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1. Fit of the bathymetry trend - The outliers method 

 

Here we explain in more details how we quantitatively assess the linear relationship 

between the seafloor depth and the square-root of age, along the considered age 

trajectories. The main problem is that bathymetry profiles display many geologic features 

such as seamounts, hotspot swells, fracture zones, etc., which should not be taken into 

account in this linear regression. Rather than removing manually the corresponding 

zones, as was done previously in the literature, we chose to develop a method which 

makes it possible to capture the general bathymetric trend with a simple linear regression, 

without the bias introduced by the presence of outliers. In our problem, the amount of 

outliers is significant and we need to use a robust estimation method. Robust estimation 

has been available for almost 50 years (Huber, 1964), and robust regression in the 

presence of outliers has been addressed in various ways (Rousseuw and Leroy, 1987), 

however none of these methods is both unsupervised and designed to handle positive 

outliers, as in our data. First, most common robust estimation approaches rely on a non-

quadratic energy function, which does not penalize large errors as much as small ones, 

thus providing more robust results than least squares approaches, which are based on 

quadratic penalty functions. Usually the function is chosen arbitrarily and user interaction 

is therefore required. Equivalently, in a probabilistic approach to robust estimation, the 

noise distribution is designed to have a heavier tail than a Gaussian, thus accounting for 

outliers - for instance by using a mixture of Gaussian and uniform distribution, or a 

Laplacian. The mixture or the distribution are chosen manually, which we want to avoid. 

Moreover, few methods allow for asymmetric outliers; usually the energy function (or 
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noise distribution) is symmetric, and negative outliers are allowed, which is not 

appropriate for our data. A few approaches using asymmetric functions can be found, but 

they are rare, see for instance Takeuchi et al. (2002), where quantiles are used to handle 

the outlier distribution, which yields a rather complex implementation.  

 

We define a simpler, automatic method that handles positive outliers, using probabilistic 

modeling and Bayesian inference. Recently, fully automated robust regression solutions 

have been proposed in the computer vision community (Fransens et al., 2006). Such 

solutions achieve automation by using an explicit modeling of outliers (as opposed to 

implicit, where a function or a probability density is chosen manually), defining a set of 

indicator variables or labels, and estimating all the related parameters within a Bayesian 

framework. In addition to the quantities of interest, there are extra parameters that define 

the outlier distribution, the outlier rate and the inlier noise variance. We modify this 

approach by imposing a positivity constraint on the outliers, by using a uniform 

distribution between 0 and M where M >0 is the upper bound. As an added value, we 

compute the uncertainties on the parameters of interest. 

 

We also use an Expectation-Maximization algorithm (EM) (Dempster et al., 1977) to 

estimate the parameters. This algorithm is similar to a reweighted least squares estimation 

technique, however the weights are actual probabilities, and the whole approach amounts 

to minimizing an energy constructed using a probabilistic model.  

 

In the following, yi and xi denote the measurement and the predictor variables, 

respectively (in our case, the bathymetry and the square root of the seafloor age). The 

slope and intercept are denoted by A and B. Let us define the residuals ri=yi-Ax i-B. We 

define the labels si, equal to 0 for inliers and 1 for outliers. Then, we define the inlier and 

outlier conditional probability distributions as Gi and Ui (implicitly conditioned upon the 

current parameter values, omitted for the sake of clarity): 
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where σ2 is the inlier noise variance, and M the outlier upper bound. To complete the 

model we need to define the prior inlier rate uniformly as p(si=0)=λ.  

 

We use the EM algorithm to estimate A and B, σ2, but also M and λ automatically; this 

algorithm was designed to handle incomplete data, in this case the unknown set of labels 

si. We start by setting λ =0.5 and M=M0 (approximate outlier range). We run a classical 

non-robust regression to get initial values of A, B and σ2. Then we alternate the E and M 

steps.  

