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Degassing cascades in a shear-thinning viscoelastic fluid
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We report the experimental study of the degassing dynamics through a thin layer of shear-thinning viscoelastic
fluid when a constant air flow is imposed at its bottom. The fluid is an aqueous solution of cetyltrimethylammonium
bromide (CTAB) and sodium salicylate (NaSal). Over a large range of parameters, the air is periodically released
through a series of successive bubbles, hereafter named cascades. Each cascade is followed by a continuous
degassing, lasting for several seconds, corresponding to an open channel crossing the fluid layer. The periodicity
between two cascades does not depend on the injected flow rate. Inside one cascade, the properties of the
overpressure signal associated with the successive bubbles vary continuously. The pressure threshold above
which the fluid starts flowing, fluid deformation and pressure drop due to degassing through the thin fluid layer
can be simply described by a Maxwell model.
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I. INTRODUCTION

Bubbles in complex fluids are widely encountered in nature,
from giant gas bubbles rising in magma and bursting at the top
of volcanic conduits or lava lakes [1,2] to bubble growth in a
mud sediment layer [3,4]. On volcanoes, the gas is released by
the volatile-rich magma by decompression during its ascent
toward the surface. The non-Newtonian rheology of magma
[5–7] and its interaction with rising bubbles result in complex
degassing dynamics, which determines the style and intensity
of the eruptions [1,2,8–10]. If the role of magma viscosity in
the nature of the eruption has been thoroughly studied [2], the
influence of the non-Newtonian rheology of the magma is, up
until now, still being investigated.

Gas bubbles are also encountered in soft sediment layers
which, under specific stress conditions, may exhibit a fluid
behavior with a non-Newtonian rheology. Bubbles in such a
medium are of crucial importance as they determine the dy-
namics of mud volcanoes [11–13]. In the marine environment,
bubbles grow and rise in the soft sediments due, for example,
to the decomposition of organic matter [4]. In the case of gas
hydrates, understanding the dynamics of methane release at
the seafloor and in the atmosphere is fundamental both for the
oil industry [14,15] and for the greenhouse effect and climate
change [16].

From the physicists’ point of view, bubbles rising through
non-Newtonian fluids exhibit puzzling behaviors, due, in
particular, to the nontrivial coupling between the bubble
dynamics and the fluid rheology [17]. This has prevented,
up until now, a complete theoretical description of the system,
and favored experimental studies. In viscoelastic fluids, the
bubble shape is generally elongated [17–21], its tail ends by
a cusp [17,19], and both its geometry and velocity oscillate
during its rise through the fluid [19,20,22]. In shear-thinning
fluids, the local perturbation due to a rising bubble—or a falling
sphere—creates a negative wake [23] and a corridor of reduced
viscosity [24,25]. As a consequence, successive bubbles may
interact one with one another [26–29], if the emission period is
shorter than the time for the perturbation created by the bubble
to vanish.

Understanding the mechanisms at stake in the degassing
process through a shear-thinning, viscoelastic fluid is therefore
of importance not only in the prediction and mitigation of
natural hazards, but also for fundamental physics. Previous
studies of the degassing regimes when a constant air flux is
imposed at the bottom of a shear-thinning fluid column (gel
or immersed granular material) has revealed the existence of
three different regimes [29–31]. On the one hand, at low flow
rate, bubbles rise independently from one another. On the other
hand, at high flow rate, an open channel connects the bottom
nozzle to the fluid surface; this channel develops instabilities,
forming a “bubble chain” [32]. Finally, at intermediate flow
rate, the system spontaneously oscillates between the two
previous regimes, exhibiting a complex intermittent dynamics
[29].

The previous works presented above considered gas rising
in a column of fluid higher than the typical size of a bubble.
Based on their results it was possible to point out, in the geo-
physical context, the strong influence of the non-Newtonian
rheology of magma in the degassing process observed on
volcanoes [33]. Many situations in nature, however, involve
gas rising through a thin complex fluid layer, for instance,
in shallow lava lakes or thin sedimentary layers. In such
situations, we expect a different degassing dynamics than
previously reported.

