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Stability of gas channels in a dense suspension in the presence of obstacles
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We investigate experimentally the influence of a fixed obstacle on gas rising in a dense suspension. Air is
injected at a constant flow rate by a single nozzle at the bottom center of a Hele-Shaw cell. Without obstacles,
previous works have shown that a fluidized zone is formed with a parabolic shape, with a central air channel
and two granular convection rolls on its sides. Here, we quantify the influence of the obstacle’s shape, size, and
height on the location and dynamics of the central air channel. Different regimes are reported: the air channel can
simply deviate (stable), or it can switch sides over time (unstable), leading to two signatures not only above the
obstacle, but sometimes also below it. This feedback also influences the channel deviation when bypassing the
obstacle. A wake of less or no motion is reported above the largest obstacles as well as the maximum probability
of gas location, which can be interesting for practical applications. The existence of a critical height hc � 7 cm
is discussed and compared with the existence of an air finger that develops from the injection nozzle and is stable
in time. A dimensionless number describing the transition between air fingering and fracturing makes it possible
to predict the channel’s stability.
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I. INTRODUCTION

Soil failure is one of the most significant natural hazards that
can threaten human activities. As a consequence, its response
to an externally applied mechanical stress such as loading
or seismic waves has been widely investigated [1,2]. Many
of these studies propose an alternative approach to classical
solid rupture by considering that, above a critical stress, the
ground behaves like a frictional fluid rather than yielding like a
solid [3]. The cohesive forces between rocks and soil particles
are not strong enough to prevent internal structure movement,
and the soil can be viewed as a granular medium undergoing
a so-called fluidization. This latter can be simply defined as
a process whereby a granular material goes from a static,
solidlike behavior to a dynamic, fluidlike state, also called
a dense suspension.

Fluidization processes are numerous in natural or human-
made three-phase flows, where the constraint corresponds
to gas invasion in a liquid-saturated ground or granular
medium. In geophysics, the generation of pockmarcks [4,5]
or mud volcanoes [6–8] are among many other examples.
Man-made applications include, on the one hand, air sparging.
This technique of soil remediation consists in injecting high-
pressure gas into the ground to remove the water contamination
by volatile compounds [9–11]. On the other hand, three-phase
flows are of drastic importance in multiphase catalytic reactors,
where gas is injected in a mobile, immersed porous medium
to enhance chemical reactions [12,13].

To understand and quantify this fluidization process, fun-
damental studies have been performed at the laboratory scale,
in which gas invades, through a single injection point, a
liquid-saturated granular medium. In the particular case of
buoyancy-driven systems, it has been found that after an initial
invasion regime where the gas either percolates or fractures
through the granular bed, a fluidized zone of parabolic shape
is formed [9,11,14–20]. In the stationary regime, the gas
mainly rises through a central channel at the vertical of the
injection point. Bubbles are created in this channel and rise

by buoyancy, entraining the surrounding solid particles. Two
granular convection rolls thus form on both sides of the central
gas channel, which entrain the grains and are responsible for
the observed parabolic shape [17,19,21].

These experiments usually model the ground particles as
spherical grains, with a peaked distribution around an average
particle diameter. Real soils, however, are often characterized
by large heterogeneities such as solid rocks, which can
prevent the ground motion [1,14]. Granular flows around
obstacles have been investigated in the dry case, showing the
formation of a dead zone corresponding to the grains-obstacle
interaction [22,23]. However, to our knowledge, no systematic
study of the influence of obstacles on gas rising in a dense
suspension has been performed.

In this work, we investigate the influence of fixed obstacles
of different shape, size, and location on the dynamics of
gas channels rising through a dense suspension. We focus
on the simplest case of a single obstacle, fixed in the
laboratory frame, and we analyze the stability of the central gas
channel when passing this obstacle, as well as the location of
maximum gas concentration in the system. The results, which
may be interesting for practical application such as ground
remediation or heterogeneous catalysis, are compared to the
case of homogeneous suspensions, i.e., without obstacle.

