Variational and viscosity solutions of the evolutionary Hamilton-Jacobi equation

Valentine Roos

École Normale Supérieure de Lyon

New trends in Hamilton-Jacobi equations
July 1-6, 2019
Fudan University, Shanghai, China
Hamilton-Jacobi equation: dynamical point of view

- C^2 Hamiltonian function $H : (t, q, p) \in \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}$.
- Evolutionary Hamilton-Jacobi equation:

$$\partial_t u(t, q) + H(t, q, \partial_q u(t, q)) = 0, \quad (HJ)$$

coupled with a Lipschitz initial condition $u(0, \cdot) = u_0$.
Hamilton-Jacobi equation: dynamical point of view

- C^2 Hamiltonian function $H : (t, q, p) \in \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$.
- Evolutionary Hamilton-Jacobi equation:

$$\partial_t u(t, q) + H(t, q, \partial_q u(t, q)) = 0,$$

(HJ)

coupled with a Lipschitz initial condition $u(0, \cdot) = u_0$.
- Hamiltonian action along a C^1 path $\gamma = (q, p) : \mathbb{R} \to \mathbb{R}^d \times \mathbb{R}^d$

$$A_s^t(\gamma) = \int_s^t p(\tau) \cdot \dot{q}(\tau) - H(\tau, q(\tau), p(\tau)) d\tau.$$
- Hamiltonian system

$$\begin{cases} \dot{q} = \partial_p H(t, q, p) \\ \dot{p} = -\partial_q H(t, q, p) \end{cases} \quad \leadsto \quad \text{Hamiltonian flow } \phi^t_s.$$
Method of characteristics for classical solutions

Let u be a C^2 solution on $[0, T] \times \mathbb{R}^d$. Then for all $0 \leq t \leq T$

$$u(t, q) = u(0, q_0) + A^t_0 (\phi^T_0(q_0, d_{q_0}u_0)).$$
Method of characteristics for classical solutions

Consequence: no C^2 solution even for smooth data.

After the characteristics cross, the method defines a \textit{multivalued solution}.
A **multivalued solution** is a multivalued function defined on $[0, T] \times \mathbb{R}^d$ with multigraph matching at each time the **wavefront** $\mathcal{F}_0^u u_0 \subset \mathbb{R}^{d+1}$

$$\mathcal{F}_0^t u_0 := \{(q, u_0(q_0) + A_0^t (\phi_0^T(q_0, d_{q_0} u_0))) \mid \phi_0^t(q_0, d_{q_0} u_0) = (q, \star)\}$$
The convex case: Lax-Oleinik semigroup

- H is Tonelli (i.e. C^2, superlinear and strictly convex in p)
 \[\iff L(t, q, v) = \sup_{p \in \mathbb{R}^d} p \cdot v - H(t, q, p) \text{ is Tonelli.} \]
The convex case: Lax-Oleinik semigroup

- H is Tonelli (i.e. C^2, superlinear and strictly convex in p)
 \[L(t, q, v) = \sup_{p \in \mathbb{R}^d} p \cdot v - H(t, q, p) \text{ is Tonelli.} \]
- $t \mapsto q(t)$ solves the Euler-Lagrange equation
 \[t \mapsto (q(t), p(t)) \text{ solves the Hamiltonian system.} \]
The convex case: Lax-Oleinik semigroup

- H is Tonelli (i.e. C^2, superlinear and strictly convex in p)
 \[
 L(t, q, v) = \sup_{p \in \mathbb{R}^d} p \cdot v - H(t, q, p)
 \]
 is Tonelli.
- $t \mapsto q(t)$ solves the Euler-Lagrange equation
 \[
 \text{for } p(t) = \partial_v L(t, q(t), \dot{q}(t)),
 \]
 $t \mapsto (q(t), p(t))$ solves the Hamiltonian system.

The viscosity solution is given by the *Lax-Oleinik semigroup*

\[
T^t_s u(q) := \inf_{c : [s, t] \to \mathbb{R}^d} u(c(s)) + \int_s^t L(\tau, c(\tau), \dot{c}(\tau)) \, d\tau.
\]
The convex case: Lax-Oleinik semigroup

- H is Tonelli (i.e. C^2, superlinear and strictly convex in p)
 \[\iff L(t, q, v) = \sup_{p \in \mathbb{R}^d} p \cdot v - H(t, q, p) \text{ is Tonelli.} \]
- $t \mapsto q(t)$ solves the Euler-Lagrange equation
 \[\iff \text{for } p(t) = \partial_v L(t, q(t), \dot{q}(t)), \]
 \[t \mapsto (q(t), p(t)) \text{ solves the Hamiltonian system.} \]

The viscosity solution is given by the Lax-Oleinik semigroup

\[T_s^t u(q) := \inf_{c: [s, t] \to \mathbb{R}^d, c(t) = q} \left(u(c(s)) + \int_s^t L(\tau, c(\tau), \dot{c}(\tau)) \, d\tau \right). \]

Tonelli: the infimum is attained by a C^2 solution of the Euler-Lagrange equation.