 

The E step consists of computing πi, the posterior probability of the label given the data 

p(si=0| yi, xi) and the current parameter values.  
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The M step consists of updating the parameters of interest through a weighted regression 

by using πi as weights. We do not give here the explicit formulas. They can be easily 

obtained by replacing all the sums of the simple regression case (Weisstein) by weighted 

sums, and the number of data points by
ii

π∑ . Let n denote the number of data points; 

the inlier rate λ and upper bound M are updated by: 
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The algorithm requires only a few dozen iterations to converge; fewer outliers means 

faster convergence. At the end, we obtain optimal values of the parameters of interest that 

are robust to outliers, and also the values of the two extra parameters required by the 

explicit outlier model. Moreover, we also compute standard errors on A and B, again 

replacing the existing formulas by their weighted counterparts.  
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In Fig. S1 we display the fit of the bathymetry versus the square root of the age of the 

seafloor through the outliers method for the major oceans.  

 

 

Figure S1: Fit of the bathymetry versus the square root of the age of the lithosphere 

through the outliers method. Emplacement of the age trajectories on the bathymetry (a) 

and seafloor age maps (b). (c-g) Fit of the bathymetry versus the square root of the age of 

the lithosphere for the major oceanic plates. c) the Pacific plate, d) Nazca plate, e) West 

Atlantic, f) East Atlantic, g) Indian plate. The arrow at the end of the profiles is the 

departure point defined as the location from where the bathymetry departs from the linear 

trend versus the square root of the seafloor age and never recovers it. We report the age 

of the departure from the linear trend in Ma above the arrow. 
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Figure S1 (continued) 
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Figure S1 (continued) 
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Figure S1 (continued) 
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Figure S1 (continued) 
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Figure S1 (continued) 

 

2  Fit of the bathymetry trend - the MiFil  method 

 

The MiFil method (for Minimization and Filtering) is a filtering method especially 

designed for the characterization of depth anomalies (Adam et al., 2005). It requires two 

stages: the first is to approximately remove the island/volcanic component of topography 

by minimizing the depth anomaly. During the second stage the minimized grid is filtered 

through a median filter in order to smooth the shape and totally remove the remaining 

small spatial length scale topography.  

 

One of the main problems with the MiFil method is that the median filter used during the 

second stage is sensitive to slopes. Therefore we have to remove the subsidence trend 

before filtering. Since this subsidence trend is what we are ultimately looking for in the 
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present study, this could appear quite problematic. However, it is only necessary to 

approximately remove this trend. Several tests have been performed with different 

subsidence trends. We have removed 1) the subsidence model proposed by Parsons and 

Sclater (1977), 2) the subsidence model proposed by Stein and Stein (1992), 3) and 

several half space models we designed, where the seafloor depth, z, is approximated by 

bageaz += , where a and b are constants we vary. In particular we vary a between 

250 and 400 m Myr-1/2. Note that a=365 m Myr-1/2  for Stein and Stein (1992), and a= 350 

m Myr-1/2 for Parsons and Sclater (1977). Once the depth anomaly is obtained, it is 

filtered with MiFil. We then add the subsidence trend we first removed, and perform a 

linear regression between the filtered bathymetry and the square root of the seafloor age. 

We derive the subsidence rate, τ, and the seafloor's depth at the ridge, ZR, fitted from our 

regression. 

 

Fig. S2 illustrates the influence of the considered subsidence model. In panel a), we 

report in black the bathymetry along the profile represented in the inset, in blue the 

bathymetry filtered considering Stein and Stein's (1992) subsidence model, and in red, 

the bathymetry filtered considering Parsons and Sclater's (1977) subsidence model. The 

radius of the minimizing filter is r=50  km, the radius of the median filter is R=700 km, 

based on previous results (Adam and Bonneville, 2005). In panel b), we report the 

theoretical depth obtained through our fit by considering either Parsons and Sclater 

(1977) or Stein and Stein (1992) subsidence model.. There are no noticeable differences 

between this fits. To have a more global view of the influence of this parameter, we 

report the subsidence rate (in panel c) and ridge depth (in panel d) found through the 

linear regression between the filtered bathymetry and the square root of age over the 

Pacific plate. There again, no noticeable difference are introduced by the choice of the 

initial subsidence model. Since no noticeable difference is introduced by the choice of the 

subsidence model, in the following we will present only the results found with Stein and 

