Optimization with equality constraint(s)

Exercise 1: let's optimize !

For each function, determine the local and global extrema under equality constraints. Pictures are required.

1. $f(x, y, z)=(x-2)^{2}+y^{2}+z^{2}$ under constraint $x^{2}+2 y^{2}+3 z^{2}=1$.
2. $f(x, y)=3 x-y$ under constraint $x^{2}+y^{2}=5$.
3. $f(x, y)=x^{2}+y^{2}$ under constraint $x+2 y=5$.
4. $f(x, y)=(x y)^{a}$ under constraint $2 x+3 y=12$, with $a>0$.
5. $f(x, y)=x y^{2}$ under constraint $x^{2}+4 y^{2}=6$.
6. $f(x, y, z)=\frac{1}{3} x^{3}+y+z^{2}$ under constraints $\left\{\begin{array}{l}x+y+z=0, \\ x+y-z=0 .\end{array}\right.$
7. $f(x, y, z, t)=x^{2}+y^{2}+z^{2}+t^{2}$ under constraints $\left\{\begin{array}{l}x+y=2, \\ z+t=0 .\end{array}\right.$
8. $f(x, y, z)=x^{2}+(y-1)^{2}+z^{2}$ under constraints $\left\{\begin{array}{l}x+y=\sqrt{2}, \\ x^{2}+y^{2}=1 .\end{array}\right.$

Exercise 2: economical wrapping

What is the minimal surface of a right-angled parallelepipoid wrapping a volume of $12 m^{3}$?

Exercise 3: spectral theorem

Let $A \in \mathcal{S}_{n}(\mathbb{R})$ and $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the quadratic form associated with the matrix A, i.e.

$$
F(x)={ }^{t} x A x
$$

Let us denote by $G: \mathbb{R}^{n} \rightarrow \mathbb{R}$ the squared Euclidean norm, i.e.

$$
G(x)=\|x\|_{2}^{2}=\sum_{i=1}^{n} x_{i}^{2}={ }^{t} x x
$$

Let us denote by \mathbb{S} the unit sphere associated with this norm:

$$
\mathbb{S}=\left\{x \in \mathbb{R}^{n},\|x\|_{2}=1\right\}=\left\{x \in \mathbb{R}^{n}, G(x)=1\right\}
$$

1. Calculate $\nabla F(x)$ and $\nabla G(x)$ for $x \in \mathbb{R}^{n}$.
2. Show by a compacity argument that F attains a maximum on \mathbb{S}.
3. Deduce that A has a real eigenvalue:

$$
\exists \lambda \in \mathbb{R}, \exists x \in \mathbb{S}, \quad A x=\lambda x
$$

Remark: to show that A is diagonalizable, proceed by induction on the dimension.

Exercise 4: entropy

Let a_{1}, \ldots, a_{n}, a be $n+1$ different real values, with $n \geq 3$. The aim is to maximize the function H defined by

$$
H(p)=-\sum_{k=1}^{n} p_{k} \ln p_{k}
$$

on the space E defined by

$$
E=\left\{\left(p_{1}, \ldots p_{n}\right) \in\left(\mathbb{R}_{+}^{\star}\right)^{n} \mid \sum_{k=1}^{n} p_{k}=1 \text { and } \sum_{k=1}^{n} a_{k} p_{k}=a\right\}
$$

E is assumed to be nonempty, which implies that some a_{k} are larger than a and some others are smaller.

1. Show that $-H$ is convex on $\left(\mathbb{R}_{+}^{\star}\right)^{n}$, hence on the convex subset E.
2. Show that

$$
f(x)=\sum_{k=1}^{n}\left(a_{k}-a\right) e^{\left(a_{k}-a\right) x}, x \in \mathbb{R}
$$

defines an increasing bijection from \mathbb{R} into itself.
3. Justify that the Lagrange multipliers method can be applied. Express the Lagrange multipliers in terms of $f^{-1}(0)$ and a_{k}.
4. Conclude.

Exercise 5: inequality of arithmetic and geometric means

1. Optimize the function $f: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ defined by $f\left(x_{1}, \cdots, x_{n}\right)=x_{1} \cdots x_{n}$ under the constraint $x_{1}+\cdots x_{n}=1$.
2. Deduce the inequality of arithmetic and geometric means:

$$
\forall\left(x_{1}, \cdots, x_{n}\right), \quad \prod_{i=1}^{n} x_{i}^{1 / n} \leq \frac{\sum_{i=1}^{n} x_{i}}{n}
$$

Exercise 6: standard utility maximization problem Let $x=\left(x_{1}, \cdots, x_{n}\right)$ represent a commodity vector and $p=\left(p_{1}, \cdots, p_{n}\right)$ be the corresponding price. Let $U: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ denotes a \mathcal{C}^{1} utility function for the consumer. We study the standard utility maximization problem

$$
V(p, m)=\max _{p \cdot x=m} U(x)
$$

where $m>0$ is the total amount of money owned by the consumer.

1. Write the associated Lagrangian function.
2. We assume that the optimum $V(p, m)$ is attained at a point $x(p, m)$ with every components positive. Justify the existence of a Lagrange multiplier $\lambda(p, m)$.
3. We assume furthermore that $(p, m) \mapsto x(p, m)$ and $(p, m) \mapsto \lambda(p, m)$ are \mathcal{C}^{1}. Using the envelope theorem, express in terms of $x(p, m)$ and $\lambda(p, m)$ the derivatives of V with respect to p and m.
4. Justify why the multiplier is called marginal utility of money.
5. Give an economical interpretation for $\frac{\partial V}{\partial p_{i}}$. The expression of the marginal utility of price with respect to the multiplier and x is called Roy's identity.
6. In this question, we take $U(x)=\sum_{i} A_{i} \ln \left(x_{i}-a_{i}\right)$, with A_{i} and a_{i} positive real values such that $\sum_{i} A_{i}=1$ and $R=m-p \cdot a>0$. Precise the domain of definition of U. Show that U attains its maximum under the constraint $p \cdot x=m$ at the point $x(p, m)$ defined by

$$
x_{i}=a_{i}+\frac{R A_{i}}{p_{i}}
$$

and verify Roy's identity.