Consequence: Existence of backward characteristics for the viscosity solution, i.e. the viscosity solution is part of the multivalued solution.
Nonconvex case: the viscosity solution is not necessarily part of the multivalued solution

In these examples, the wavefront has a unique continuous section with a shock denying the entropy condition. Hence the viscosity solution cannot be part of the multivalued solution.
Viscosity solutions: an axiomatic characterisation

Viscosity solutions: an axiomatic characterisation

Viscosity operator

- If \(\|d^2H(t, q, p)\| \leq C \), and \((V^t_s)_{s \leq t} : \text{Lip}(\mathbb{R}^d) \rightarrow \text{Lip}(\mathbb{R}^d)\) is s.t.
 1. Consistency: if \(u \) is a \(C^2 \) solution of HJ, then \(V^t_s u_s = u_t \),
 2. Monotonicity: \(u \leq v \Rightarrow V^t_s u \leq V^t_s v \) for \(s \leq t \),
 3. Additivity: for \(c \in \mathbb{R} \), \(V^t_s (c + u) = c + V^t_s u \),
 4. Regularity: \((t, q) \mapsto V^t_\tau u(q) \) is locally Lipschitz and \(q \mapsto V^t_\tau u(q) \) Lipschitz uniformly w.r.t. \(t \in [\tau, T] \),
 5. Markov: \(V^t_s = V^t_\tau \circ V^\tau_s \) for \(s \leq \tau \leq t \).

then \((t, q) \mapsto V^t_s u(q) \) solves (HJ) in the viscosity sense, with initial condition \(u \) at time \(s \).
Viscosity solutions: an axiomatic characterisation

Viscosity operator

- If \(\|d^2H(t, q, p)\| \leq C \), and \((V_s^t)_{s \leq t} : \text{Lip}(\R^d) \to \text{Lip}(\R^d)\) is s.t.
 1. Consistency: if \(u \) is a \(C^2 \) solution of HJ, then \(V_s^t u_s = u_t \),
 2. Monotonicity: \(u \leq v \Rightarrow V_s^t u \leq V_s^t v \) for \(s \leq t \),
 3. Additivity: for \(c \in \R \), \(V_s^t (c + u) = c + V_s^t u \),
 4. Regularity: \((t, q) \mapsto V_T^t u(q)\) is locally Lipschitz and \(q \mapsto V_T^t u(q) \)
 Lipschitz uniformly w.r.t. \(t \in [\tau, T] \),
 5. Markov: \(V_s^t = V_T^t \circ V_s^\tau \) for \(s \leq \tau \leq t \).

then \((t, q) \mapsto V_s^t u(q)\) solves (HJ) in the viscosity sense, with initial condition \(u \) at time \(s \).

Viscosity solutions: an axiomatic characterisation

Viscosity operator

- If \(\|d^2H(t, q, p)\| \leq C \), and \((V^t_s)_{s \leq t} : \text{Lip}(\mathbb{R}^d) \rightarrow \text{Lip}(\mathbb{R}^d)\) is s.t.
 1. Consistency: if \(u \) is a \(C^2 \) solution of HJ, then \(V^t_s u = u \),
 2. Monotonicity: \(u \leq v \Rightarrow V^t_s u \leq V^t_s v \) for \(s \leq t \),
 3. Additivity: for \(c \in \mathbb{R} \), \(V^t_s (c + u) = c + V^t_s u \),
 4. Regularity: \((t, q) \mapsto V^t_s u(q) \) is locally Lipschitz and \(q \mapsto V^t_s u(q) \) Lipschitz uniformly w.r.t. \(t \in [\tau, T] \),
 5. Markov: \(V^t_s = V^t_\tau \circ V^\tau_s \) for \(s \leq \tau \leq t \).

then \((t, q) \mapsto V^t_s u(q)\) solves (HJ) in the viscosity sense, with initial condition \(u \) at time \(s \).

- If furthermore \(\|dH(t, q, p)\| \leq C(1 + \|p\|) \), then there exists such an operator and it is unique.
Viscosity solutions: an axiomatic characterisation

Viscosity operator

- If \(\| d^2H(t, q, p) \| \leq C \), and \((V^t_s)_{s \leq t} : \text{Lip}(\mathbb{R}^d) \to \text{Lip}(\mathbb{R}^d) \) is s.t.
 1. Consistency: if \(u \) is a \(C^2 \) solution of HJ, then \(V^t_s u_s = u_t \),
 2. Monotonicity: \(u \leq v \Rightarrow V^t_s u \leq V^t_s v \) for \(s \leq t \),
 3. Additivity: for \(c \in \mathbb{R} \), \(V^t_s (c + u) = c + V^t_s u \),
 4. Regularity: \((t, q) \mapsto V^t_s u(q) \) is locally Lipschitz and \(q \mapsto V^t_s u(q) \) Lipschitz uniformly w.r.t. \(t \in [\tau, T] \),
 5. Markov: \(V^t_s = V^t_{\tau} \circ V^\tau_{s} \) for \(s \leq \tau \leq t \).

then \((t, q) \mapsto V^t_s u(q) \) solves (HJ) in the viscosity sense, with initial condition \(u \) at time \(s \).