In this paper, we extend the previous works and investigate
the degassing regimes when a constant gas flow is injected at
the bottom of a thin shear-thinning, viscoelastic fluid layer,
i.e., when the fluid height is of the order of the typical size
of a bubble. In order to quantify the influence of the fluid
rheology on the degassing dynamics, we chose an aqueous
solution of cetyltrimethylammonium bromide (CTAB) and
sodium salicylate (NaSal), a micellar fluid whose rheological
properties can be accurately controlled (see Sec. II). We report
the existence of a peculiar degassing regime: While a constant
air flow is imposed at its bottom, in the bubbling regime,
the air is released through a periodic series of successive
bubbles, hereafter named cascades, separated by an open
channel degassing. When the layer is thin enough, the cascades
merely consist in successive opening and closing of the fluid
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FIG. 1. Experimental setup. A constant air flow is supplied at the
base of a thin layer of micellar fluid by an air-flow controller F (flow
rate Q), via a chamber of volume V . h is of the order of a typical
bubble diameter (a few millimeters to centimeters).

layer above the air injection point. For convenience, these
periodic degassing apertures will also be named bubbles in the
following. We measure the overpressure at the base of the fluid
column, at the injection point. The main characteristics of the
cascades (periodicity, maximum overpressure) are analyzed in
regard to the fluid rheology.

II. EXPERIMENTAL SETUP

The experimental cell consists of a cylinder made of
plexiglass (diameter 74 mm, height 270 mm), filled with the
fluid up to a height h (Fig. 1). Air is injected at constant
flow rate Q (from 0.17 to 1.72 mL/s) through an injection
hole (diameter d = 2 mm) at the bottom of the fluid column.
The air-injection system consists of a mass-flow controller
(Bronkhorst, Mass-Stream Series D-5111) connected to a
chamber of volume V , from which the air flows at the column
bottom. The volume of the chamber can be easily tuned by
changing the water level into the chamber (see Fig. 1). The
water itself makes it possible to inject humid air inside the fluid,
thus avoiding any drying of the sample over the experimental
time. A differential pressure sensor (223 BD-00010 AB, MKS
Instruments) measures the variations of the overpressure δP

inside the chamber, corresponding to the pressure variations
at the bottom of the cell.

The fluid is a semidilute micellar system obtained by a
mixing at equimolar concentration, inside pure water, sodium
salicylate (NaSal, Sigma Aldrich), and hexadecyltrimethylam-
monium bromide (CTAB, Sigma Aldrich). The mixture of
these two chemical components causes the formation of a
network of giant entangled micelles, which break down and
reform continuously [41]. On a macroscopic point of view, the
fluid exhibits shear-thinning, viscoelastic properties [34,35],
which can be tuned by varying the fluid concentration c (from
0.03 to 0.5 mol L−1). The rheology of these well-controlled
mixtures is characterized by rheometer measurements (see
Appendixes A and B). The height h of the thin layer ranges
from 5 to 35 mm. Unless specified, the results presented
here are for a typical height of 5 mm and a concentration
c = 0.1 mol L−1.

III. DEGASSING REGIMES

When varying the system parameters (c,V,Q,h), we ob-
serve three different degassing regimes through the thin layer:
a bubbling regime, for which bubbles are emitted one after
the other; an open channel regime, for which the system
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FIG. 2. Phase diagram of the different degassing regimes
depending on the parameters (V,Q) for c = 0.1 mol L−1 (a) and c =
0.5 mol L−1 (b) (•, bubbles; �, intermittence; �, open channel).
Dashed lines are a guide to the eyes. The gray zone corresponds
to the space of parameters where bubble cascades are observed
(h = 5 mm).

is able to sustain a stable channel connecting the injection
nozzle at the base of the fluid column to the fluid free
surface; and an intermittent regime, for which the system
alternates spontaneously between the bubbling and the open
channel regime—the latter pinching off intermittently. Similar
degassing regimes have been reported in yield-stress fluids:
gels [29] or in immersed granular media [30,31].

Typically, when increasing the injected air flow rate Q, all
other parameters being constant, the system goes from the
bubbling, intermittent, and finally, to the open channel regime
(Fig. 2). When increasing the fluid concentration, it becomes
easier for the system to sustain an open channel, and it is
necessary to go to higher volumes V and smaller flow rate Q

to observe the bubbling regime [Figs. 2(a) and 2(b)] [36]. On
the contrary, increasing the fluid column height makes it more
difficult to open a channel, and shifts the regime boundaries
toward smaller volumes and higher flow rates. Note that the
precise boundary between two different regimes is difficult to
determine, due to the finite acquisition time (the system may
not have time to switch from bubbles to an open channel, or
vice versa).

