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Abstract. We report an experimental study of the acoustic signal produced by the rupture of an elastic
membrane that initially closes a cylindrical overpressurized cavity. This configuration has been recently
used as an experimental model system for the investigation of the acoustic emission from the bursting
of elongated gas bubbles rising in a conduit. Here, we investigate the effect of the membrane rupture
dynamics on the acoustic signal produced by the pressure release by changing the initial tension of the
membrane. The initial overpressure in the cavity is fixed at a value such that the system remains in the
linear acoustic regime. For large initial membrane deformation, the rupture time τrup is small compared to
the wave propagation time in the cavity and the pressure wave inside the conduit can be fully captured by
the linear theory. For low membrane tension, a hole is pierced in the membrane but its rupture does not
occur. For intermediate deformation, finally, the rupture progresses in two steps: first the membrane opens
slowly; then, after reaching a critical size, the rupture accelerates. A transversal wave is excited along
the membrane surface. The characteristic signature of each opening dynamics on the acoustic emission is
described.

1 Introduction

Releasing pressure from an initially closed cavity can produce different types of sound, the most famous being the “pop”
sound which is heard when opening a bottle of wine or champagne. After pouring the champagne in a glass, a subtle
sound can still be heard, from the bubbles bursting at the liquid free surface. In this last case, the bubbles themselves
play the role of small overpressurized cavities, suddenly opening at the liquid surface. Different mechanisms can explain
the generation of an acoustic wave by an overpressure release. If the geometry consists of a large volume closed by a
short neck, the system can be described as a Helmholtz resonator. The acoustic wavelength is then much larger than
the system dimensions. Bubbles bursting at the free surface of water, for instance, act as Helmholtz resonators [1, 2].
If the shape is round, and the cavity is open by an instantaneous removal of the cap (e.g. immediate removal of a
round bubble film), the problem is analogous to a bursting balloon and a N-shaped wave is generated [3, 4]. Finally,
if the shape is elongated, such as a bubble rising and bursting in a conduit [5] or at the surface of a non-Newtonian
fluid [6, 7], or an overpressurized tube, the opening of one end of the system will give rise to longitudinal, resonant
acoustic modes [8–10].

This last geometry is interesting for many applications. In particular, it has been used to model the bursting
of giant, overpressurized gas bubbles (“slugs”) at the top of volcanic conduits [11, 12]. This topic is a challenge in
volcanology. Indeed, retrieving information from the acoustic emissions on volcanoes could provide important clues on
the volcano explosivity [13,14]. However, the link between the acoustic waveform characteristics and the slug properties
(geometry, overpressure, bursting dynamics) is yet to be assessed.

In this framework, previous studies have used liquid films closing a rigid, cylindrical cavity to model such systems
—the cavity here being analogous to the bubble body, which remains almost still during the whole duration of the
acoustic signal emission at bursting [9, 11]. The film is stretched over the open end of the cavity, then gas is injected
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until reaching an overpressure ∆P . The system is then let to evolve: the liquid film, which is bulged, drains under
the effect of gravity, then bursts spontaneously. The acoustic signal emitted at bursting has been studied both inside
and outside the cavity, which makes it possible to quantify the energy balance. In this experimental configuration,
all the parameters are controlled: geometry, overpressure, etc. The acoustic signal is well described by a linear theory
of longitudinal, resonant modes in the cavity: the fundamental frequency is imposed by the cavity geometry, and the
damping is mainly due to radiation and viscous dissipation processes [9]. These studies pointed out the drastic effect
of the film rupture time, τrup, on the acoustic signal amplitude, a parameter which could not be controlled in this
setup. In particular, it has been shown that when the film rupture time becomes comparable or larger than the typical
wave propagation time in the cavity, τprop = 2L/c, where L is the cavity length and c the sound speed, the acoustic
amplitude drastically decreases [11]. Another work considering bubble bursting at the surface of a viscous fluid in a
cylindrical conduit also pointed out the direct correlation between the film rupture dynamics and the amplitude of the
acoustic wave produced at bursting [8]. However, considering bubble bursting in fluids or closing a cavity with liquid
films does not allow to model high overpressures, whereas on volcanoes, for instance, bubble overpressures can be of
the order of a few kPa and up to several MPa [15–20].