- If furthermore \(\| dH(t, q, p) \| \leq C(1 + \| p \|) \), then there exists such an operator and it is unique.

Aim: select a continuous section in the wavefront associated with the Cauchy problem.
Aim: select a continuous section in the wavefront associated with the Cauchy problem.

Variational operator

It is a family of operators \((R^t_s)_{s \leq t} : \text{Lip}(\mathbb{R}^d) \rightarrow \text{Lip}(\mathbb{R}^d)\) s.t.

1. Variational property: if \(u\) is \(C^1\), for all \(s < t\), the graph of \(R^t_s u\) is contained in the wavefront \(\mathcal{F}^t_s u\).

 \[\implies \text{Consistency}\]

2. Monotonicity: \(u \leq v \implies R^t_s u \leq R^t_s v\) when \(s \leq t\),

3. Additivity: if \(c \in \mathbb{R}\), \(R^t_s (c + u) = c + R^t_s u\).
Variational operator: requirements & first consequences

Aim: select a continuous section in the wavefront associated with the Cauchy problem.

Variational operator

It is a family of operators $\left(R_s^t \right)_{s \leq t} : \text{Lip}(\mathbb{R}^d) \to \text{Lip}(\mathbb{R}^d)$ s.t.

1. Variational property: if u is C^1, for all $s \leq t$, the graph of $R_s^t u$ is contained in the wavefront $\mathcal{F}_s^t u$.

 (\implies \text{Consistency})

2. Monotonicity: $u \leq v \implies R_s^t u \leq R_s^t v$ when $s \leq t$,

3. Additivity: if $c \in \mathbb{R}$, $R_s^t (c + u) = c + R_s^t u$.

- 2.+3. \implies \| R_s^t u - R_s^t v \|_\infty \leq \| u - v \|_\infty.
- 1.+2. \implies$ if u is semiconcave, a variational operator gives for small time the minimal section of the wavefront, which is C^0.
- $u \in C^2 \implies (t, q) \mapsto R_0^t u(q)$ solves (HJ) a.e. on $[0, +\infty) \times \mathbb{R}^d$.
Variational operator: requirements & first consequences

Aim: select a continuous section in the wavefront associated with the Cauchy problem.

Variational operator

It is a family of operators \((R^t_s)_{s \leq t} : \text{Lip}(\mathbb{R}^d) \rightarrow \text{Lip}(\mathbb{R}^d)\) s.t.

1. **Variational property:** if \(u\) is \(C^1\), for all \(s < t\), the graph of \(R^t_s u\) is contained in the wavefront \(\mathcal{F}^t_s u\).

\[\quad (\implies \text{Consistency})\]

2. **Monotonicity:** \(u \leq v \implies R^t_s u \leq R^t_s v\) when \(s \leq t\),

3. **Additivity:** if \(c \in \mathbb{R}\), \(R^t_s (c + u) = c + R^t_s u\).

- global notion (no definition of "to be a variational solution of (HJ) at \((t, q)\)"")
- a priori no Markov property.
- \(u\) Lipschitz \(\implies (t, q) \mapsto R^t_0 u(q)\) solves (HJ) a.e.
Variational operator: Chaperon-Sikorav method

Generating family of the geometric solution

Find a C^1 function $S^t_0 u_0 : \mathbb{R}^d \times \mathbb{R}^k \to \mathbb{R}$ \textit{n.d. quadratic at infinity} s.t.

$$\phi^t_0(\text{gr } du_0) = \{ (q, \partial_q S^t_0 u_0(q, \chi)), \partial_\chi S^t_0 u_0(q, \chi) = 0 \} ,$$

$$\mathcal{F}^t_0 u_0 = \{ (q, S^t_0 u_0(q, \chi)), \partial_\chi S^t_0 u_0(q, \chi) = 0 \} ,$$

$$\partial_t S^t_0 u_0(q, \chi) = -H(t, q, \partial_q S^t_0 u_0(q, \chi)) \text{ if } \partial_\chi S^t_0 u_0(q, \chi) = 0.$$
Variational operator: Chaperon-Sikorav method

