
Optimization with equality constraint(s)

Exercise 1: let’s optimize !
For each function, determine the local and global extrema under equality constraints. Pictures are
required.

1. f(x, y, z) = (x− 2)2 + y2 + z2 under constraint x2 + 2y2 + 3z2 = 1.

2. f(x, y) = 3x− y under constraint x2 + y2 = 5.

3. f(x, y) = x2 + y2 under constraint x+ 2y = 5.

4. f(x, y) = (xy)a under constraint 2x+ 3y = 12, with a > 0.

5. f(x, y) = xy2 under constraint x2 + 4y2 = 6.

6. f(x, y, z) = 1
3x

3 + y + z2 under constraints
{
x+ y + z = 0,
x+ y − z = 0.

7. f(x, y, z, t) = x2 + y2 + z2 + t2 under constraints
{
x+ y = 2,
z + t = 0.

8. f(x, y, z) = x2 + (y − 1)2 + z2 under constraints
{
x+ y =

√
2,

x2 + y2 = 1.

Exercise 2: economical wrapping
What is the minimal surface of a right-angled parallelepipoid wrapping a volume of 12m3 ?

Exercise 3: spectral theorem
Let A ∈ Sn(R) and F : Rn → R be the quadratic form associated with the matrix A, i.e.

F (x) = txAx.

Let us denote by G : Rn → R the squared Euclidean norm, i.e.

G(x) = ‖x‖22 =

n∑
i=1

x2i = txx.

Let us denote by S the unit sphere associated with this norm:

S = {x ∈ Rn, ‖x‖2 = 1} = {x ∈ Rn, G(x) = 1} .

1. Calculate ∇F (x) and ∇G(x) for x ∈ Rn.

2. Show by a compacity argument that F attains a maximum on S.

3. Deduce that A has a real eigenvalue:

∃λ ∈ R,∃x ∈ S, Ax = λx.

Remark: to show that A is diagonalizable, proceed by induction on the dimension.
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Exercise 4: entropy
Let a1, . . . , an, a be n + 1 different real values, with n ≥ 3. The aim is to maximize the function H
defined by

H(p) = −
n∑

k=1

pk ln pk

on the space E defined by

E =

{
(p1, . . . pn) ∈ (R?

+)
n |

n∑
k=1

pk = 1 and
n∑

k=1

akpk = a

}
.

E is assumed to be nonempty, which implies that some ak are larger than a and some others are smaller.

1. Show that −H is convex on (R?
+)

n, hence on the convex subset E.

2. Show that

f(x) =

n∑
k=1

(ak − a)e(ak−a)x, x ∈ R,

defines an increasing bijection from R into itself.

3. Justify that the Lagrange multipliers method can be applied. Express the Lagrange multipliers in
terms of f−1(0) and ak.

4. Conclude.

Exercise 5: inequality of arithmetic and geometric means

1. Optimize the function f : Rn
+ → R defined by f(x1, · · · , xn) = x1 · · ·xn under the constraint

x1 + · · ·xn = 1.

2. Deduce the inequality of arithmetic and geometric means:

∀(x1, · · · , xn),
n∏

i=1

x
1/n
i ≤

∑n
i=1 xi
n

.

Exercise 6: standard utility maximization problem Let x = (x1, · · · , xn) represent a commodity
vector and p = (p1, · · · , pn) be the corresponding price. Let U : Rn

+ → R denotes a C1 utility function
for the consumer. We study the standard utility maximization problem

V (p,m) = max
p·x=m

U(x),

where m > 0 is the total amount of money owned by the consumer.

1. Write the associated Lagrangian function.

2. We assume that the optimum V (p,m) is attained at a point x(p,m) with every components positive.
Justify the existence of a Lagrange multiplier λ(p,m).

3. We assume furthermore that (p,m) 7→ x(p,m) and (p,m) 7→ λ(p,m) are C1. Using the envelope
theorem, express in terms of x(p,m) and λ(p,m) the derivatives of V with respect to p and m.

4. Justify why the multiplier is called marginal utility of money.

5. Give an economical interpretation for ∂V
∂pi

. The expression of the marginal utility of price with
respect to the multiplier and x is called Roy’s identity.

6. In this question, we take U(x) =
∑

iAi ln(xi − ai), with Ai and ai positive real values such that∑
iAi = 1 and R = m− p · a > 0. Precise the domain of definition of U . Show that U attains its

maximum under the constraint p · x = m at the point x(p,m) defined by

xi = ai +
RAi

pi

and verify Roy’s identity.
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