In a recent work, the acoustic signal produced by the overpressure release of a cavity initially closed by an elastic
membrane has been reported [12]. In this configuration, it is possible to reach overpressures up to 50 kPa, and the
transition toward nonlinear acoustic regimes has been studied. However, all the experiments were performed with
membranes initially stretched well enough to ensure the rupture time would be small (of the order of 0.2ms) and not
affect the acoustic amplitude.

In the present study, we investigate experimentally the role of the membrane rupture time on the acoustic signal
emitted during the overpressure release of a cylindrical cavity. The membrane opening time is controlled by tuning
its initial stretching over the open end of the cavity. Note that we consider the emission of an acoustic wave, so we
always have in our experiments a membrane rupture time, τrup, smaller than the wave propagation time in the cavity,
τprop. The work is limited to linear acoustic regimes, i.e. initial overpressure in the cavity well below the transition
threshold to nonlinear effect, ∆Pc ≃ 24 kPa [12]. We aim at characterizing the membrane rupture dynamics and its
connection with the acoustic emission both inside and outside the cavity. In particular, for a slow opening we point
out the existence of a transversal wave propagating on the membrane, which gives rise to an additional wave in the
acoustic signal.

2 Experimental setup

The experimental device (fig. 1(a)) consists of a cylindrical cavity (length L = 0.60 or 0.32m, inner diameter Φ =
25.4mm) drilled in plexiglas. The tube is hermetically sealed at the bottom end (rigid bottom) and an elastic membrane
(latex, thickness e = 0.5mm) stretched manually and fixed by a mechanical device closes the upper end of the tube.
Air is then injected in the cavity through an inlet of 3mm diameter located at 2 cm from the tube bottom, up to
a controlled overpressure ∆P . In this experiment, we impose an initial overpressure ∆P ≃ 5 kPa, in order to be in
the linear acoustic regime [12]. A circle initially printed on the membrane at rest (radius R0) makes it possible to
quantify the membrane deformation ε, given by ε = (R − R0)/R0, after streching and imposing the overpressure in
the cavity (fig. 1(b)). Note that the first membrane deformation, εi due to stretching only, is imposed in the absence
of overpressure, i.e. for the flat membrane. Increasing the overpressure increases the strain by imposing a curvature.
However, the curvature is small for the overpressure used in this experiment (∆P ≃ 5 kPa), and the difference can be
neglected, ε ≃ εi. In our experiment, we explore the range 0.3 < ε < 3.

At time t = 0 a needle of typical diameter 0.1mm, fixed on a motorized arm, pierces the center of the elastic
membrane, which ruptures suddenly. A Phantom v9.1 high-speed video camera is used to record the membrane
rupture dynamics at typical rates from 16000 to 24000 frames per second (fps). The membrane is illuminated from
above and from the side to record both the rupture and wave propagation on the membrane (see sect. 3.3). The rupture
time, τrup, is defined as the time taken by the fracture tip to reach the tube boundary (fig. 1(c)).

The acoustic wave produced by the overpressure release is monitored at the bottom of the cavity (force sensor
PCB 200B02 + amplifier PCB 482A16, PCB Piezotronics). We chose to focus on the signal inside rather than outside
the cavity, to avoid waveform change and additional energy loss due to the radiation pattern outside. The signal is
recorded by means of an oscilloscope (Tektronix TDS2012B, sampling frequency 25 kHz).

3 Experimental results

Different rupture dynamics of the elastic membrane are observed, depending on the membrane initial deformation
(fig. 1(d)). For large initial strain (i), the fracture propagates immediately after piercing; for intermediate strain (ii),
a crack opens slowly, until the fracture length reaches a critical value, lc, at which the fracture suddenly accelerates
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Fig. 1. (a) Experimental setup. We impose an overpressure ∆P by injecting air inside a cylindrical cavity (length L) closed by an
elastic membrane. When the membrane bursts, the acoustic signal, Pint, is recorded at the bottom of the cavity. The high-speed
camera records the rupture of the elastic membrane from above the tube. (b) Measurement of the membrane deformation ε
before bursting. The white dashed circle indicates the printed mark on the membrane at rest; the black dotted circle is the mark
on the deformed membrane, under pressure (radius R). Top: small membrane deformation [ε = 0.7]. Bottom: large membrane
deformation [ε = 3]. (c) Image sequence of the membrane rupture [∆t = 12.6 × 10−5 s between each image]. The rupture time,
τrup, is taken as the time for the fracture (length l) to reach the tube boundary. (d) Crack length l as a function of time, for
different initial strain [L = 32 cm; (i) ε ∼ 2.8, (ii) ε ∼ 1.3, (iii) ε ∼ 0.5]. The horizontal dashed lines indicate the range of critical
length lc above which a crack can propagate on the membrane (see fig. 4(b)). (e) Amplitude of the acoustic wave at the bottom
of the tube, as a function of time [L = 32 cm, ε ∼ 2.8, τrup ∼ 0.2 ms]. The waveform is nearly squared at early stages due to
multiple rebounds of the acoustic front.