The formation of an open channel can be qualitatively
explained. Indeed, due to the fluid shear-thinning properties
(Appendix A), when a bubble rises through the fluid, its wake is
characterized by a local viscosity smaller than the surrounding
fluid. If the flow rate is large enough, the following bubble will
rise through a fluid with a smaller effective viscosity—and
thus, will rise faster, and so on, until the system is able
to sustain an open channel through the fluid column. Note
that this channel does not resemble a cylinder, but rather a
bubble chain, similar to previous observations in yield-stress
and non-yield-stress fluids [29,32].
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FIG. 3. Top: Pressure signal displaying the gas discharge via bubble cascades. δPmax indicates the maximum overpressure reached in the
cascades. Middle: (a) The first bubbles in the cascade exhibit a linear pressure increase. The fluid starts flowing only when the bubble is about to
be emitted (pressure jump). (b) The last bubbles in the cascade exhibit a curved pressure increase, characteristic of fluid deformation (flowing)
and bubble growth. (c) Between two bubble cascades, an open channel connects the air nozzle to the fluid free surface. The overpressure
is constant, almost equal to zero (see text). Bottom: Detail of the pressure signal for a bubble formation and emission inside a cascade:
(1) linear pressure increase; the dashed gray line corresponds to the linear pressure increase in the fixed volume V , δP = (P0/V )Qt , without
any adjustable parameters (see text); (2) bubble formation and growth; and (3) the bubble pierces the free surface and the gas is released. Note
the pressure oscillations subsequent to the bubble emission (c = 0.1 mol L−1, V = 147 mL, Q = 0.65 mL/s).

IV. BUBBLE CASCADES

In a wide range of fluid concentration (from c = 0.04 to
0.14 mol/L), when the fluid layer height h is of the order
of the size of a bubble (typically, h < 10 mm), we do not
observe, in the bubbling regime, successive bubbles but rather
a periodic series of bubbles, hereafter named bubble cascades.
These cascades are clearly observed in the overpressure signal
δP recorded at the bottom of the fluid column (Fig. 3, top).

The pressure signal corresponding to one cascade exhibits
successive rises and drops, each of them corresponding to
the pressure increasing in the chamber, followed by a bubble
emission [Fig. 3, middle, (a) and (b)]. After each bubble
cascade, the overpressure remains at δP ∼ 0 for a few seconds,
before the next bubble cascade [Fig. 3, middle, (c)]. During
this time interval, the air escapes continuously through the
thin fluid layer. The value of the overpressure is given by the
charge loss of the air flow through the hole [roughly a few Pa,

Fig. 3, middle, (c)]. This hole then suddenly closes, and
the next cascade starts. The sequence consisting of a bubble
cascade followed by a hole opened through the fluid layer
repeats periodically in time. The main goal of this work is to
thoroughly describe the cascade properties.

The general properties of the cascades are reported in Fig. 4.
On the one hand, we observe that the time interval between
each sequence (cascade + hole) is very stable and, over the
range of parameters explored, does not depend on either the
injected flow rate Q, or on the chamber volume V . The same
observation is reported for the maximum overpressure reached
inside each cascade (Fig. 4, inset). On the other hand, the
number of bubbles emitted per cascade, n, depends linearly
on the injected flow rate [Fig. 5(a)]. The associated slope,
dn/dQ, varies with the chamber volume V . For h = 5 mm
and small volumes, we report a linear, decreasing relationship
dn/dQ = −ζV , where ζ is a constant [Fig. 5(b), black dots].
For large values of V (>105 mL) or larger height, however,
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dn/dQ is independent of the chamber volume. These results
can be interpreted as follows.

For small h, the layer is of the order of a bubble height,
and whenever a bubble is emitted, it pierces the layer. Via the
open channel thus formed, the overpressurized air escapes the
chamber. For small chamber volume V , the chamber reservoir
quickly empties, and a dependence on V is clearly seen. When
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FIG. 5. (a) Number of bubbles per cascade n as a function of the
air flow rate Q. [Symbol, V (mL)]: (�, 48); (•, 56); (◦, 71); (�, 105);
(�, 161). The gray lines correspond to the linear interpolation for
each series of experiments (V fixed) (h = 5 mm). (b) dn/dQ as a
function of V . The series reported in (a) display a linear, decreasing
relationship up to V = 105 mL. For larger fluid layer height, the
slope is almost constant. [Symbol, h (mm)]: (•, 5); (◦, 8); (�, 18);
(�, 27); (�, 35). Inset: dn/dQ as a function of the fluid concentration
(V = 147 mL, Q = 0.65 mL/s, h = 5 mm). No apparent relationship
is found.