Generating family of the geometric solution

Find a C^1 function $S^t_0 u_0 : \mathbb{R}^d \times \mathbb{R}^k \to \mathbb{R}$ \textit{n.d.} quadratic at infinity s.t.

\[
\phi^t_0(\text{gr } du_0) = \{(q, \partial_q S^t_0 u_0(q, \chi)), \partial_\chi S^t_0 u_0(q, \chi) = 0\},
\]

\[
\mathcal{F}^t_0 u_0 = \{(q, S^t_0 u_0(q, \chi)), \partial_\chi S^t_0 u_0(q, \chi) = 0\},
\]

\[
\partial_t S^t_0 u_0(q, \chi) = -H(t, q, \partial_q S^t_0 u_0(q, \chi)) \text{ if } \partial_\chi S^t_0 u_0(q, \chi) = 0.
\]

Remark: if $(t, q) \mapsto \chi(t, q)$ is C^1 and satisfies $\partial_\chi S^t_0 u_0(q, \chi(t, q)) = 0$, then $(t, q) \mapsto S^t_0 u_0(q, \chi(t, q))$ solves Hamilton-Jacobi.
Variational operator: Chaperon-Sikorav method

Generating family of the geometric solution
Find a C^1 function $S^t_0 u_0 : \mathbb{R}^d \times \mathbb{R}^k \rightarrow \mathbb{R}$ n.d.quadratic at infinity s.t.

$$\phi^t_0(\text{gr } du_0) = \{(q, \partial_q S^t_0 u_0(q, \chi)), \partial_\chi S^t_0 u_0(q, \chi) = 0\},$$

$$\mathcal{F}^t_0 u_0 = \{(q, S^t_0 u_0(q, \chi)), \partial_\chi S^t_0 u_0(q, \chi) = 0\},$$

$$\partial_t S^t_0 u_0(q, \chi) = -H(t, q, \partial_q S^t_0 u_0(q, \chi)) \text{ if } \partial_\chi S^t_0 u_0(q, \chi) = 0.$$

Remark: if $(t, q) \mapsto \chi(t, q)$ is C^1 and satisfies $\partial_\chi S^t_0 u_0(q, \chi(t, q)) = 0$, then $(t, q) \mapsto S^t_0 u_0(q, \chi(t, q))$ solves Hamilton-Jacobi.

$$\{\text{Crit. points of } S^t_0 u_0(q, \cdot)\} \overset{1:1}{\longleftrightarrow} \{\text{Ham. traj. with } |\gamma(0) \in \text{gr}(du_0), \gamma(t) \in T^*_q \mathbb{R}^d\}$$

with associated critical value corresponding to the Hamiltonian action of the trajectory plus the initial cost $u_0(q_0)$.

Critical value selector σ (ex: minmax selector)

It selects for any smooth and n.d. quadratic at infinity function on \mathbb{R}^k a critical value, with

- $\sigma(c + f) = c + \sigma(f)$ for $c \in \mathbb{R}$,
- if ϕ is a C^1-diffeo., $\sigma(f \circ \phi) = \sigma(f)$,
- $\sigma(f \oplus Q) = \sigma(f)$,
- $\sigma(f) \leq \sigma(g)$ when $f \leq g$ and $f - g$ Lipschitz,
- if $\mu \mapsto f_\mu$ is such that critical points and values of f_μ do not depend on μ, $\mu \mapsto \sigma(f_\mu)$ is constant.
Variational operator: Chaperon-Sikorav method

Critical value selector σ (ex: minmax selector)

It selects for any smooth and n.d. quadratic at infinity function on \mathbb{R}^k a critical value, with

- $\sigma(c + f) = c + \sigma(f)$ for $c \in \mathbb{R}$,
- if ϕ is a C^1-diffeo., $\sigma(f \circ \phi) = \sigma(f)$,
- $\sigma(f \oplus Q) = \sigma(f)$,
- $\sigma(f) \leq \sigma(g)$ when $f \leq g$ and $f - g$ Lipschitz,
- if $\mu \mapsto f_\mu$ is such that critical points and values of f_μ do not depend on μ, $\mu \mapsto \sigma(f_\mu)$ is constant.

Proposition

If H is a C^2 Hamiltonian satisfying

$$\|d^2H(t, q, p)\| \leq C, \quad \|dH(t, q, p)\| \leq C(1 + \|p\|),$$

then $R^t_0 u_0(q) := \sigma(S^t_0 u_0(q, \cdot))$ defines a variational operator.
References on variational solutions

References on variational solutions

Graph selector with more sophisticated symplectic tools

References on variational solutions

- existence of variational solutions for (HJ) multi-time equations for commuting Hamiltonians, whereas

- Appendix C: existence of variational solutions for (multi-time) HJ contact equation
- Appendix B: extension to the non-compact case for Hamiltonians flow with *finite propagation speed*
Properties of the variational operator