II. EXPERIMENTAL SETUP

The experimental setup consists of a vertical Hele-Shaw
cell made of two glass plates (40 × 30 cm) separated by a
gap e = 2 mm. The cell is filled with particles immersed in
water in which a single obstacle of a different shape and size is
located at height h [see Table I and Fig. 1(a)]. The obstacles are
magnets (HKCM Engineering e.K.) whose thickness equals
the cell gap e so that no grains, liquid, or air can be trapped
or flow on its faces. They are fixed by means of a second,
more powerful magnet (a cylinder of diameter 5 mm and
height 28 mm, HKCM Engineering e.K.) located outside
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FIG. 1. Experimental setup and image processing (circular obstacle, D = 1.5 cm, h = 10 cm). (a) Example of experimental snapshot. We
can distinguish the obstacle (black circle at height h), the air rising through the granular bed, bubbles trapped in the upper part, and the central
fluidized zone, marked by a slightly darker contour. (b) Cumulated motion M computed with Eq. 1 (threshold 1%). The color bar indicates the
probability of motion in the system over the total experiment duration. The white dashed line is the contour of the fluidized zone determined
after binarization of the cumulated motion M (threshold 20%). (c) Binarized image representing the fluidized zone (in white) and the area
without motion (in black). The contour of the fluidized zone is extracted from this image (see the text). (d) Cumulative image C computed
from Eq. (2). The color bar represents the probability of the presence of bubbles in the system.

the glass plates. This magnet also ensures that the obstacle
does not move during the entire experiment. To study the
effect of the obstacle shape, three magnet geometries are used
(Table I): circular obstacles of diameter D = [1,1.5,4] cm;
square obstacles of side D = [1,4] cm, and diamond-shaped
obstacles, which are simply the square obstacles rotated by
45◦. In this last case, the obstacle size is considered as its
typical horizontal length, and thus it includes a factor

√
2 with

respect to the square obstacle (Table I). The obstacle height h,
measured from the cell bottom to the center of the obstacle,
is varied from h = 2.5 to 15 cm from the cell bottom, at the
vertical of the air injection nozzle [Fig. 1(a)].

To ensure reproducible initial conditions, the following
protocol is used. Once the obstacle is fixed in the cell, the
particles are added using a funnel, up to a height hg = 20 cm.
They consist of polydisperse spherical glass beads (Sovitec) of
typical diameter d = 318 ± 44 μm. This latter, measured with
a microscope (Optika B-163), displays a roughly Gaussian size
distribution [17]. The cell is then entirely filled with distilled
water, sealed at its top, and turned upside down so that the
particles are decompacted and sediment gently. Right before
the full particle sedimentation, the cell is turned back to its
initial, vertical position and the grains are allowed to sediment
once more. This method makes it possible to remove all the
bubbles trapped initially in the granular layer. The surface
is then gently leveled with a rod, and the excess of water is
removed until the water layer above the granular bed is set
to hw = 2 cm. The initial condition is therefore an immersed,
loose-packed granular bed—or a dense suspension—in which
an obstacle is trapped.

TABLE I. Shape, symbol, size D, and height h of the obstacles
located in the immersed granular bed.

Shape Symbol D (cm) h (cm)

circle © 1 2.5, 5, 7.5, 10, 15
circle © 1.5 2.5, 5, 7.5, 10, 12.5, 15
circle © 4 3.5, 5, 7.5, 10
square � 1, 4 5, 10

diamond � 1.4, 5.7 5, 10

At time t = 0, air is injected at a constant flow rate
through a nozzle of inner diameter 1 mm, located at the
bottom center of the cell, by means of a digital mass flow
controller (M+W Instruments, model D-6311). The flow rate
is fixed at Q = 1.98 mL/s for all experiments, high enough
to ensure a quick stabilization of the central air channel, of
the order of 1 min [17]. A LED panel at the back of the
cell provides a homogeneous light, and the dynamics of the
experiment is followed by means of a camera (PixeLINK,
model PL-B741U, 1280 × 800 px2) recording one image every
2 s. All experiments last for 20 h in order to capture the
long-time dynamics of the system.