V reaches higher values, it acts as a pressure reservoir and
dn/dQ remains roughly constant.

For larger h, the air is no longer able to pierce the fluid layer,
and bubbles are emitted in the fluid, and rise and burst, no
longer connecting the injection nozzle to the fluid free surface.
In this case, the overpressurized air trapped in the chamber
cannot escape directly through the fluid, but via the successive
bubbles. The bubble size is fixed by the nozzle size and the
fluid rheological properties, and dn/dQ is independent of V .

The total volume of gas emitted during a cascade can be
written VT ∼ Q�tcasc. As the number of bubbles emitted
per cascade always depends linearly on Q, we can write
n = αQ, where α = dn/dQ is a constant for a given series of
experiment (c, h, and V fixed). We thus find that the average
gas volume emitted per bubble, 〈vb〉 = VT /n, is constant. For
h > 5 mm, this constant no longer depends on V [Fig. 5(b)].

Inside a cascade, however, the bubble properties (maximum
overpressure and emission duration) vary continuously (Fig. 3,
top and middle). In the next two sections, we investigate these
variations, and see what information they bring on the system.

V. EVOLUTION INSIDE A CASCADE

During the release of a single bubble, the overpressure
δP exhibits three different stages (Fig. 3, bottom). First, we
observe a linear pressure increase (Fig. 3, bottom, region 1).
The overpressure signal then departs from the linear tendency
(Fig. 3, bottom, region 2) until the bubble is emitted (sudden
pressure drop, Fig. 3, bottom, region 3). In this section, we
describe each part of the pressure signal, and show that a simple
Maxwell model can account for the different observations.

A. Linear pressure increase

When submitted to a sudden stress (pressure increase), at
a short time scale, the CTAB/NaSal mixture does not flow,
and the system is equivalent to a chamber of volume V

continuously filled by a gas flow Q. The overpressure is given
by

δP =
(

P0

V

)
Qt, (1)

where P0 = 105 Pa denotes the atmospheric pressure. The
experimental slope is consistent with this linear pressure
increase (dashed gray line, Fig. 3 bottom, region 1), without
any adjustable parameters. In the following section, we
estimate the threshold pressure δPY above which the fluid
starts flowing when the pressure at its bottom increases.

B. Threshold pressure δ PY

After a certain time tY , associated with an overpressure
δPY (point Y , Fig. 3, bottom), the overpressure departs from
its linear increase. At this point, the fluid starts flowing, and
a bubble is nucleated and grows at the tip of the injection
hole (Fig. 3, bottom, region 2). In order to estimate this
threshold pressure, we describe the fluid with a Maxwell
model, consisting of an ideal elastic spring attached to an ideal
dashpot (Fig. 6). This simple model represents the viscoelastic
behavior of energy storage and viscous loss, which can be
quantified by the elastic (G′) and viscous (G′′) modulus,
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FIG. 6. Maxwell model for the CTAB/NaSal. This simple model
consists in an ideal elastic spring (elastic modulus G′) and a dashpot
representing the viscous loss (viscosity η). r and rn indicate the
displacements generated by the rising bubble and the dashpot shift
after the nth bubble, respectively.

respectively. These moduli can be considered constant as a
function of the applied stress in a given frequency range
(ω ∼ 1 Hz) representative of the frequency of bubbles rising
through the fluid. The moduli are estimated from the plateau
obtained from oscillation measurements (see Appendix B,
Fig. 10) to G′ ∼ 50 Pa and G′′ ∼ 10 Pa.