Stein's (1992) subsidence model. 
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Figure S2: Influence of the initial subsidence model on the determination of the 

subsidence trend with the MiFil method. a) Bathymetry (black line) and filtered 

bathymetry considering either Stein and Stein's (1992) subsidence model (in blue), or 

filtered considering Parsons and Sclater's (1977) subsidence model (in red). b) 

Bathymetry (black line) and theoretical depth provided by our fit considering either Stein 

and Stein's (1992) subsidence model (in blue), or Parsons and Sclater's (1977) subsidence 

model (in red). c) and d) Subsidence rate (c) and ridge height (d) found through our fit 

considering the previous initial subsidence models, as a function of the ridge latitude. The 

color code is the same than in the previous panels [r= 50 km, R= 700 km]. 

 

Another issue with the MiFil method is that the final result may be sensitive to the model 

parameters, i.e. the radii of the minimizing and median filters (hereafter r and R 

respectively). These parameters are chosen by considering the spatial length scale of the 

features to remove. To test the influence of these parameters we vary them in a realistic 

range (r=25-75 km, R=500-800 km). In fig. S3, we report the variations induced by 

varying the filtering parameters. Adam and Bonneville (2005) show that the volcanoes 

and swells associated with hotspot chains are completely removed for the radii r=50 km 

and R=700 km. We will consider this as the standard filter, and represent it in red in the 

Fig. S3. We also test a filter with smaller radii (r=25 km and R=500 km), reported in 

green, and bigger radii (r=75 km and R=800 km), in blue in Fig. S3.  
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In panel a), we report in black the bathymetry and the bathymetry filtered through these 

filters along the profile represented in the inset of fig. S2. In panel b), we report the 

theoretical depth obtained by our fit. To have a more global view of the influence of the 

filter radii,  we report the subsidence rate (in panel c) and ridge depth (in panel d) found 

through our fit over the Pacific plate, for different filtering parameters. There again, no 

noticeable difference are introduced by varying the filter radii in a reasonable range. In 

the following, the fits obtained with MiFil are with r=50 km and R=700 km.  

 

 

Figure S3: Influence of the filtering parameters for the Pacific plate. The bathymetry is 

reported in black in panels a) and b), along the profile represented on the inset of Fig. S2. 

The color code represents the different filtering parameters: green r=25 km and R=500 

km, red r=50 km and R=700 km, blue r=75 km and R=800 km. a) Filtered bathymetry; b) 

Depth obtained with our fit; c) Subsidence rate and d) ridge height found through our fit 

considering the different filtering parameters. 

 

In Figure S4 we report, along the same profile, the main seafloor trend provided by the 

outliers method (in blue) and by the MiFil method (in red). Although these fits are 

slightly different, it is hard to say which one represents the best approximation of the 

subsidence trend. The scope here is not to choose a particular one, but to provide trends 

through two completely independent methods, in order to make sure that the variation of 

the obtained subsidence parameters is not an artifact of the method. Both methods have 

pro and cons. With the outliers method, the fit is obtained automatically. The only 

parameter is the outlier range, M0, which we fix at 1000 m, the range of the geological 
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features representing the outliers. There are no noticeable alterations of the final fit if this 

parameter varies in the range of 500 to 5000 m. With MiFil, the filtering parameters have 

to be chosen. However, we demonstrate that varying these parameters within a realistic 

range does not noticeably affect the final results. Moreover, MiFil filters a 2D grid and 

then provides a smoother variation of the subsidence parameters.  

 

                       

Figure S4: Fit of the subsidence trend along the profile reported on the inset of Fig. S2. 

The black line is the bathymetry, the blue and red curves are the main seafloor trends 

provided by the outliers and MiFil method, respectively.  

 

3. Mantle dynamics modeling 
 
In the second part of this study, we investigate the mantle dynamics. We perform a series 

of numerical simulations of instantaneous mantle flow in a global three-dimensional (3D) 

spherical-shell geometry, based on the “S40RTS” (Ritsema et al., 2010). We convert the 

seismic velocities anomalies into density anomalies and model the instantaneous flow 

they induce. In the following, we describe the numerical model and its parameters, as 

well as the method we use to obtain the dynamic topography.   