Let u and v be Lipschitz functions and H (or K) be a Hamiltonian s.t.

$$\|d^2H(t, q, p)\| \leq C, \quad \|dH(t, q, p)\| \leq C(1 + \|p\|).$$

- $R^t_s u$ is Lipschitz and $1 + Lip(R^t_s u) \leq e^{C(t-s)}(1 + Lip(u))$,
- $R^t_s u \leq R^t_s v$ if $u \leq v$,
- $\|R^t_s u - R^t_s v\|_\infty \leq \|u - v\|_\infty$,
- $R^t_{s,H} \leq R^t_{s,K}$ if $H \geq K$,
- $\|R^t_{s,H} u - R^t_{s,K} u\|_\infty \leq (t - s)\|H - K\|_\infty$.

Consequence:
extension to Lipschitz initial conditions and Hamiltonians (C^0-variational solutions).

Remark:
the non-expansion and monotonicity properties can be localized with explicit bounds on the Hamiltonian trajectories.
Properties of the variational operator

Let \(u \) and \(v \) be Lipschitz functions and \(H \) (or \(K \)) be a Hamiltonian s.t.

\[
\| d^2 H(t, q, p) \| \leq C, \quad \| dH(t, q, p) \| \leq C(1 + \| p \|).
\]

- \(R^t_s u \) is Lipschitz and \(1 + \text{Lip}(R^t_s u) \leq e^{C(t-s)}(1 + \text{Lip}(u)) \),
- \(R^t_s u \leq R^t_s v \) if \(u \leq v \),
- \(\| R^t_s u - R^t_s v \|_\infty \leq \| u - v \|_\infty \),
- \(R^t_s H \leq R^t_s K \) if \(H \geq K \),
- \(\| R^t_s H u - R^t_s K u \|_\infty \leq (t - s) \| H - K \|_\infty \).

Consequence: extension to Lipschitz initial conditions and Hamiltonians (\(C^0 \)-variational solutions).
Properties of the variational operator

Let u and v be Lipschitz functions and H (or K) be a Hamiltonian s.t.

$$\left\| d^2H(t, q, p) \right\| \leq C, \left\| dH(t, q, p) \right\| \leq C(1 + \|p\|).$$

- $R^t_s u$ is Lipschitz and $1 + \text{Lip}(R^t_s u) \leq e^{C(t-s)}(1 + \text{Lip}(u))$,
- $R^t_s u \leq R^t_s v$ if $u \leq v$,
- $\left\| R^t_s u - R^t_s v \right\|_{\infty} \leq \left\| u - v \right\|_{\infty}$,
- $R^t_{s,H} \leq R^t_{s,K}$ if $H \geq K$,
- $\left\| R^t_{s,H} u - R^t_{s,K} u \right\|_{\infty} \leq (t-s)\left\| H - K \right\|_{\infty}$.

Consequence: extension to Lipschitz initial conditions and Hamiltonians (C^0-variational solutions).

Remark: the non-expansion and monotonicity properties can be localized with explicit bounds on the Hamiltonian trajectories.
Properties of the variational operator

Let u and v be Lipschitz functions and H (or K) be a Hamiltonian s.t.

$$\|d^2H(t, q, p)\| \leq C, \|dH(t, q, p)\| \leq C(1 + \|p\|).$$

- $R^t_s u$ is Lipschitz and $1 + \text{Lip}(R^t_s u) \leq e^{C(t-s)}(1 + \text{Lip}(u))$,
- $R^t_s u \leq R^t_s v$ if $u \leq v$,
- $\|R^t_s u - R^t_s v\|_\infty \leq \|u - v\|_\infty$,
- $R^t_s,H \leq R^t_s,K$ if $H \geq K$,
- $\|R^t_s,H u - R^t_s,K u\|_\infty \leq (t - s)\|H - K\|_\infty$.

Consequence: extension to Lipschitz initial conditions and Hamiltonians (C^0-variational solutions).

Remark: the non-expansion and monotonicity properties can be localized with explicit bounds on the Hamiltonian trajectories.
Convergence of the iterated variational operator

Conjectured by Chaperon and Viterbo:

Theorem (Wei, R.)

If $s \leq t_1 \leq \cdots \leq t_N \leq t$ is a N-step subdivision with maximal step tending to 0,

$$R_{t_N}^t \circ R_{t_{N-1}}^{t_N} \circ \cdots \circ R_{s}^{t_1} u(q) \xrightarrow{N \to \infty} V_s^t u(q) \ (\text{loc. uniform in } s \leq t, q).$$
Convergence of the iterated variational operator

Conjectured by Chaperon and Viterbo:

Theorem (Wei, R.)