The equation describing the opening of a hole of radius r

due to a bubble rising in the fluid layer can be written as

ξρr
d2r

dt2
= −2γ

r
− αG′(r − rn) + δP − ρg�h, (2)

where ξ is a constant. The first term in the right-hand side
represents the closing force due to the fluid surface tension γ ,
where γ � 40 mN/m. The second term describes the elastic
force which tends to shift the spring back to its initial length,
where α is a constant which can be approximated to the
inverse of the nozzle radius 2/d. δP is the pressure inside
the chamber (Fig. 1) and, thus, inside the bubble which starts
being generated at the injection nozzle. Finally, the last term
quantifies the weight associated with the fluid layer height �h

above the newborn bubble. At the limit where the fluid starts
flowing, r ∼ d/2, �h = h and the threshold pressure, given
by the condition d2r/dt2 � 0, can be written as

δPY = 4γ

d
+ ρgh + 2G′

d

(
d

2
− rn

)
. (3)

Before the emission of the first bubble in the cascade, r0 = 0
and we can estimate δPY ∼ 180 Pa, which is consistent with
the pressure signal measured in the experiments (Fig. 3, top).

As the bubble properties vary continuously inside the
cascade, we investigate the evolution of δPY as a function
of the bubble number. We find that, in the main part of the
cascade, δPY is a linear, decaying function of the bubble
number (Fig. 7). The corresponding slope, constant from one
cascade to the other, increases with the fluid concentration
(Fig. 7, inset). This linear relationship can be explained by a
simple heuristic model, based on the key ingredients of the
Maxwell model (Fig. 6).

We consider successive bubbles rising through or piercing
the thin fluid layer. When the bubble rises during the
characteristic time tb, r ∼ d/2 (Fig. 6) and we can write the
differential equation describing the temporal evolution of rn:

G′
(

d

2
− rn

)
= η ṙn, (4)
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FIG. 7. Evolution of δPy as a function of the bubble number in
the cascade. In the main part of the cascade, δPy is a linear decaying
function of the bubble number n [Symbol, c (mol L−1)]: (◦, 0.1);
(�, 0.07) (V = 147 mL, Q = 0.65 mL/s).

which gives, right after the bubble rise,

rn(tb) =
(

rn−1 − d

2

)
e−tb/τ + d

2
, (5)

where rn−1 is the initial condition from which rn evolves
and τ = η/G′ is the characteristic time associated with the
Maxwell fluid.

After the bubble rise, we suppose that the fluid layer closes
almost immediately, due in particular to the surface tension.
The fluid is hence at rest, and rn relaxes toward 0 during a time
T − tb, where T is the average time between bubble emission.
For the sake of convenience, we consider here that T and tb
are the same for each bubble. During this stage of relaxation,
rn obeys the following equation:

τ ṙn + rn = 0 , (6)

which gives, after a time t = T − tb, rn = rn(tb)e−t/τ . We can
therefore write the recurrence equation giving the displace-
ment after the nth bubble:

rn = rn−1e
−T/τ + d

2
e−T/τ (e−tb/τ − 1). (7)

By recurrence, and considering that r0 = 0, we thus get the
equation describing the displacement rn:

rn = d

2
(e−tb/τ − 1)

(
e−T/τ − e−nT/τ

1 − e−T/τ

)
. (8)

For tb < τ and T < τ (both the characteristic times of bubble
rising through the fluid layer and bubble formation and
emission are smaller than the Maxwell time), the slope drn/dn

can be approximated to (d/2)(tb/τ ). From Eq. (3), we thus
obtain the following expression for the threshold pressure:

δPY ∼
(

4γ

d
+ ρgh + G′

)
− 1

2
G′

(
tb

τ

)
n. (9)

The average time for a bubble emission (formation and
growth, regions 2 and 3 in Fig. 3, bottom) inside a cascade,
for c = 0.1 mol L−1, can be estimated to tb ∼ 0.2 s. The
characteristic time τ = η/G′ is obtained from rheological
measurements (see Appendix B) and can be estimated to
τ ∼ 0.5 s, with η ∼ 25 Pa s and G′ ∼ 50 Pa. We thus estimate
a slope −(G′/2)(tb/τ ) of about −10, in agreement with the
experimental results (see Fig. 7 for c = 0.1 mol L−1).
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C. Fluid deformation

Above the threshold overpressure δPY , the fluid starts
flowing and a bubble grows at the tip of the injection hole
(Fig. 3, bottom, region 2). The overpressure then departs from
its linear increase, as a consequence of the volume increase
due to the bubble growth.