III. IMAGE PROCESSING

This section details the image analysis, which is aimed
at separating the two mechanisms at stake in the system.
First, with or without obstacles, we observe at long times
the formation of a central fluidized zone of roughly parabolic
contour, corresponding to slow grain motion [Fig. 1(a) and
Sec. III A]. Then, the air rise tends to choose preferential
pathways through the dense suspensions [Fig. 1(d)], which
will be characterized in Sec. III B.

A. Fluidized zone

The central fluidized zone corresponds to the cumulation
of grain motion in the system through time. To quantify this
region, we define from the image sequence {Ik} a cumulated
motion image M given by

M = 1

N

N−1∑

k=1

B1%(|Ik+1 − Ik|), (1)

where N is the total number of frames, |Ik+1 − Ik| is the
absolute value of the difference between two consecutive
images, and B1% is a binarization function returning 1
when |Ik+1 − Ik| > 1% max(|Ik+1 − Ik|), and 0 otherwise. M

therefore corresponds to the fraction of time over the whole
experiment for which motion was experienced in the system,
with a 1% threshold.
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FIG. 2. Cumulated motion M for different obstacle size D and heights h [symbol, D (cm)]. (a) Circular obstacle [(©,1.5), from left to
right, h = 2.5, 5, 7.5, 10, 12.5, and 15 cm]. (b) Different shapes of obstacles for a fixed height [h = 10 cm, from left to right, (�,1); (�,4);
(�,1.4); (�,5.7); (©,1); (©,4)]. The figures show the deviation of the air channel by the obstacle and the formation of a wake above large
obstacles. In some cases, two channels are clearly distinguished [(b), second and third image, cf. Sec. IV].

Figure 1(b) displays the cumulated motion image M for
the example of a circular obstacle (D = 1.5 cm, h = 10 cm).
Three different zones are clearly distinguishable in the image:
(i) the central air rise (in yellow, ∼45% motion), which
concentrates the largest motion; (ii) the lateral grain motion
(in green, ∼30% motion), whose contour (white dashed line)
clearly delimits the boundary of the fluidized zone; and (iii)
the grains outside the central moving zone (in blue, ∼0–5 %
motion), which remain roughly still over all the experiment.
Note that the motion outside the fluidized zone is not strictly
zero here. Indeed, the cumulated motion image computation
takes into account the transient regime, during which the air
channel(s) can explore by percolation or fracture a space much
larger than the central fluidized zone—see, for instance, the
bubbles trapped on the left upper part of the image, outside the
fluidized zone, in Fig. 1(a).

We quantify the fluidized zone as the region where more
than 20% of the motion was observed during the whole
experiment [white region, Fig. 1(c)]. The 20% threshold is
chosen such that it excludes successfully the small, sporadic
motions outside the central zone observed mainly at the
beginning of the experiments, in the transient regime. The
contour systematically matches the fluidized zone border
observed in the raw images at long times [dark contour,
Fig. 1(a) and white dashed lines, Fig. 1(b)].

B. Gas preferential pathways

In addition to the previous calculation, which gives infor-
mation on the motion in the system, it is interesting to quantify
the presence of gas bubbles in the granular bed. To do so, we
estimate a cumulated image, C, as follows. First, each image
Ik is binarized so that a value 1 is attributed to the presence of
a bubble, and it is 0 otherwise. The binarized images are then
stacked and normalized by the total image number, giving

C = 1

N

N−1∑

k=1

B40%(Ik), (2)

where B40% is a binarization function with a 40% threshold.
This latter value is estimated to get the best estimation between
bubbles and immersed grains in the images. C therefore
represents the probability of the presence of bubbles in the
system over all the experiment. An example of a cumulated
image is displayed in Fig. 1(d), where it is possible to observe
the central air channel, the deviation by the obstacle, the
maximum probability around z � 3 cm, and the signature of
gas bubbles trapped from time to time on the left side of the
obstacle [visible in Fig. 1(a)].