 

3.1 Basic equations and methods 

 

To solve for instantaneous mantle flow driven by density anomalies in a global 3D 

spherical shell geometry using spherical polar coordinates (r, θ, φ), we solve the 

conservation equations of mass and momentum.  
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In formulating the basic equations that govern the instantaneous mantle flow, the length 

L, velocity v, stress (or pressure) σ, are non-dimensionalized as follows: 

0 0 0
1 2

1 1

',  ',  = 'L r L
r r

κ η κ= =v v σ σσ σσ σσ σ
                 (S5) 

where r1 denotes the radius of the Earth, �0, the reference thermal diffusivity, and η0, the 

reference viscosity (Table S1). In these equations, symbols with primes represent non-

dimensional quantities. However, for simplicity, the primes are omitted hereinafter. 

 

Using these dimensionless factors, the dimensionless conservation equations for mass 

and momentum governing the instantaneous mantle flow under the Boussinesq 

approximation are expressed respectively as: 

0⋅ =∇∇∇∇ v                                                                       (S6) 

( ) δρ 0tr
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where v is the velocity vector, p the dynamic pressure, η the viscosity, δρ the density 

anomaly, Rai the instantaneous Rayleigh number and er, the unit vector in the radial 

direction. The superscript tr indicates the tensor transpose. The instantaneous Rayleigh 

number Rai (Yoshida, 2008) used in our computation is given by 

3
0
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gb
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κ η

                                                              (S8)                

where ρ0 is the reference density, g the gravitational acceleration, κ0 the reference thermal 

diffusivity, η0 the reference viscosity, and b the mantle thickness considered in the model. 

The physical values used in this study are listed in Table S1. 

 

The calculation of the instantaneous mantle flow in a global 3D spherical-shell geometry 

has been performed using the finite-volume (FV) based mantle convection code, ConvRS 

(Yoshida, 2008; 2010; Adam et al., 2010; 2014). We tested different depth ranges (whole 

mantle convection and upper mantle convection) which will be discussed later. The 

number of FVs used is 132 (in r) × 45 (in θ) × 90 (in φ) for the whole mantle convection 

model and 32 (in r) × 45 (in θ) × 90 (in φ) for the upper mantle convection model, which 

means that the numerical resolution is four degrees along the horizontal directions and 22 
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km along the radial direction. The step along the horizontal directions has been chosen by 

considering that the S40RTS tomography model includes spherical harmonics up to 

degree and order 40, which implies a resolution of roughly 1000 km. The boundary 

conditions at the top and bottom of mantle are impermeable and shear-stress free. 

 

Table S1. Physical values used in this study 

Meaning of symbols Value 
Model thickness, b 660 or 2900 km 
Earth’s radius, r1 6371 km 
Gravitational acceleration at the surface, g 9.81 m s-2 
Reference density, ρ0 3350 kg m-3 
Reference viscosity in the upper mantle, η0 1021 Pa s  
Reference thermal diffusivity, κ0 10-6 m2 s-1 
Instantaneous Rayleigh number, Rai 9.45×107 or 8.0×109  
Density contrast between the mantle and sea water, ∆ρs 2320 kg m-3 
Density contrast at the core-mantle boundary, ∆ρc 4337 kg m-3 
Gravitational constant, G 6.66726 ×10-11 N m2 kg-2 
 

3.2 Model parameters 
 

3.2.1 Conversion of seismic velocity anomalies into density anomalies 

 

Deriving a quantitative geodynamical interpretation from tomography models is a 

difficult task.  In order to obtain insightful geodynamic information from tomography 

models, one needs for example to convert the velocity anomalies provided by these 

models into temperature or density anomalies. It is an important step if one aims for 

example to obtain an accurate characterization of lateral viscosity variations in the mantle, 

or if one wants to retrieve quantitative information from the tomography models. For a 

realistic employment of tomography models, we integrate the results of mineral physics 

(Karato, 2008) in our models. These studies describe the depth dependence of the 

coefficient of thermal expansion, α, and of the temperature derivative of the seismic 

velocities anomalies for S waves as well as for P waves, ��� ≡ −∂ln(v)/�. In this study, 

we will use the α and ��� given by Karato (2008) and Yoshida (2012). The depth-
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dependence of the density to velocity heterogeneity ratio, Rρ/v, on these parameters can be 

obtained through:  