If \(s \leq t_1 \leq \cdots \leq t_N \leq t \) is a \(N \)-step subdivision with maximal step tending to 0,

\[
R_{t_N}^t \circ R_{t_{N-1}}^{t_1} \circ \cdots \circ R_{t_1}^s u(q) \xrightarrow{N \to \infty} V_s^t u(q) \quad (\text{loc. uniform in } s \leq t, q).
\]

Convergence of the iterated variational operator

Conjectured by Chaperon and Viterbo:

Theorem (Wei, R.)

If \(s \leq t_1 \leq \cdots \leq t_N \leq t \) is a \(N \)-step subdivision with maximal step tending to 0,

\[
R_{t_N}^t \circ R_{t_{N-1}}^{t_N} \circ \cdots \circ R_{s}^{t_1} u(q) \to V_s^t u(q) \quad (\text{loc. uniform in } s \leq t, q).
\]

Sketch of the proof:

- Local semi-group type Lipschitz estimates w.r.t. \(s, t, u, q \),
Convergence of the iterated variational operator

Conjectured by Chaperon and Viterbo:

Theorem (Wei, R.)

If $s \leq t_1 \leq \cdots \leq t_N \leq t$ *is a N-step subdivision with maximal step tending to* 0,

$$R_{t_N}^t \circ R_{t_{N-1}}^{t_N} \circ \cdots \circ R_{s}^{t_1}u(q) \xrightarrow{N \to \infty} V_s^tu(q) \text{ (loc. uniform in } s \leq t, q).$$

Sketch of the proof:

- Local semi-group type Lipschitz estimates w.r.t. s, t, u, q,
- Arzela-Ascoli extraction for (s, t, u, q) in some compact subsets,
Convergence of the iterated variational operator

Conjectured by Chaperon and Viterbo:

Theorem (Wei, R.)

If \(s \leq t_1 \leq \cdots \leq t_N \leq t \) is a \(N \)-step subdivision with maximal step tending to 0,

\[
R_{t_N}^t \circ R_{t_{N-1}}^{t_N} \circ \cdots \circ R_{s}^{t_1} u(q) \xrightarrow{N \to \infty} V_s^t u(q) \text{ (loc. uniform in } s \leq t, q)\.
\]

Sketch of the proof:

- Local semi-group type Lipschitz estimates w.r.t. \(s, t, u, q \),
- Arzela-Ascoli extraction for \((s, t, u, q)\) in some compact subsets,
- Diagonal extraction,
Convergence of the iterated variational operator

Conjectured by Chaperon and Viterbo:

Theorem (Wei, R.)

If $s \leq t_1 \leq \cdots \leq t_N \leq t$ *is a* N-step subdivision with maximal step tending to 0,*

$$R_{t_N}^t \circ R_{t_{N-1}}^{t_N} \circ \cdots \circ R_{s}^{t_1} u(q) \xrightarrow{N \to \infty} V_s^t u(q) \; (\text{loc. uniform in } s \leq t, q).$$

Sketch of the proof:

- Local semi-group type Lipschitz estimates w.r.t. s, t, u, q,
- Arzela-Ascoli extraction for (s, t, u, q) in some compact subsets,
- Diagonal extraction,
- Check that any accumulation point satisfies the 5 axioms of the (unique) viscosity operator.
Joukovskaia ’91: If H Tonelli, the Lax-Oleinik semigroup coincides with the variational solution obtained by the Chaperon-Sikorav method.
Joukovskaia ’91: If H Tonelli, the Lax-Oleinik semigroup coincides with the variational solution obtained by the Chaperon-Sikorav method. Consequence: $p \mapsto H(t, q, p)$ convex (concave) $\implies V = R$.
Variational = viscosity?

Joukovskaia ’91: If \(H \) is Tonelli, the Lax-Oleinik semigroup coincides with the variational solution obtained by the Chaperon-Sikorav method. **Consequence:** \(p \mapsto H(t, q, p) \) convex (concave) \(\implies \) \(V = R \).

Lax-Hopf formula: \(H(p) \), \(u \) convex (concave) \(\implies \) \(V_s^t u = R_s^t u \).
Variational = viscosity?

Joukovskaia ’91: If H Tonelli, the Lax-Oleinik semigroup coincides with the variational solution obtained by the Chaperon-Sikorav method.

Consequence: $p \mapsto H(t, q, p)$ convex (concave) $\implies V = R$.

Lax-Hopf formula: $H(p)$, u convex (concave) $\implies V_s^t u = R_s^t u$.
Joukovskaia ’91: If \(H \) Tonelli, the Lax-Oleinik semigroup coincides with the variational solution obtained by the Chaperon-Sikorav method.