IV. EXPERIMENTAL RESULTS

A. Motion in the system

Figure 2 presents the cumulated motion M for different
obstacle shape, size D, and height h. Different qualitative
observations can be made. First, the contour of the fluidized
zone (the border between the green and blue regions) does
not vary drastically regardless of the size, shape, or height
of the obstacle. Although it can be slightly deformed for large
obstacles [see, for instance, Fig. 2(b), second, fourth, and sixth
images], it always follows a roughly parabolic shape, and it is
not drastically increased when the obstacle size is increased.
Note that in the case of large obstacles, the average free surface
displacement is mostly shifted to one side, corresponding to the
side chosen preferentially by the central air channel to bypass
the obstacle [Fig. 2(b), second, fourth, and sixth images].

Second, above large obstacles, a wake is clearly visible
[blue zone; see, for instance, Fig. 2(b), square obstacle D =
4 cm]. It also exists for smaller obstacles [Fig. 2(a), first image],
but it is less visible. As for the grains outside the fluidized zone,
the wake corresponds to a region where the motion is nonzero,
but greatly reduced with respect to the average motion in the
fluidized zone. A thorough quantification of the wake size is
presented in Sec. IV C.

Finally, depending on the parameters, we report different
preferential pathways of the central air channel. Because the
obstacle is centered on the vertical of the injection nozzle, we
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FIG. 3. (a) Sketch of the possible air pathways. The upper labels indicate the number of channel pathways before −→ after the obstacle,
and the symbols represent the obstacle shape. To quantify the deviation of the central air channel induced by the obstacle, we define the distance
between the vertical of the injection nozzle and the air channel below (�down) and above (�up) the obstacle. (b) Phase diagram (D,h) for the
number of air channels before → after the obstacle. The symbols represent the obstacle shape. The light blue region indicates the parameters
for which a single channel is observed before and after the obstacle.

expect qualitatively that the rising gas bubble or finger will
choose randomly one side or the other to bypass the obstacle.
However, due to the formation of preferential pathways (i.e.,
it is easier for the air to follow a previously opened path rather
than forming a new one in the dense suspension), different
regimes are observed, which are described in Sec. IV B.

B. Stability of the central gas channel

The central gas pathway, visible in Fig. 1(a), does not
necessarily follow a vertical path from the injection nozzle
to the obstacle. Indeed, some fluctuations can appear close to
the injection point, which can deviate the channel temporarily
or permanently when the air penetrates the dense suspension.
These fluctuations, coupled with the fact that the air has to
bypass the obstacle, give rise to three different signatures of
the gas pathways over the whole experimental time [Figs. 2
and 3(a)]: (i) The gas either rises vertically or is slightly devi-
ated on one side, and it bypasses the obstacle on this same side
[case 1 → 1, Fig. 3(a), left]; in this case, the obstacle stabilizes
the gas pathway both under and above the obstacle. (ii) The
gas rises roughly vertically, but changes intermittently in time
the side by which it bypasses the obstacle, giving on average a
single path below and two signatures above the obstacle on the
cumulated motion [case 1 → 2, Fig. 3(a), center]. (iii) The air
channel changes its location in time not only when bypassing
the obstacle, but much lower, close to the injection nozzle. On
average, therefore, two channels appear both below and above
the obstacle [case 2 → 2, Fig. 3(a), right].