ρ/

α
v

VT

R
A

≡                                   (S9) 

We use the Rρ/v designed by Karato (2008), while assuming that the origin of the seismic 

velocity anomalies is purely thermal, which seems to be a fair approximation for the 

oceanic context, at least at the scale of resolution of the tomography model.  The density 

anomaly can then be obtained through 

ρ/
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=                               (S10) 

where δv is the seismic velocities anomaly and ρref and vref the reference density and 

velocity provided in our study by the PREM model (Dziewonski and Anderson , 1981). 

The depth-dependency of the density to velocity heterogeneity ratio, Rρ/v is reported in 

red (full line) in Fig. S5 b). In this figure, we also show the values obtained by Lee et al. 

(2011), who use this coefficient as a parameter to fit the geoid anomalies. Their reference 

Rρ/V is displayed in black, and the gray lines simulate the uncertainty for this parameter. 

Their reference Rρ/V (black line) is close to 0.1 in the upper mantle, whereas the 

coefficient obtained from Karato (2008) parameters (red line) indicates values around 

0.2. We have made several tests by varying this parameter. When we use Karato's (2008) 

laws, it is impossible to retrieve the observed subsidence. The amplitude of the dynamic 

topography is indeed twice the observed one. If we divide this parameter by a factor 2 in 

the upper mantle (dashed red line), the model fits well the observed depth anomalies. In 

the following, we will then use Rρ/V represented by the dashed red line in the upper 

mantle and the Rρ/V represented by the red solid line in the lower mantle. This law is 

comprised between the reference Rρ/V of Lee et al. (2011) and their left hand side 

uncertainty curve. In Fig. S5 a) we display the velocity anomalies along the depth cross 

section across the Pacific ocean represented in the inset, and in Fig. S5 c) the density 

anomalies computed through our model. The mantle is characterized by density 

anomalies of -25 kg m-3 in the vicinity of the EPR, and of 20 kg m-3 along the lithosphere 

of the Pacific plate. Note that we assume that the origin of the velocity anomalies is 

purely thermal. 
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3.2.2 Viscosity model 

 

In this study, we have considered both depth and temperature dependencies of the 

viscosity. We consider the effect of the temperature-dependent viscosity on the mantle 

convection using an Arrhenius-type viscosity form 

* *
* *

* * * *
( ) exp a a

ref

H H
d

R T R T

 
η = η −  

           

 (S11) 

where Ha* is the activation enthalpy of mantle rock (Ha* =Ea+P.Va , Ea and Va being the 

activation energy and volume respectively), R* is the gas constant (8.31 J K-1 mol−1), T* 

and Tref* are the temperature and reference temperature, respectively (asterisks denote the 

values with dimension). Eq. (S11) is non-dimensionalized by: 

( ) exp a a
ref

ref

H H
d

T T

 
η = η −  

 
               (S12) 

where T and Tref is the dimensionless temperature and reference temperature, respectively, 

and ηref(d) is the dimensionless reference viscosity at T = Tref. When Tref is fixed at 0.5, T 

can be expressed as: 

γ ln( ) 0.5 γ ln( )refT T v vδ δ= − = −      (S13) 

where γ is the dimensionless coefficient defined as: 

*

0.5
γ

VT refA T
≡                                         (S14) 

In the present study, we have considered several values of the activation energy and 

volume. In the upper mantle, the activation energy varies between 200 to 400 kJ/mol, and 

the activation volume between 2 and 4.5 10 -6m3/mol (Karato and Wu, 1993; Hirth and 

Kohlstedt, 2003; Billen and Hirth, 2007; Lee and King, 2011). For the lower mantle, we 

consider the value of the activation enthalpy of MgSiO3 perovskite in lower mantle rocks, 

(Ha ~ 400 kJ mol-1) on the basis of the result obtained from mineral physics (Yamasaki 

and Karato, 2001). It turns out that these parameters, although fundamentally important, 

do not have a major effect on the resulting viscosity and derived flow. The results 

displayed in the following have been obtained with  Ea = 240 kJ/mol, and Va ~ 1.5 10 -

6m3/mole in the upper mantle. 
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We impose ηref=1 in the upper mantle, and therefore do not allow a depth dependency of 

the viscosity, because the lithosphere and asthenosphere appear clearly with respectively 

a high and low viscosity when considering a temperature-dependent viscosity law (see 

Fig. S5 d).  For the lower mantle, we test several values ηref=1, 30, 100, 500.  The results 

presented hereafter have been obtained with ηref=100 in the lower mantle.  