until reaching the cavity boundary; for sufficiently low strain (iii), the fracture grows slowly then stops, leading to the
formation of a small and stable hole in the membrane center.

Figure 1(e) displays a typical pressure signal inside the cavity, as detected by the sensor at the bottom, for a
fast membrane opening (regime (i)). At early stages the wave is nearly squared, as the pressure front generated by
the membrane rupture travels back and forth in the cavity. Indeed, it is reflected both at the cavity bottom (rigid
boundary condition) and at the open end (acoustic impedance mismatch). The acoustic signal is then damped in time,
and becomes more sinusoidal (see sect. 3.2.1). Note that due to the reflection conditions, the acoustic amplitude at
the cavity bottom should first drop from +∆P to −∆P . As the force sensor inside the cavity is not able to measure
DC component, the pressure wave drops from 0 to −2∆P , then oscillates towards −∆P instead of the expected zero.
If we wait for a much longer time, the sensor indeed relaxes to zero. As its relaxation time is much larger than the
typical duration of the acoustic signal, the only consequence in our measurements is a systematic shift of −∆P for
the signal inside the cavity (Pint), which we did not correct here in order to display the raw signals. In the following,
we thoroughly describe the characteristics of the acoustic waveform, and the link between the membrane rupture
dynamics and the acoustic emission.

3.1 Control of the rupture time

We first investigate the dependence of the membrane rupture time, τrup, as a function of its initial stretching before
bursting, ε (fig. 2(a)). As expected, τrup is a decreasing function of ε and does not depend on the tube length, L.
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Fig. 2. (a) Membrane rupture time, τrup, as a function of the membrane strain, ε. The dashed line represents the fit for the
fast opening regime (ε ≥ 2), τrup = a/

√
ε, with a = 0.4 ms, when shifting the origin at ε0 = 0.5, i.e. excluding the region where

the membrane does not open (see text) ((symbol, L): (◦, 32 cm), (△, 60 cm)). The colors indicate the different opening regimes:
(i) black symbols, fast opening [ε ∼ 2.2–3]; (ii) white symbols, two-step opening [ε ∼ 0.5–2]; (iii) gray zone, stable hole [ε < 0.5].
(b) Pressure drop characteristic time, τp, vs. rupture time τrup (same legend as (a)). The dashed line indicates the slope 1 line.
Inset: Measurement of the pressure drop characteristic time, τp [L = 32 cm, ε ∼ 3].

Note that we always check the condition for sound generation, τrup < τprop [9, 11]. Indeed, by taking c = 346m s−1

as the sound speed at 25 ◦C, we have τprop ≃ 1.8ms and τprop ≃ 3.5ms for L = 0.32 and 0.60m, respectively. The

experimental data can be fitted by τrup ∼ ε−1/2, when shifting the origin at ε0 = 0.5, the threshold above which the
membrane ruptures (see sect. 3.2.3). The dependence of τrup on ε can be explained by considering the fracture speed
dependence on the membrane initial strain (see sect. 3.4). Note that an experimental point stands clearly out of the
main tendency (white point at ε ∼ 2). In that case, we observe the material softening, as τrup unusually increases.
This outlier can be explained by the Mullins’ effect, which states that rubber-like materials exhibit a change in their
mechanical properties when stretched, and hysteresis under cycling loading [21–23]. In all our experiments, the latex
membrane is usually stretched only once. As the rupture time is measured directly by the high-speed camera, we will
not consider further the experiments which present such peculiar behavior.

