

3. 2x− y = −5, 5x+ 2y ≥ 37, x ≥ 0, y ≥ 0,

4. x2 + y2 + z ≤ 6, x ≥ 0, y ≥ 0, z ≥ 0,

5. 4x+ 3y ≤ 10, y − 4x2 ≥ −1, x ≥ 0, y ≥ 0

Exercice 2: let’s optimize !
Determine the following quantities:

1. max
2x+ y ≤ 2
x ≥ 0
y ≥ 0

x2 + y2,

2. min
x2 + y2 ≤ 1

x ≥ 0
y ≥ 0

x2 − 2y,

3. max
2x− y = −5
5x+ 2y ≥ 37

x ≥ 0
y ≥ 0

3xy − x3,

4. max
2x+ 2y ≤ 1

x ≥ 0
y ≥ 0

x2 + x+ 4y2.

Exercise 3: perturbed problems
For the following optimization problems, compare the value obtained by the direct approach with the
value estimated by applying the envelope theorem to the previous exercise (you may assume that the
conditions of the envelope theorem are met).

1. min
x2 + y2 ≤ 0.9

x ≥ 0
y ≥ 0

x2 − 2.2y, 2. max
2x+ 2.1y ≤ 1

x ≥ 0
y ≥ 0

x2 + x+ 4y2.

Exercise 4: linear programming and duality
Optimizing a linear function under linear constraints is called linear programming. We will consider two
coupled problems, called primal and dual problem.

Let p = (p1, . . . , pn) be a price vector, c = (c1, . . . , cn) be the constraint vector, B be the constraint
matrix.

We will always denote u ≤ v if u and v are same-dimensional vectors such that ui ≤ vi for all i.

max p · x min λ · c
(primal) Bx ≤ c, tBλ ≥ p, (dual)

x ≥ 0. λ ≥ 0.

where · designs the scalar product. We assume that the constraints are qualified at each admissible point.

1. Assume that the solution of the primal problem is reached at some point a. Let us denote by π̂
the vector Lagrange multiplier associated with the constraints Bx ≤ c and by µ the multiplier
associated with the non-negativity constraints x ≥ 0. Write the system of (in)equalities satisfied
by these vectors.
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2. Show that p · a = π̂ · c. Hint: You will use the symmetry of the scalar product, and the fact that
tAx · y = x ·Ay if A is a matrix and (x, y) a couple of vectors.

3. Assume that the solution of the dual problem is reached at some point π. Les us denote by â
the vector Lagrange multiplier associated with the constraints tBλ ≥ p and by γ the multiplier
associated with the non-negativity constraints λ ≥ 0. Write the system of (in)equalities satisfied
by these vectors.

4. Show that π · c = p · â.

5. We aim to show that p · a = p · â.

(a) Starting from the dual problem, show that â is admissible for the primal problem.

(b) Show that for all x ≥ 0 such that Bx ≤ c, p · x ≤ p · â. Hint: Use the system of (in)equalities
given by the dual problem.

(c) Deduce that â solves the primal problem.

6. Likewise, show that π̂ solves the dual problem.

7. Write the Kuhn & Tucker Lagrangians associated with both problems. How can you understand
the result of this exercise with these expressions?

Exercise 5: let’s optimize with Kuhn & Tucker !
Solve exercise 2 with the Kuhn & Tucker conditions.

Exercise 6: optimization under inequality constraints, convex case
Let f , g1, . . ., gp be C1 convex functions from Rd to R, and let us denote g = (g1, · · · , gp). We are looking
for the minimum of f under the constrains gi ≤ 0 for all i.

We assume in the all exercise that there exists x? and π ∈ Rp such that
πi ≥ 0 ∀i,
gi(x

?) ≤ 0 ∀i,
π · g(x?) = 0,
∇f(x?) +

∑p
i=1 πi∇gi(x?) = 0.

1. Sufficient condition of minimization Show that x? reaches the minimum of f under the con-
straints gi(x) ≤ 0. Hint: use that x 7→ L(x, π) = f(x) + π · g(x) is convex.

2. Envelope theorem
For c ∈ Rp, let us consider the following perturbed problem: find the infimum of f under the
constraints gi(x) ≤ ci for all i.

(a) If m∗(0) et m∗(c) denotes respectively the values obtained for the initial and perturbed prob-
lems, show that

m∗(c) ≥ m∗(0)− π · c,

where π ∈ Rp is the Lagrange multiplier associated with the unperturbed problem. (You
may assume that the infimum of the perturbed problem is reached at an admissible -for the
perturbed constraint- point v, or work directly.)

(b) Deduce that if c 7→ m∗(c) is differentiable, then

∇m∗(0) = −π.
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