 
Figure S5: Mantle structure along the profile displayed in the inset. a) Seismic velocity 

anomalies provided by the S40RTS tomography model (Ritsema et al., 2010). b) Density 

to velocity heterogeneity ratio used in this study, in red, compared with other estimates 

from Lee et al. (2011), in grey and black. c) Density anomalies deduced from this model 

(see text). d) Viscosity in the upper mantle, where the lithosphere and asthenosphere 

appear clearly with respectively high and low viscosities. 
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In order to recover the lithospheric plate's motion, we also impose weak plate boundaries 

at the surface, by considering the plates' boundaries compilation of Bird (2003), with a 

viscosity of 1019Pas, and introduce the regionalized upper mantle (RUM) slab model of 

Gudmundsson and Sambridge (1998) with a density of 50 kg m-3. For the continents we 

impose a null density between depths 0 and 300 km, but we do not remove the shallowest 

part of the mantle over the oceanic areas as former studies did. Although most of the 

previous studies do not consider the buoyancy of the shallowest part of the mantle 

(Steinberger, 2007; Conrad and Husson, 2009; Spasojevic and Gurnis, 2012), some 

authors choose to consider it because it contains precious information about the structure 

and dynamics of the upper mantle and lithosphere (Forte et al., 1993;  Moucha et al., 

2008).   

 

In Fig. S5 d) we display the relative viscosity along a depth cross section through the 

Pacific ocean. In the following, we will discuss the influence of the previously described 

parameters of the dynamic topography.  

 

3.3 Sensibility of the dynamic topography to the model’s parameters  

 

The resulting dynamic topography is displayed in Fig. S6. The upper panel shows the 

dynamic topography considering only the upper mantle dynamics (model 1). The 

viscosity is temperature dependent. In the middle panel, we show the results obtained 

while considering the whole mantle convection (model 2). In this case, the viscosity is 

temperature dependent and the lower mantle is 100 times more viscous than the upper 

mantle. In the lowermost panel, we show the results obtained while considering the whole 

mantle convection induced by a model based on the S40RTS tomography model 

(Ritsema et al., 2011), and on the regionalized upper mantle (RUM) slab model of 

Gudmundsson and Sambridge (1998) with a density of 50 kg m-3 (model 3). In this case, 

the weak plate boundaries limits are imposed in the uppermost 100 km. For the continents 

we impose a null density between depths 0 and 300 km. In the following we will refer to 

this model as 'our favorite model' (model 3). In this section we will check the sensitivity 

of the dynamic topography, and mostly of the subsidence trend on the model's parameters. 
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The pattern is similar for all the considered tests, the ones considering the whole mantle 

convection, as well as the ones considering only the upper mantle convection. The 

dynamic topography presents highs over all the mid-oceanic ridges. The amplitude of the 

dynamic topography regularly decreases while moving away from the ridges. We also 

recover a positive dynamic topography south-west of the Pacific area, north of New-

Zealand. Other studies, based on independent data such as the heat flow, also report an 

abnormally buoyant mantle over this region (Pollack et al., 1993).  Over the continents, 

which are characterized in tomography models by faster seismic anomalies, we recover 

lows for the two first models. Imposing a null density anomaly over the shallowest part of 

the continents (model 3) changes the pattern and amplitude over the continental areas, but 

it does not noticeably affect the dynamic topography over the oceanic areas our study 

focuses on. Imposing the regionalized upper mantle (RUM) slab model also affects the 

dynamic topography by creating negative anomalies around the slabs, but here again it 

does not significantly affect on the dynamic topography over the oceanic areas. 