Consequence: \(p \mapsto H(t, q, p) \) convex (concave) \(\implies V = R. \)

Lax-Hopf formula: \(H(p), u \) convex (concave) \(\implies V_s^t u = R_s^t u. \)

Bernardi-Cardin ’09: the solutions coincide for convex-concave Hamiltonians if the initial condition has separated variables, *i.e.*

\[
H(t, q, p) = H_1(t, q_1, p_1) + H_2(t, q_2, p_2) \quad \text{and} \quad u(q) = u_1(q_1) + u_2(q_2)
\]

with \(p_1 \mapsto H(t, q_1, p_1) \) convex and \(p_2 \mapsto H(t, q_2, p_2) \) concave.
Variational $=$ viscosity?

Joukovskaia ’91: If H Tonelli, the Lax-Oleinik semigroup coincides with the variational solution obtained by the Chaperon-Sikorav method.
Consequence: $p \mapsto H(t, q, p)$ convex (concave) $\implies V = R.$

Lax-Hopf formula: $H(p), u$ convex (concave) $\implies V_s^t u = R_s^t u.$

Bernardi-Cardin ’09: the solutions coincide for convex-concave Hamiltonians if the initial condition has separated variables, i.e.
$H(t, q, p) = H_1(t, q_1, p_1) + H_2(t, q_2, p_2)$ and $u(q) = u_1(q_1) + u_2(q_2)$ with $p_1 \mapsto H(t, q_1, p_1)$ convex and $p_2 \mapsto H(t, q_2, p_2)$ concave.

\implies does there exists u such that $R_0^t u \neq V_0^t u$ for $H(p_1, p_2) = p_1^2 - p_2^2$?
Variational = viscosity?

Joukovskaia ’91: If H Tonelli, the Lax-Oleinik semigroup coincides with the variational solution obtained by the Chaperon-Sikorav method.

Consequence: $p \mapsto H(t, q, p)$ convex (concave) $\implies V = R$.

Lax-Hopf formula: $H(p)$, u convex (concave) $\implies V^t_s u = R^t_s u$.

Bernardi-Cardin ’09: the solutions coincide for convex-concave Hamiltonians if the initial condition has separated variables, i.e.

$H(t, q, p) = H_1(t, q_1, p_1) + H_2(t, q_2, p_2)$ and $u(q) = u_1(q_1) + u_2(q_2)$ with $p_1 \mapsto H(t, q_1, p_1)$ convex and $p_2 \mapsto H(t, q_2, p_2)$ concave.

\implies does there exists u such that $R^t_0 u \neq V^t_0 u$ for $H(p_1, p_2) = p_1^2 - p_2^2$?

Theorem (R. ’18)

*If $H(p)$ is neither convex nor concave, there exists a smooth u such that $R^t_0 u \neq V^t_0 u$.***

For this initial condition, the graph of the viscosity solution is not contained in the wavefront.
Variational = viscosity?

Joukovskaia ’91: If H Tonelli, the Lax-Oleinik semigroup coincides with the variational solution obtained by the Chaperon-Sikorav method.

Consequence: $p \leftrightarrow H(t, q, p)$ convex (concave) $\iff V = R$.

Lax-Hopf formula: $H(p)$, u convex (concave) $\implies V_s^t u = R_s^t u$.

Bernardi-Cardin ’09: the solutions coincide for convex-concave Hamiltonians if the initial condition has separated variables, i.e.

$H(t, q, p) = H_1(t, q_1, p_1) + H_2(t, q_2, p_2)$ and $u(q) = u_1(q_1) + u_2(q_2)$ with $p_1 \mapsto H(t, q_1, p_1)$ convex and $p_2 \mapsto H(t, q_2, p_2)$ concave.

does there exists u such that $R_0^t u \neq V_0^t u$ for $H(p_1, p_2) = p_1^2 - p_2^2$?

Theorem (R. ’18)

If $H(p)$ is neither convex nor concave, there exists a smooth u such that $R_0^t u \neq V_0^t u$.

For this initial condition, the graph of the viscosity solution is not contained in the wavefront.
Semi-Lagrangian numerical scheme for nonconvex Hamiltonians (j.w. in progress with H. Hivert)

Input:

- An integrable C^2 1D Hamiltonian $H(p)$, entered as a function.

\[\phi^t_0(q, p) = (q + tH'(p), p), \quad A^t_0(\gamma) = t \left(pH'(p) - H(p) \right). \]

- Spatial step Δx, time step Δt.

- A semiconcave initial condition u with a finite number of shocks, processed as a list of 3-tuples (x_i, u_i, p_i) ("Clarke 1-jet").
Semi-Lagrangian numerical scheme for nonconvex Hamiltonians (j.w. in progress with H. Hivert)

Input:

- An integrable C^2 1D Hamiltonian $H(p)$, entered as a function.

\[\phi_0^t(q, p) = (q + tH'(p), p), \quad A_0^t(\gamma) = t \left(pH'(p) - H(p) \right). \]

- Spatial step Δx, time step Δt.

- A semiconcave initial condition u with a finite number of shocks, processed as a list of 3-tuples (x_i, u_i, p_i) ("Clarke 1-jet").