The phase diagram (D,h) for the three different dynamics
over the whole experimental time is presented in Fig. 3(b).
It can be separated into two regions: a stable zone (light
blue region), where the air channel does not undergo a large
displacement and a single path is observed both below and
above the obstacle (case 1 → 1); and an unstable zone, where
the air channel alternates its position (above or below) with
respect to the obstacle (case 1 → 2 and 2 → 2). The transition
between these two regions is found at a height h � 7.5 cm
for an obstacle diameter D = 4 cm. For small obstacles
(D < 2 cm), the transition appears at h � 10 cm, above which
the channel is not stabilized anymore by the obstacle but
randomly bypasses it on either side. Indeed, for h � 10 cm,

the obstacle blocks part of the grain convection that happens in
the fluidized zone, and thus it inhibits the change of direction
of the channel. Over that critical height, the obstacle has less
effect on the global grain motion in the central region, and the
channel can more easily fluctuate and possibly change sides
in time. For large obstacles, this limit shifts toward smaller
h. A possible explanation is that the channel needs to deviate
more from the central nozzle in order to bypass the obstacle.
Therefore, although the obstacle’s presence tends to stabilize
it by inhibiting or reducing the granular convection below, the
channel itself may be more unstable, and thus it tends to switch
more easily to another path.

Another mechanism that could explain the origin of the
transition between the stable and unstable channel behavior is
the maximum height reached by the air finger, which develops
from the injection nozzle, before it undergoes a fingering-to-
fracturing transition at h � 7 cm [see, for example, Fig. 1(a)].
This latter transition can induce the alternation of the air
channel above the obstacle. In this sense, if the obstacle is
located below this height, it will not have any influence on
the generation of new channels. On the contrary, if it is near
or above this height, then the system will be affected by the
fingering-to-fracturing transition, and hence it will randomly
modify the direction of the air channel.

C. Wake size

Figure 4 displays the wake area W normalized by the
obstacle cross section, eD, as a function of the obstacle height
for the different obstacle size and shape. W is computed
according to the image processing presented in Sec. III A.
The formation of a significant wake is observed for large
obstacles only (D = 4 cm). For circular obstacles, the wake
size decreases linearly as a function of the obstacle height.
Experiments with square or diamond obstacles show a drastic
increase of the wake size for these latter geometries—more
than twice the wake for the circular obstacles. Although the
value of the wake area can be affected by the choice of
the threshold in the computation (Sec. III A), this tendency
remains, and it can be interpreted as follows. (i) The large
obstacles affect more the central air channel rise when they are
located close to the injection nozzle, and, as a consequence,
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FIG. 4. Normalized wake area W/(eD) as a function of the
obstacle height h. [The symbols in Figs. 4, 5, and 6 are representative
of the obstacle shape and size, (symbol, regime): (white, stable);
(gray, unstable)].

the wake size is larger for small h. (ii) A square obstacle
shape—and, in a more general way, the presence of angles
(e.g., diamond shape)—tends to block the streamlines of the
grains motion in the fluidized zone. As its equivalent in fluid
dynamics, the wake is therefore much larger than in the case
of circular obstacles.

D. Air channel deviation

In this section, we quantify the deviation of the air channel
induced by the obstacle, both below (�down) and above
(�up) the obstacle [Fig. 3(a), left]. The location of the air
channel is computed from the cumulated motion (see Fig. 2),
and in the case of two channels above and/or below the
obstacle, only the channel with the largest motion is taken
into account. Figure 5(a) displays the distance between the
vertical of the injection nozzle and the air channel above the
obstacle, �up. As expected, the larger the obstacle size D,
the larger is the air channel deviation above the obstacle. No
dependence is found either on the obstacle height or shape. As
described in the previous sections, the channel below the ob-
stacle can also exhibit a deviation from the vertical of the
injection nozzle. Figure 5(b) displays this shift, �down, for the
different obstacles’ height, size, and shape. For the smaller
obstacles (D � 2 cm), the deviation below the obstacle is
small, typically about 0.5 cm, and it is roughly independent of
the obstacle height and shape. No drastic difference is observed
for the large obstacles (D � 4 cm), as in the case of the
deviation above the obstacle. For large circular obstacles �down

decreases with h, and for h � 7.5 cm it reaches the same value
as the smaller obstacles. The largest shift below the obstacle
is observed for the large square obstacles (D = 4 cm), and
it also decreases when h increases. For the specific point of
the circular obstacle, D = 1.5 cm, h = 15 cm, and �down � 0.
Indeed, in this case, the channel below the obstacle moves a
lot and, on average, the program detects no deviation, while in
the movies, a clear deviation appears intermittently. This point
will be ignored hereafter.