By deriving the general equation for an ideal gas, and
denoting vb the volume of the bubble hence formed, we get

dP

dt
+

(
P

V

)
dvb

dt
=

(
RT

V

)
Q

Vmol
. (10)

Further integration leads to the general expression of the
pressure variation in time:

P (t) =
(

RT

V

)(
Q

Vmol

)
t −

(
P

V

)
vb, (11)

where R = 8.314 J K−1 mol−1 is the ideal gas constant and
Vmol = 24.7 L is the molar volume of air at 25 ◦C. Here we do
not further develop the calculation, but note that the departure
from the linear trend is linear with the bubble volume,
which provides a rough estimation of this latter, from about
vb ∼ 1 mL to 10 mL from the beginning to the end of the
cascade.

D. Bubble emission

Finally, the bubble reaches the free surface (we remind one
here that the fluid layer is of the order of the bubble size),
the gas is suddenly released, and the overpressure quickly
drops (Fig. 3, bottom, region 3). In order to get an estimate
of the characteristic time over which the pressure drops, we
write, on the one hand, Bernoulli’s equation to describe the air
flowing from the chamber of volume V through the opening of
diameter d, up to the surface of the fluid layer: 1/2ρv2 = δP ,
which gives the flow velocity through the opening [37]:

v =
√

2δP

ρ
. (12)

On the other hand, by considering the air as an ideal gas,
we get δP/P ∼ vb/V , where V is the initial gas volume,
equal to the chamber volume, and vb is the volume variation
corresponding to the volume of the bubble connected to the
injection point. The typical time to empty the chamber can be
written τ ∗ = δV/Qv , where Qv = π (d2/4)v is the volumetric
flow rate through the hole. By using Eq. (12), we get the
characteristic time for the pressure drop:

τ ∗ =
(

V

P

)
1

πd2

√
ρa

32δP
, (13)

where ρa = 1.2 kg m−3 is the air density, and P = 105 Pa
is the atmospheric pressure. τ ∗ is of the order of a few
milliseconds, compatible with the measurements of the
pressure drop (region 3 in Fig. 3, bottom).

Note that the drastic pressure decrease due to the hole
opening is followed by oscillations observed right after the
bubble emission, which correspond to the elastic response of
the fluid to the sudden stress imposed by the closing of the
bubble walls, after the air release [38].

E. Open channel lifetime

Here, we develop qualitative arguments to estimate the
lifetime of the open channel. We note that r∗ is the hole radius
for which the channel remains open at the end of a cascade, and
r∗
n is the associated value of the inner displacement from the

Maxwell model developed above (Fig. 6). When the channel
from the injection nozzle to the fluid free surface remains open,
d2r/dt2 = 0 and we can write, based on Eq. (2),

−4γ

d
− G′

(
d/2 − r∗

n

d

)
+ δP − ρgh = 0 (14)

and

−2γ

r∗ − G′
(

r∗ − r∗
n

d

)
− ρgh = 0. (15)

Equation (14) provides the value of r∗
n after the last bubble in

the cascade, while Eq. (15) gives the channel radius right after
the pressure drop in the system. By subtracting Eqs. (14) and
(15) and neglecting the capillary forces when the channel is
fully open, we find that the channel remains open when the
overpressure δP ∼ G′. This rough approximation is consistent
with the experimental value. Indeed, from Fig. 3, the channel
remains open once the overpressure reaches a value close to
50 Pa, of the order of G′ for an excitation frequency of the order
of the frequency of bubbles rising through the fluid (ω ∼ 1 Hz,
see Appendix B).

After the channel opening, we can write the balance
between the main forces at stake, the weight and viscous
dissipation, ηṙ/d ∼ ρgh/2. The characteristic lifetime of
the open channel can therefore be roughly estimated to
τc ∼ 2η/ρgh, of the order of a second. Experimentally, τc

is of a few seconds. This discrepancy can be explained first,
by the rough approximation for the radius dynamic equation;
then, by the effective fluid viscosity which, for micelles, can be
larger during elongational flowing than the viscosity measured
under shear [39,40].

VI. FROM CASCADES TO RHEOLOGY

The bubble emission characteristics vary continuously
inside the cascade: through time, a bubble inside the cascade is
emitted with a smaller pressure drop δP , and a longer emission
time δt (Fig. 3). Note that for the heuristic model developed
in Sec. V B, we considered δt roughly constant and equal to
T = 〈δt〉. In this section, we investigate the variations of both
δt and δP for the successive bubbles inside one cascade.