Although previous studies quantified the correlation between the amplitude of the acoustic signal produced when a
bubble bursts at the surface of a viscous fluid by direct measurements of the film aperture dynamics [8], it is not always
possible to access the fast film dynamics. In a previous work investigating the bursting of a liquid film initially closing
an overpressurized cavity, and the associated acoustic signal, the authors proposed an estimation of the rupture time
as the first pressure drop characteristic time at the bottom of the cavity [9]. However, the direct relationship between
these two variables was not quantified. In our experiment, the simultaneous acquisition of the high-speed images of
membrane rupture and the acoustic signal inside the cavity makes it possible to check this correlation (fig. 2(b)). We
confirm the direct relationship between the first pressure drop characteristic time, τp, and the membrane rupture time,
τrup. In most experiments, we note that τp ≥ τrup. A possible explanation is that the surface of the opening continues
increasing even for t > τrup, due to the fact that the crack on the membrane is anisotropic (see fig. 1(c)). The surface
area of the opening changes the waveform, and may be at the origin of this systematic trend. In the following, we
describe the acoustic waveform generated by the overpressure release, for the different opening dynamics.

3.2 Different opening dynamics

3.2.1 Fast membrane opening

We first investigate the acoustic waveform inside the cavity after bursting in the fast rupture regime (regime (i),
fig. 1(d)), i.e. when the membrane initial strain is high (ε ∼ 2–3). Figure 3 displays the pressure signal inside the
cavity and its respective power spectrum for two different membrane rupture times, both in the fast opening regime.
As already described in previous experiments [9,12], the overpressure release generates longitudinal resonant acoustic
modes in the cavity. Due to the asymmetric boundary conditions (rigid bottom end and open top end), only odd
harmonics are excited. The pressure signal inside the cavity displays a square waveform, as it contains all the odd
harmonics (low and high frequencies), and the acoustic front rebounds back and forth in the cavity [9]. The cavity
length directly governs the frequency content, and the acoustic energy informs about the characteristic time associated
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Fig. 3. Pressure signal inside the cavity, Pint (black line), zoomed on the first 20ms, and total signal spectrum for different
rupture time ((a,b) τrup = 0.23 ms, ε = 2.8. (c,d) τrup = 0.47 ms, ε = 2; L = 32 cm). The theoretical prediction is represented in
the upper panels (a) and (c), when taking into account different terms: model without rupture time and no radiation correction,
ν0 = c/4L (dotted line), model without rupture time and with radiation correction, ν′

0 = c/4L′ (dashed line), model with
rupture time and radiation correction (gray line). The dashed vertical line in the spectrum (b) and (d) indicates the theoretical
frequency of the fundamental mode, when considering the radiation correction.

with the cavity opening, more than about the energy initially loaded in the cavity [9]. Moreover, the radiation of the
acoustic wave outside the cavity and viscous dissipation along the walls are responsible for the signal damping over
time. Note that the higher harmonics are damped faster, so the square acoustic waveform inside the cavity becomes
more sinusoidal in time, until only the fundamental mode remains [9].

In order to describe the signal shape and its frequency content, we remind previous theoretical results modeling
the acoustic pressure inside the cavity, Pint, in the linear regime, when the overpressure is released over a characteristic
time τp [9]. It is given by

Pint(t)

∆P
= e−t/τp +

∞
∑

n=0

an sin [ωnt + θn]e−t/τd
n , (1)

where the frequency ωn, amplitude an and phase θn of the mode n are defined by

ωn ≡ (2n + 1)
πc

2L
(2)

an ≡
4

π

ω0

ωn

(−1)n

√

1 + (ωnτp)2
(3)

tan(θn) ≡
1

ωnτp
, θn ∈

[

0,
π

2

[

. (4)
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c ≃ 346m s−1 is the sound speed at room temperature, T ≃ 298K, and τd
n denotes the characteristic damping time

for mode n,
1

τd
n

=
1

τZ
n

+
1

τ r0

n
+

1

τv
n

, (5)

which accounts for the characteristic damping time due to radiation outside the cavity, τZ
n , reflection at the cavity

bottom, τ r0

n , and viscous dissipation at the cavity walls, τv
n . These characteristic dissipation times can be written as

τZ
n =

1

2π2

( c

Φ

)2
(

2n + 1

ν3
n

)

, (6)

τ r0

n =

(

1 − r0

1 + r0

)

1

4νn
, (7)

τv
n =

Φ

2

√

πη[1 + (γ − 1)P
−1/2
r ]

(

1

ν1/2

)

, (8)

where νn = ωn/2π. r0 is the reflection coefficient at the cavity bottom, η = 1.5 × 10−5 m2 s−1 the air kinematic
viscosity, Pr ≃ 0.7 the Prandtl number, and γ = 1.4 the specific heat ratio. As already pointed out in a previous
work [9], the dissipation time, whichever the mechanism, decreases when the frequency increases, meaning that higher
harmonics are dissipated faster than the fundamental, and dissipation is larger for smaller tubes.