One step:

- Δt Hamiltonian transform on each 3-tuple:
 \[(x_i, u_i, p_i) \rightarrow (x_i + \Delta tH'(p_i), u_i + \Delta t(p_iH'(p_i) - H(p_i)), p_i). \]

- "Follow" and select the minimal section.

- Insert points of shocks with Clarke derivatives in the selected list.
Semi-Lagrangian numerical scheme for nonconvex Hamiltonians (j.w. in progress with H. Hivert)

Input:

- An integrable C^2 1D Hamiltonian $H(p)$, entered as a function.
 $\phi^{t}(q, p) = (q + tH'(p), p)$, $A^{t}_{0}(\gamma) = t \left(pH'(p) - H(p) \right)$.

- Spatial step Δx, time step Δt.

- A semiconcave initial condition u with a finite number of shocks, processed as a list of 3-tuples (x_i, u_i, p_i) ("Clarke 1-jet").

One step:

- Δt Hamiltonian transform on each 3-tuple:
 $(x_i, u_i, p_i) \rightarrow (x_i + \Delta tH'(p_i), u_i + \Delta t \left(p_iH'(p_i) - H(p_i) \right), p_i)$.

- "Follow" and select the minimal section.

- Insert points of shocks with Clarke derivatives in the selected list.

Then iterate.
Semi-Lagrangian scheme: comparison with Lax-Friedrichs

\[H(p) = p^4 - p^2 \quad u_0(q) = \begin{cases}
q & \text{if } q < 0 \\
-\frac{3}{4}q + q^2/2 & \text{if } q > 0
\end{cases} \]
Semi-Lagrangian scheme: precision test

\[T = 50, \quad \Delta t = 0.05, \quad \Delta x = 0.01 \]

\[H(p) = \begin{cases}
 p + p^2 & \text{if } p < 0 \\
 p - p^2 & \text{if } p > \delta
\end{cases} \]

\[u_0(q) = \begin{cases}
 q & \text{if } q < 0 \\
 -q + q^2/2 & \text{if } q > 0
\end{cases} \]
Explicit example where the solutions differ

\[u_0(q) = \begin{cases}
q & \text{if } q < 0 \\
-q + q^2/2 & \text{if } q > 0
\end{cases} \quad H(p) = \begin{cases}
p + p^2 & \text{if } p < 0 \\
p - p^2 & \text{if } p > \delta
\end{cases} \]

with \(H \in C^2 \) on \(\mathbb{R} \) and such that \(H'' \) cancels exactly once in \((0, \delta)\).
Explicit example where the solutions differ
Explicit example where the solutions differ
Explicit example where the solutions differ

Characteristics for the variational solution

In the blue domain, the variational solution coincides with the classical solution f_r for $H(p) = p + p^2$ with smooth initial condition $f(q) = -q + q^2/2$.
Explicit example where the solutions differ

\[u_0(q) = \begin{cases} q & \text{if } q < 0 \\ -q + q^2/2 & \text{if } q > 0 \end{cases} \quad H(p) = \begin{cases} p + p^2 & \text{if } p < 0 \\ p - p^2 & \text{if } p > \delta \end{cases} \]

Oleinik’s guess

If \(x(t) \) denotes the position of the presumed viscosity shock, then

\[x'(t) = \frac{H(p_+(t)) - H(p_-(t))}{p_+(t) - p_-(t)} = H'(p_+(t)) \]

where \(p_-(t) = \partial_x f_r(t, x(t)) \) and \(p_+(t) = \psi(p_-(t)) \).
Explicit example where the solutions differ

\[u_0(q) = \begin{cases}
q & \text{if } q < 0 \\
-q + q^2/2 & \text{if } q > 0
\end{cases} \]

\[H(p) = \begin{cases}
p + p^2 & \text{if } p < 0 \\
p - p^2 & \text{if } p > \delta
\end{cases} \]

Oleinik’s guess

If \(x(t) \) denotes the position of the presumed viscosity shock, then

\[x'(t) = \frac{H(p_+(t)) - H(p_-(t))}{p_+(t) - p_-(t)} = H'(p_+(t)) \]

where \(p_-(t) = \partial_x f_r(t, x(t)) \) and \(p_+(t) = \psi(p_-(t)) \).
Explicit example where the solutions differ

Characteristics for the viscosity solution

Characteristics for the viscosity solution are tangentially issued from the shock.
Explicit example where the solutions differ

Characteristics for the variational solution

Characteristics for the viscosity solution are tangentially issued from the shock.
Explicit example where the solutions differ

\[T = 50, \quad \Delta t = 0.05, \quad \Delta x = 0.01 \]

- Initial data
- Explicit variational solution
- Explicit viscosity solution
- Approximated variational solution
- Approximated viscosity solution