 
To better illustrate the sensitivity of the subsidence trend on the model's parameters, we 

have reported in Fig. S7 the subsidence trend for the three previously discussed models, 

along a profile crossing the Pacific, displayed in the inset. The long-wavelength 

subsidence trend is well recovered for all the tests. As the bathymetry varies roughly 

between -2000 to -6000 m, and the dynamic topography is a positive quantity over the 

mid-oceanic ridges, we have shifted downwards the dynamic topography by 5500 to 6000 

m to allow a visual comparison. 

 

From these results it appears that the subsidence pattern is created by the upper mantle 

dynamics. Actually, if one imposes a lower mantle 30 to 100 times less viscous that the 

upper mantle, the amplitude of the long wavelength subsidence trend is almost the same 

than the one computed from the upper mantle only, although it changes the amplitude of 

intraplate features such as the South Pacific superswell (Adam et al., 2014).  
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Fig. S6: Dynamic topography computed considering (a) the upper mantle dynamics only 

and a temperature dependent viscosity (upper panel, model 1);  (b) the whole mantle 

dynamics and a depth and temperature dependent viscosity (middle panel, model 2); (c) 

the whole mantle convection induced by a model based on the S40RTS tomography 

model and on the regionalized upper mantle (RUM) slab model with a density of 50 kg 

m-3 (lower panel, model 3). For this last case the weak plate boundaries limits are 

imposed in the uppermost 100 km, and we impose a null density between depths 0 and 

300 km for the continents. 
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Fig. S7: Influence of the model parameters on the dynamic topography along the profile 

displayed in the inset. The black line is the bathymetry and the color lines the dynamic 

topography found through the models 1, 2, and 3 (see text and Fig. S6). 

 

4. Dynamic topography and the subsidence trend 
 
4.1 Qualitative correlation between the subsidence trends derived from the dynamic 
topography and the bathymetry 
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Fig. S8:  Subsidence trend and dynamic topography. In the uppermost panel, we display 

the emplacement of the profiles along which we investigate the correlation between the 

bathymetry and the dynamic topography. In panels a) to u), the black lines are the 

bathymetry and the red lines represent the dynamic topography computed with model 3.   
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The comparison between the dynamic topography and the bathymetry is displayed in Fig. 

S8. The bathymetry varies roughly between -2000 to -8000 m, and the dynamic 

topography is a positive quantity, which reference value is unconstrained. Therefore, we 

have to adjust these two quantities in order compare them. To allow a visual comparison, 

we have shifted the dynamic topography down by 5500 to 6000 m. The amplitude of the 

dynamic topography also varies regionally. In particular, the dynamic topography has to 

be multiplied by a factor two in the Indian and Atlantic oceans, in order to obtain a good 

correlation between the subsidence trend derived from dynamic topography and the 

subsidence trend observed in the bathymetry. This topic is discussed in more details in 

the main article.   

 

The long wavelength of the seafloor deepening is well recovered by the dynamic 

topography along all the profiles. Local departures can be noted for the volcanoes, some 

swells, and fracture zones. We do not expect to recover the volcanoes but the swells 

associated with volcanic chains displaying recent activity are generally recovered by our 

model. Across slow and intermediate ridges such as the MAR and the SEIR, the 

bathymetry evolution is not well recovered. This is not surprising because intermediate 

and slow ridges have different characteristics than fast-spreading ridges (Ito et al., 1999; 

Rabinowicz et al., 2011). Indeed, it has been demonstrated that for slow mid-oceanic 

ridges, the mantle is characterized by faster seismic velocity anomalies although there is a 

layer of depleted and buoyant mantle near the surface, which controls the dynamics of 

these spreading centers (Rabinowicz et al., 2011).  