The only adjustable parameter in the model is the reflection coefficient at the bottom end of the cavity, r0. It
is taken as r0 = −0.97, in order to best fit the damping of the acoustic signal. Figure 3(a) displays the measured
acoustic signal (black line), for an initial membrane strain ε ∼ 2.8 (observed rupture time τrup ∼ 0.2ms). The signal
computed from the model (eq. (1)) is also displayed, when taking into account the different terms. First, we represent
the waveform without taking into account the rupture time, and using the theoretical tube frequencies given by
νn = (2n + 1)ν0, where ν0 = c/4L = 270Hz is the fundamental frequency (dotted line, fig. 3(a)). A systematic phase
shift with the experimental data is observed, indicating that frequency correction due to the radiation of the acoustic
wave outside the cavity must be introduced [24–27]. Indeed, the experimental power spectrum (fig. 3(b)) indicates
that the vibration frequencies differ slightly from those given by the tube length only, but they obey to the same
progression and display the odd harmonics only, ν′

n = (2n + 1)ν′

0, due to asymmetric boundary conditions of the
cavity. To the first order in Φ/L, the wave radiation outside the cavity introduces a correction length δL, which leads
to a slight increase in the wavelength

λ′

n =
4

2n + 1
(L + δL) (9)

and, accordingly, to a slight decrease in the frequency ν′

n = c/λ′

n. The correction length, δL, is expected theoretically
to be δL = 4Φ/3π for a flanged aperture (half-space radiation) [25–27], and δL = 0.3Φ for an unflanged aperture (full
space radiation) [24,25]. The experimental frequencies, measured from the signal spectrum (fig. 3(b)), give an effective

tube length L
′

= L + 0.9Φ, which is consistent with the order of magnitude of the theoretical correction. Introducing
this correction in the model shows a satisfactory agreement with the experimental waveform (dashed line, fig. 3(a)).

Finally, although the rupture time is short in this fast opening regime (i), we can take it into account in the model
(eq. (1)). The rupture time in the model, τp, corresponds to the characteristic time of the first pressure drop, as
displayed in fig. 2(b), inset, and is directly correlated to the membrane rupture time, as measured from fig. 1(c) (see
fig. 2(b)). The additional correction is small (gray line, fig. 3(a)), but visible when τrup is of the order of 0.4–0.5ms
(gray line, fig. 3(c)). Note that it captures well the small distorsion of the signal, as it accounts for the delayed rise
and drop of the pressure front for each acoustic signal period.

Thus, despite the relative high level of overpressure (∆P ≃ 5 kPa), the linear theory accurately accounts for the
acoustic waveform inside the cavity. The only adjustable parameter, τp, the characteristic time of the first pressure
drop in the cavity, can be directly related to the membrane rupture time.

3.2.2 Opening in two steps

When the membrane is subjected to intermediate strain (ε ranging from 0.5 to 2), the rupture occurs in two steps
(fig. 1(d), regime (ii)). First, the hole triggered by the needle at the membrane center grows slowly, and remains nearly
circular. This slow propagation is followed by a sudden increase of the aperture velocity of the membrane, which
resembles more a crack propagation.
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Fig. 4. (a) Pressure signal inside the tube (Pint) for two intermediate rupture time, zoomed on the first 15 ms. Up: ε ∼ 2,
τrup ∼ 0.47 ms. Down: ε ∼ 1.2, τrup ∼ 0.78 ms [L = 32 cm]. (b) Crack length as a function of time, for different membrane
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(a) (b)

Fig. 5. Sketch of the membrane piercing (view from the side). (a) Due to the needle indentation, the membrane develops a
cusp at the center. (b) The elastic response of the membrane, right after piercing, generates an upward motion, hence a small
pressure drop in the cavity.