Figure 8 displays the mean value of the overpressure 〈δP 〉,
over a bubble release, as a function of the time interval δt

over which the same bubble is emitted, for a series of bubble
cascades. All data from different cascades, from the same
experimental series, have been superimposed. Over different
cascades, the data all collapse in the same curve, for a given set
of parameters (c,h,Q,V ). The curves remain unchanged when
both the volume V and the flow rate Q vary.

Two different regimes can be distinguished, at short
and long time scales, respectively (Fig. 8, solid lines).
The limit between both regimes defines a pressure and
time threshold, respectively, δPc and δtc. A statistical study
over different volumes (56 � V � 161 mL) and flow rates
(0.2 � Q � 1.2 mL/s) gives a constant pressure threshold
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FIG. 8. Mean pressure drop for a bubble vs time interval for
bubble emission (V = 147 mL, h = 5 mm, c = 0.1 mol L−1, Q =
0.65 mL/s). Inset: Variations of δtc with the fluid characteristic time
τ , determined here as τ = G′/G′′ω (see text). From left to right:
c = 0.1,0.07, and 0.05 mol L−1.

δPc = 71.6 ± 5.2 Pa. By comparing the characteristic time
δtc to the Maxwell characteristic time τ of the fluid (see
Appendix A), we get the direct relationship

δtc ∼ τ. (16)

This relationship holds true for the three different fluid
concentrations where bubble cascades are observed (Fig. 8,
inset). Measuring the characteristic time linked with the bubble
cascades therefore provides a direct signature on the fluid
rheology.

VII. CONCLUSION

Injecting air through a thin layer of micellar fluid displays
a wide range of dynamic behaviors. We report the existence
of a peculiar degassing regime, the bubble cascades regime,
for which the air is released via successive bubbles which
properties (maximum overpressure and emission duration)
vary continuously through time. This regime is observed over
a wide range of parameters (air flow rate Q, chamber volume
V , and fluid height h). The cascades repeat periodically in
time, separated by a few seconds during which a channel
remains open between the injection nozzle and the fluid free
surface, through which the air flows continuously. Measuring
the overpressure at the injection point makes it possible
to investigate the different stages: pressure increase in the
chamber, bubble formation and fluid flow, and bubble emission
and pressure drop. We find that the cascade periodicity and
maximum overpressure depend neither on Q nor V . The
number of bubbles emitted per cascade depends linearly on the
injection flow rate Q. All the different steps of the overpressure
evolution can be explained by a simple heuristic model,
following the classical Maxwell description of a viscoelastic
fluid. We point out that measuring the evolution of the
overpressure inside the cascades provides an estimation of the
fluid viscoelastic characteristic time, linked with its rheology.
In future experiments, it would be interesting to investigate
the existence of the cascades in different shear-thinning,
viscoelastic fluids, in order to provide a thorough quantification
of the effect of rheology on the degassing dynamics.

25

20

15

10

5

0
0.1 1 10 100 1000

0.1 1 10
γ (s-1). 100

60

40

20

0

80

100

120

σ 
(P

a)

η 
(P

a.
s)

.

γ1= 2.1 s-1 γ2= 31.6 s-1. .

FIG. 9. The flow curve, shear stress σ vs shear rate γ̇ obtained
by increasing γ̇ (c = 0.1 mol L−1). Inset: Viscosity as a function of
shear rate. The arrow indicates the shear-thinning behavior (C-VOR
150 Bohlin rheometer, plate-plate geometry, diameter 60 mm, gap
400 μm, waiting time 60 s per point).

Further work will concentrate on the microscopic behavior
of the micelles. In particular, the time over which the rising
bubble shears the fluid (typically, 0.2 s) suggests a partial
alignment of the micelles (see Fig. 9, Appendix A). Visualizing
the fluid by birefringence will make it possible to determine
if the micelles are aligned through time by the shear flow
generated by the successive bubbles, and how this alignment is
linked with the local rheology. We also propose to investigate
the effective fluid viscosity under elongation, which can be
much larger than the shear viscosity, and could explain the dis-
crepancy between the estimated and measured time for the
open channel lifetime (Sec. V E).
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APPENDIX A: FLOW CURVE

The rheology of the CTAB/NaSal mixtures is characterized
by measurements on two different rheometers: C-VOR 150,
Bohlin Instruments and AR1000, TA Instruments. All mea-
surements are performed with a plate-plate geometry. Sandpa-
per is glued to the plates in order to prevent any sliding at the
walls (typical rugosity of the order of 1 μm). The following
results do not aim at a full rheological characterization of
the samples used in our experiments. They only provide the
general mechanical behavior of the different mixtures, and
a support for the interpretation proposed in Sec. VI. More
detailed information on the rheology of such systems can be
found, for instance, in Refs. [34,35,38,41–46].