  
4.2 Quantitative correlation between the subsidence trends derived from the 
dynamic topography and the bathymetry 
 

In the Fig. 8 of the main paper we display the correlation between the subsidence rate 

deduced from the bathymetry (in black and blue) to the subsidence rate deduced from the 

dynamic topography (in red). Here we provide a more complete discussion on the fit of 

the subsidence rate derived from the dynamic topography.  
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For the Pacific plate (fig. 8 a), the southernmost profiles, from latitude 65oS to latitude 

25oS are very short, and the ridge emplacement recovered from dynamic topography is 

shifted several hundreds of kilometers west from the actual ridge. We do not consider the 

subsidence trend derived along these profiles to be relevant. Between latitudes 25oS and 

50oN, the profiles along which we derive the subsidence trend are longer. The subsidence 

trends computed from the bathymetry are in good agreement with the ones derived from 

the bathymetry, and significantly low values are found around latitude 0o, between 

latitudes 20oS and 10oN. This low subsidence rate is probably created by the return flow 

of the South Pacific Superswell, as discussed in section 4.2 of the main paper. For the 

profiles between latitudes 25oS and 50oN, the emplacement of the ridge recovered from 

dynamic topography is sometimes shifted several hundreds of kilometers west from the 

actual ridge. For these profiles, the fit of the dynamic topography as the square root of the 

seafloor age has been done between ages 20 and 60 Ma.  

 

For the East Pacific (Fig. 8 b), the considered profiles are too short to allow a fair 

estimation of the dynamic topography subsidence rates between latitudes 65oS and 37oS, 

and  latitudes 7oS and 18oN. Longer profiles are obtained along the Nazca plate, thus 

allowing a more reliable computation of the dynamic topography subsidence trend. The 

obtained values are in good agreement with the ones deduced from the bathymetry. 

Around latitude 25oS, there is a sharp increase of the subsidence rate, corresponding to 

the location of the Easter microplate.  

 

In the Indian ocean, there are two broad upwellings, at the westernmost extremity of the 

SEIR, near the location of the Balleny hotspot, and east of the SEIR, in the vicinity of St. 

Paul Amsterdam (see section 4.2). The upwelling near St. Paul Amsterdam is observed in 

the bathymetry but with a much smaller wavelength. This broad upwelling is the reason 

why the correlation between the subsidence rates from the dynamic topography and the 

bathymetry is not good between longitudes 70 and 80oE.  Between longitudes 80 and 

95oE, the subsidence trend observed in the bathymetry is well recovered by the dynamic 

topography. East of longitudes 95oE, the trajectories become very short, and it is 

generally harder to derive reliable subsidence trends. Moreover, the ridge in the dynamic 
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topography is often shifted from the bathymetric ridge (see fig. S8 r) and t)). The 

dynamic topography subsidence rates we report on Fig. 8 c  have been obtained either by 

fitting the dynamic topography as the square root of the seafloor age between the '0' 

seafloor age and the inflexion point, or between 30 Ma (which is roughly the shift of the 

ridge in the dynamic topography) and the inflexion point. However, even if the fit along 

the westernmost trajectories is not reliable (because the trajectories are very short), we 

can see that the general pattern indicates a much sharper subsidence between longitudes 

110 and 125oE, as already evidenced in the bathymetry. 

 

In the west Atlantic, along the South and North American plates, the subsidence rate 

pattern is also roughly recovered. However, most of the time, the MAR characteristics are 

not very well recovered, as illustrated in fig. S8 l) to q). This is not surprising. Indeed, as 

stated before, former studies have demonstrated that for slow mid-oceanic ridges, the 

mantle is characterized by faster seismic velocity anomalies although there is a layer of 

depleted and buoyant mantle near the surface, that controls the dynamics of these 

spreading centers (Rabinowicz et al., 2011). For these reasons, most of the fits displayed 

in fig. 8 d) and e) have been obtained while ignoring the first 30 Ma, during which the 

dynamic topography displays a plateau (see Fig. S8 l) to q)). The trajectories are 

generally very short, especially when we ignore the first 30 Ma, and therefore the fits are 

not reliable. However, in the few locations where the trajectories are slightly longer, 

around latitude 20oN and south of 30oS, we recover a fair fit between the bathymetry and 

the dynamic topography subsidence rates.  

 

In the East Atlantic, along the Nubia and Eurasia plates, the trajectories are generally too 

short to obtain relevant subsidence rates. The MAR issues are the same than for the West 

Atlantic, so the displayed fits also ignore the first 30 Ma.  

 

As stated in the main text, the subsidence rates of the dynamic topography have been 

multiplied by a factor two for the Atlantic and the Indian oceans. This is discussed in 

more details in the main article.   
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