In this regime, we observe an additional wave in the acoustic signal, which amplitude increases when the rupture
time increases (fig. 4(a)). Immediately after piercing, the inside pressure depicts a small oscillation, followed by a
sudden pressure decrease, whose time delay is indicated by t1 (fig. 4(a), lower panel). The main pressure drop (equal
to 2∆P ) is the usual overpressure released, already observed for the fast membrane opening regime (sect. 3.2.1).

We interpret the first oscillation, mainly characterized by a negative peak, as the elastic relaxation of the membrane
after piercing by the needle. When the needle tip is pushed on the top of the membrane, before bursting, it often
develops a cusp, due to the elastic response of the membrane (fig. 5(a)). Right after piercing, due to both the elastic
response and the overpressure release through the hole, the membrane edge close to the needle exhibits an upward
motion (fig. 5(b)), and hence generates a small pressure drop in the cavity. This motion is at the origin of the additional
wave in the acoustic signal (fig. 4(a)). Together with the main pressure drop, this disturbance is reflected at the top and
bottom of the cavity, and has therefore the same periodicity, 4L/c. Note that except for this additional disturbance,
the acoustic signal has the same characteristics than for a fast opening membrane (see sect. 3.2.1): the fundamental
frequency is given by the cavity length, ν0 = c/4L, and only the odd harmonics appear in the spectrum, due to the
asymmetric boundary conditions of the cavity.
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Fig. 6. (a) Pressure signal at the bottom of the cavity, Pint, as a function of time when the crack does not propagate on the
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mode n, νn (power peak in the spectrum, experimental data) vs. theoretical harmonics νsym

n computed for a tube L = 60 cm
with symmetric boundary conditions (both ends closed, see text). The dashed line indicates a linear relationship (slope 1).

Figure 4(b) displays the temporal evolution of the crack length, l, for different initial strain ε. The cross-over
between the two opening steps is characterized by a critical size of the fracture, lc, which is reached in a time t2
(dashed line and black arrows, fig. 4(b)). To check the correlation between the opening dynamics and the additional
acoustic wave, we plot the time delay t1, measured directly on the acoustic signal (fig. 4(a)), as a function of the cross-
over time, t2 (fig. 4(c)). The linear relationship between these two quantities indicates that this additional waveform
is directly linked to the opening dynamics of the membrane.

3.2.3 Stable hole

For low initial membrane deformation (ε < 0.5), the membrane does not rupture completely. After piercing by the
needle, a small hole grows slowly, up to a radius of about 2mm, after which the opening stops, and the hole remains
stable (fig. 1(d), regime (iii)). The pressure release induced by this process also triggers an acoustic wave inside the
cavity (fig. 6(a)), but with different characteristics than the one described above (sects. 3.2.1 and 3.2.2). First, the
acoustic signal does not display the same oscillatory waveform than for a full opening (see fig. 1(e), for example). Then,
its harmonic content (fig. 6(b)) is different than the resonance of the cavity with asymmetric boundary conditions
—compare, for example, to the spectrum displayed in fig. 3(b).

Although the overpressure release is enough to excite an acoustic wave in the cavity, as the hole remains small
respect to the tube diameter Φ, the cavity behaves as a resonator with symmetric boundary conditions, with closed ends
both at its top and bottom. Figure 6(b), inset, compares the measured signal frequencies to the theoretical frequencies
of the harmonics developing in a cavity closed at both ends, νsym

n = (n + 1)νsym
0 with νsym

0 = c/2L = 280Hz. The
dashed line indicates that the resonance is indeed that of a closed cavity. Note that in spite of the typical geometry
resembling a cavity with a short neck, we do not find here any signature of a Helmholtz resonance. Indeed, the
Helmholtz frequency is given by fH = (cr/2)

√

1/πeV where r is the aperture radius, e the membrane thickness
(aperture length), and V = π(φ2/4)L the cavity volume. For a tube length L = 0.32 cm, and r ≃ 2mm, fH ≃ 685Hz,
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Fig. 7. Surface wave propagating on the membrane right after piercing. The images are obtained by successive image difference
with the high-speed video camera. This wave is radial, and rebounds on the tube boundaries are often observed. The black
arrow indicates the propagation of the wave front (dashed circle) in one direction, for wave velocity computation (L = 32 cm,
∆t = 4.5 × 10−5 s between each image, ε = 0.5, vw = 29m s−1).
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Fig. 8. Velocity of the wave propagating on the membrane surface, as a function of the square root of the strain ε. The
horizontal dotted line corresponds to the theoretical velocity of a longitudinal wave. The dashed line is the prediction for the
wave velocity assuming a transversal wave, without any adjustable parameters (see text).

which has no signature on the acoustic signal spectrum (fig. 6(b)). If we consider that the membrane gets thinner due
to the stretching, the Helmholtz frequency is even higher.