The semidilute solution behaves as a Newtonian fluid at
a low shear rate (γ̇ < γ̇1 = 2.1 s−1), with a viscosity plateau
η ∼ 25 Pa, and exhibits non-Newtonian properties for a higher
shear rate (Fig. 9). The flow curve is classical for micellar fluids
under shear [38,45], with a plateau in σ vs γ̇ between γ̇1 =
2.1 s−1 and γ̇2 = 31.6 s−1. The first transition in the flow curve
(γ̇1) provides access to the characteristic time associated with
the viscoelastic Maxwell model (Fig. 6), τ = 1/γ̇1 ∼ 0.5 s.
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FIG. 10. Elastic (G′) and viscous (G′′) moduli as a function of
the applied stress for the CTAB/NaSal mixture at c = 0.1 mol L−1

(oscillation test ω = 1 Hz, AR1000 rheometer, plate-plate geometry).

For γ < γ̇1, the flow is homogeneous and isotropic; for
γ̇1 < γ < γ̇2, shear bands appear and the flow is strongly
inhomogeneous; for γ > γ̇2, finally, the flow is homogeneous
and nematic, with the micelles aligned in the shear direction
[38]. As the typical time for a bubble to rise up the fluid layer
is tb ∼ 0.2 s (Sec. V B), we expect to be in the stress plateau
and, therefore, to observe a partial alignment of the micelles
(Sec. VII).

APPENDIX B: ELASTIC AND VISCOUS MODULI

Figure 10 displays the elastic (G′) and viscous (G′′) moduli
for the fluid c = 0.1 mol L−1, for an oscillation test (ω = 1 Hz,
typically the period between two bubbles in our experiments).
We observe that over a large range of applied stress, the elastic
and viscous moduli are constant. The average plateau values
of G′ and G′′ displayed in Fig. 10 provide another estimation
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FIG. 11. Average elastic (G′) and viscous (G′′) moduli corre-
sponding to the plateau value in Fig. 10 as a function of the fluid
concentration. Lines are given as a guide to the eyes.

of the Maxwell time:

τ = G′

G′′ω
. (B1)

We find τ ∼ 0.5 s for c = 0.1 mol L−1, consistent with
the estimation from the previous viscosity measurements
(Appendix A).

The average plateau value strongly increases as a function
of the fluid concentration (Fig. 11). The values of τ for
different fluid concentrations (Fig. 8 inset, Sec. V B) have been
estimated from the oscillatory measurements and Eq. (B1).

Note, finally, that another estimation of the characteristic
time τ can be obtained by

τ = η

G′ , (B2)

which, again, gives τ ∼ 0.5 s, in agreement with the above
estimations.

[1] E. A. Parfitt, J. Volcanol. Geotherm. Res. 134, 77 (2004).
[2] H. M. Gonnermann and M. Manga, Annu. Rev. Fluid Mech. 39,

321 (2007).
[3] B. D. Johnson, B. P. Boudreau, B. S. Gardiner, and R. Maass,

Mar. Geol. 187, 347 (2002).
[4] B. P. Boudreau et al., Geology 33, 517 (2005).
[5] S. L. Webb and D. B. Dingwell, J. Geophys. Res. 95, 15695

(1990).
[6] L. Caricchi, L. Burlini, P. Ulmer, T. Gerya, M. Vassalli, and

P. Papale, Earth Planet. Sci. Lett. 264, 402 (2007).
[7] Y. Lavallée, K. U. Hess, B. Cordonnier, and D. B. Dingwell,

Geology 35, 843 (2007).
[8] C. Jaupart, Chem. Geol. 128, 217 (1996).
[9] M. Ripepe, J. Volcanol. Geotherm. Res. 70, 221 (1996).

[10] B. F. Houghton and H. M. Gonnermann, Chem. Erde 68, 117
(2008).

[11] S. Planke, H. Svensen, M. Hovland, D. A. Banks, and
B. Jamtveit, Geo-Mar. Lett. 23, 258 (2003).

[12] V. Mastalerz, G. J. de Lange, A. Dählmann, and T. Feseker,
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