Optimization with equality constraint(s)

Exercise 1: let's optimize !

For each function, determine the local and global extrema under equality constraints. Pictures are required.

- 1. $f(x, y, z) = (x 2)^2 + y^2 + z^2$ under constraint $x^2 + 2y^2 + 3z^2 = 1$.
- 2. f(x,y) = 3x y under constraint $x^2 + y^2 = 5$.
- 3. $f(x,y) = x^2 + y^2$ under constraint x + 2y = 5.
- 4. $f(x,y) = (xy)^a$ under constraint 2x + 3y = 12, with a > 0.
- 5. $f(x,y) = xy^2$ under constraint $x^2 + 4y^2 = 6$.
- 6. $f(x,y,z) = \frac{1}{3}x^3 + y + z^2 \text{ under constraints } \begin{cases} x+y+z=0, \\ x+y-z=0. \end{cases}$
- 7. $f(x, y, z, t) = x^2 + y^2 + z^2 + t^2$ under constraints $\begin{cases} x + y = 2, \\ z + t = 0. \end{cases}$ 8. $f(x, y, z) = x^2 + (y - 1)^2 + z^2$ under constraints $\begin{cases} x + y = \sqrt{2}, \\ x^2 + y^2 = 1. \end{cases}$

Exercise 2: economical wrapping

What is the minimal surface of a right-angled parallelepipoid wrapping a volume of $12m^3$?

Exercise 3: spectral theorem

Let $A \in \mathcal{S}_n(\mathbb{R})$ and $F : \mathbb{R}^n \to \mathbb{R}$ be the quadratic form associated with the matrix A, i.e.

$$F(x) = {}^{t}xAx.$$

Let us denote by $G: \mathbb{R}^n \to \mathbb{R}$ the squared Euclidean norm, *i.e.*

$$G(x) = \|x\|_2^2 = \sum_{i=1}^n x_i^2 = {}^t xx$$

Let us denote by $\mathbb S$ the unit sphere associated with this norm:

$$\mathbb{S} = \left\{ x \in \mathbb{R}^n, \, \|x\|_2 = 1 \right\} = \left\{ x \in \mathbb{R}^n, \, G(x) = 1 \right\}.$$

- 1. Calculate $\nabla F(x)$ and $\nabla G(x)$ for $x \in \mathbb{R}^n$.
- 2. Show by a compacity argument that F attains a maximum on S.
- 3. Deduce that A has a real eigenvalue:

$$\exists \lambda \in \mathbb{R}, \exists x \in \mathbb{S}, \ Ax = \lambda x$$

Remark: to show that A is diagonalizable, proceed by induction on the dimension.

Exercise 4: entropy

Let a_1, \ldots, a_n , a be n + 1 different real values, with $n \ge 3$. The aim is to maximize the function H defined by

$$H(p) = -\sum_{k=1}^{n} p_k \ln p_k$$

on the space E defined by

$$E = \left\{ (p_1, \dots p_n) \in (\mathbb{R}^*_+)^n \mid \sum_{k=1}^n p_k = 1 \text{ and } \sum_{k=1}^n a_k p_k = a \right\}.$$

E is assumed to be nonempty, which implies that some a_k are larger than a and some others are smaller.

- 1. Show that -H is convex on $(\mathbb{R}^{\star}_{+})^{n}$, hence on the convex subset E.
- 2. Show that

$$f(x) = \sum_{k=1}^{n} (a_k - a)e^{(a_k - a)x}, \ x \in \mathbb{R},$$

defines an increasing bijection from $\mathbb R$ into itself.

- 3. Justify that the Lagrange multipliers method can be applied. Express the Lagrange multipliers in terms of $f^{-1}(0)$ and a_k .
- 4. Conclude.

Exercise 5: inequality of arithmetic and geometric means

- 1. Optimize the function $f : \mathbb{R}^n_+ \to \mathbb{R}$ defined by $f(x_1, \dots, x_n) = x_1 \cdots x_n$ under the constraint $x_1 + \cdots + x_n = 1$.
- 2. Deduce the inequality of arithmetic and geometric means:

$$\forall (x_1, \cdots, x_n), \quad \prod_{i=1}^n x_i^{1/n} \le \frac{\sum_{i=1}^n x_i}{n}.$$

Exercise 6: standard utility maximization problem Let $x = (x_1, \dots, x_n)$ represent a commodity vector and $p = (p_1, \dots, p_n)$ be the corresponding price. Let $U : \mathbb{R}^n_+ \to \mathbb{R}$ denotes a \mathcal{C}^1 utility function for the consumer. We study the standard utility maximization problem

$$V(p,m) = \max_{n:x=m} U(x)$$

where m > 0 is the total amount of money owned by the consumer.

- 1. Write the associated Lagrangian function.
- 2. We assume that the optimum V(p, m) is attained at a point x(p, m) with every components positive. Justify the existence of a Lagrange multiplier $\lambda(p, m)$.
- 3. We assume furthermore that $(p,m) \mapsto x(p,m)$ and $(p,m) \mapsto \lambda(p,m)$ are \mathcal{C}^1 . Using the envelope theorem, express in terms of x(p,m) and $\lambda(p,m)$ the derivatives of V with respect to p and m.
- 4. Justify why the multiplier is called marginal utility of money.
- 5. Give an economical interpretation for $\frac{\partial V}{\partial p_i}$. The expression of the marginal utility of price with respect to the multiplier and x is called *Roy's identity*.
- 6. In this question, we take $U(x) = \sum_i A_i \ln(x_i a_i)$, with A_i and a_i positive real values such that $\sum_i A_i = 1$ and $R = m p \cdot a > 0$. Precise the domain of definition of U. Show that U attains its maximum under the constraint $p \cdot x = m$ at the point x(p, m) defined by

$$x_i = a_i + \frac{RA_i}{p_i}$$

and verify Roy's identity.