As the rupture is not fully completed in this regime, it will not be considered further. In the following, we will
focus on the intermediate regime (ii), and on the membrane dynamics.

3.3 Wave along the membrane

The membrane elastic response, at the origin of the additional wave on the acoustic signal, generates a wave which
propagates radially on the membrane surface, and which can be clearly observed in the low or intermediate strain
regime (ε � 2, fig. 7). If the membrane opens slowly, the wave travels faster that the rupture growth, and rebounds
on the tube boundary. The rebounds are also observed in regime (iii), when the hole remains stable. The wave front
can be detected by registering the intensity variations of the light reflected by the membrane. Contrast is improved by
considering successive images difference, in order to extract the wave front and, thus, the wave velocity, vw. Typically,
vw ≃ 40m s−1 for a strain ε ≃ 0.7.

In order to identify the nature of the wave propagating along the membrane, we investigate the velocity dependence
on membrane tension. The experimental data are reported in fig. 8. Although scattered, they show a roughly linear
dependence of the wave speed on the square root of the membrane strain, vw ∼

√
ε. As expected, this scaling is

independent of the cavity length, L.
Previous works have investigated the characteristics of longitudinal waves excited by rubber band recoil [28]. The

authors have shown that the wave speed, vl, is independent of the initial membrane tension and can be written
vl =

√

E/ρ, where E is the Young modulus and ρ the density of the latex membrane. By considering the properties
of the membrane used in our experiments, E ≃ 1.5 × 106 Pa and ρ ≃ 920 kg m−3, we get vl ≃ 40m s−1. Although this
value is of the order of magnitude of the wave speed measured experimentally, it does not capture the dependence on√

ε, as the longitudinal wave velocity is independent of the initial strain ε (dotted line, fig. 8).
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Fig. 9. (a) Crack velocity vc as function of the crack length l for different initial strain ((color, ε): (white, 1); (gray, 2)). The
black line is the fit with the theoretical prediction for fracture propagation (eq. (11)) with the adjustable parameters (vs, lc)
(L = 60 cm). (lc + δl) indicates the length at which the crack enters the fast opening regime (see text). (b) Characteristic wave
velocity vs obtained by adjusting the crack speed (a) with the prediction of fracture propagation, plotted against the measured
speed of transverse waves vw, for different tube length and different initial strain (0.5 � ε � 3). The black line indicates the
slope 1 line.

Conversely, the velocity of a transverse elastic wave is a function of the membrane tension σ, and writes

vt =

√

σ

ρ
≈

√

εE

ρ
. (10)

The dashed line in fig. 8 shows the theoretical prediction for the transversal wave velocity, without any adjustable
parameters. The theory nicely captures the experimental data trend. We therefore conclude that, in our system, the
wave observed on the membrane is a transverse wave, excited by the curvature change when initially piercing with the
needle (fig. 5). This transversal wave is mainly responsible for the partial stress relaxation taking place immediately
after piercing. It is at the origin of the additional wave observed in the acoustic signal.

3.4 Link with fracture dynamics

In the following we investigate the membrane rupture process in more detail. If considering the crack growth on the
membrane in the framework of fracture propagation in a brittle material, the crack speed, vc, is given by [29]

vc = vs

(

1 −
lc
l

)

, (11)

where lc is the minimum fracture length above which the crack can propagate, l is the total crack length and vs

the characteristic wave velocity on the membrane. Using best fits of the experimental data of the crack propagation
velocity, vc, as a function of the crack length, l (fig. 9(a)) and eq. (11), we extract the characteristic wave velocity vs

and the critical crack length lc for different experimental parameters.
Figure 9(b) shows good agreement between vs and the direct measurement of the transversal wave velocity on the

membrane. The critical length obtained from the fit ranges from lc = 1.5 to 2.5mm. This result is consistent with
the value found for the cross-over length at which the crack suddenly accelerates, in the two-step opening regime (ii)
(fig. 4(b)). Strictly, in the brittle fracture framework, lc is the length for which the stress concentration at the crack
tip is sufficient to allow for crack propagation. Thus, lc is expected to decrease with external stress (or equivalently ε)
and increase with the size of the crack tip, although it could not be checked in our experiments due to data dispersion.
In our experiment, the size of the crack tip is likely fixed by the size of the sharp end of the needle, at least at crack
initiation. For large ε, the length of the initial crack easily exceeds lc(ε). For intermediate ε, the initial crack size
is smaller than lc(ε), so a brittle crack does not propagate immediately. A slower process of crack opening is first
observed, which is more likely a plastic deformation taking place at the crack tip. For small ε, the tension is too small
and even the crack progression through a relaxation process cannot occur.
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As the results above point out that the membrane rupture can be described in the framework of brittle failure, the
theoretical predictions can account for the rupture time dependence as a function of strain (fig. 2(a)). Indeed, in the
regime where the fracture strongly accelerates (l ≥ lc + δl), we can write

τrup =

∫
φ

2

lc+δl

dl

vc
≃

√

ρ/E
√

ε

∫
φ

2

lc+δl

dl

(1 − lc/l)
, (12)

by using eq. (11), vs ≃ vw (fig. 9) and vw = vt =
√

εE/ρ (eq. (10)). This leads to the formal expression:

τrup =

√

ρ

E

[

(

Φ

2
− lc

)

+ lc ln

(

Φ
2
− lc

δl

)]

1
√

ε
. (13)

We therefore have τrup = a/
√

ε, in agreement with the experimental data. If we use the value of the coefficient
given by the fit, a ≃ 0.4 (dashed line, fig. 2(a)), we find δl ≃ 0.7mm, in agreement with the estimation from fig. 9(a),
when taking into account the length after which the fracture propagates in the fast regime. In the intermediate regime,
the slow propagation mode increases, which explains why the experimental data are above the trend (fig. 2(a)).

4 Discussion and conclusion

Based on the experimental study of the acoustic signal produced by the rupture of an elastic membrane that initially
closes a cylindrical overpressurized cavity, we have characterized the link between the membrane rupture dynamics
and the acoustic waveform inside the cavity. The results confirm previous hypothesis of the direct relationship between
the characteristic opening time of the cavity and the first pressure drop on the acoustic signal, and underline once
again the drastic importance of this parameter on the acoustic wave generation.

We show that the acoustic signal produced by the pressure release strongly depends on the membrane rupture
dynamics. For large membrane initial deformation (strain ε > 2), the rupture time τrup is short compared to the
fundamental period of the signal, and the pressure inside the cavity can be captured by a linear theory. For small
membrane deformation (ε < 0.5), the membrane opens until a hole of about lc ≃ 2mm diameter, which remains
stable in time. Due to this partial opening, and the fact that lc ≪ Φ, the diameter of the cavity, the system acts as a
resonator with symmetric boundary conditions, which has a direct influence on the acoustic signal frequency content.
Finally, for intermediate membrane tension (0.5 ≤ ε ≤ 2), the rupture occurs in two steps: an initial step where the
opening progresses slowly; after reaching a critical size, the fracture then propagates quickly, until the membrane is
fully opened.

A transversal wave is excited along the membrane surface, and is clearly visible in both the stable hole and the
two-step opening dynamics. We have shown that it can be interpreted in the framework of fracture propagation in
a brittle material. The characteristic fracture velocity, vs, corresponds to the transverse wave velocity. Despite the
inherent dispersion of data, this theory makes it possible to infer the experimental dependence of the rupture time on
the membrane initial strain, τrup = a/

√
ε, for the two-step opening regime.

The wave propagating on the membrane has a direct signature on the acoustic signal. We report that this additional
acoustic signal gets stronger when the rupture time increases (see fig. 4). A thorough study of the link between the
characteristics of this additional wave and the properties of the membrane (elastic response, initial strain, etc.) is out
of the scope of this paper. However, it is interesting to point out that in field situations such as on volcanoes, this
relationship could represent an indirect way to estimate the rupture time, i.e. the initial tension stored on the giant
bubble cap exploding at the surface of the volcanic conduit. This could provide more information both on magma
properties and on the bubble overpressure or decompression rate.
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