Figure 5(c) displays the air channel deviation due to the
obstacle (�up − �down) normalized by the typical obstacle ra-
dius, D/2. For all the experiments, (�up − �down)/(D/2) < 1
(below the gray zone). This result indicates that there is always
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FIG. 5. Distance between the maximum of the air channel (from
the cumulated image, see Fig. 2) and the vertical of the injection
nozzle (a) above, �up and (b) below, �down the obstacle. (c) Main
deviation of the air channel due to the obstacle (�up − �down)
normalized by the obstacle radius, D/2. The gray zone indicates
a deviation larger than the typical obstacle radius [(symbol, regime):
(white, stable); (gray, unstable)].

a feedback of the channel position above on its position below
the obstacle. If the channel bypasses the obstacle on one side, it
also shifts position below the obstacle toward this same side, as
can be clearly seen in Fig. 2(b) for the large diamond obstacle,
for instance.

E. Maximum gas concentration

In this last section, we estimate the location of the maximum
gas concentration in the fluidized bed (xmax,hmax), or, in other
words, the maximum probability for the presence of bubbles.
It corresponds to either (i) the location of the maximum
probability of the presence of the central gas channel, due
to its repetitive pathways, or (ii) the presence of a gas bubble
trapped for a long time in the fluidized bed. To do so, we simply
consider the maximum of the cumulated image C (Sec. III B),
which gives the highest probability of gas presence in the
system [see, for instance, Fig. 1(d)].

Except for the higher large square obstacle [D = 4 cm,
h = 10 cm, gray square in Fig. 6(a)], for which we observed
a bubble trapped right below the obstacle, there is a clear
separation in the absolute value of the horizontal position |xmax|
of the maximum bubble presence between the small (D � 1.5
cm) and the large (D � 4 cm) obstacles. In all cases, |xmax|
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FIG. 6. Location of the maximum probability (xmax,hmax) for
the presence of bubbles, computed from the cumulated image C

(Sec. III B), as a function of the obstacle height h. (a) Absolute
value of the horizontal position |xmax|. The low value for the large
square at h = 10 cm is due to a bubble trapped right below the
obstacle. (b) Vertical position hmax [(symbol, regime): (white, stable);
(gray, unstable); the solid line is the 1:1 relationship; the dashed line
indicates the value without obstacle].

is of the order of, and slightly larger than, D/2. The fact that
|xmax| � D/2 indicates that whichever the obstacle size and
height, the maximum probability to find a bubble in the system
is outside the central region delimited by the obstacle width
D, even in the case of small obstacles (D � 1.5 cm) when this
maximum is located below the obstacle. The dashed line in
Fig. 6(a) indicates the value of |xmax| for the experiment with-
out obstacle. Contrary to what could be expected, |xmax| 	= 0.
Indeed, even without obstacle, the air channel can experience
a deviation at the nozzle exit, up to 1 cm [see Fig. 1(a) and the
top right picture of Fig. 2 in Ref. [20], for instance]. Therefore,
for small obstacles, |xmax| is difficult to interpret quantitatively
as the contribution to |xmax| can come either from the obstacle
influence or from the shift at the nozzle exit.

Figure 6(b) displays the height of the maximum probability
for bubble location, hmax, as a function of the obstacle height.
Here again, a clear distinction can be made between the
small (D � 1.5 cm) and large (D � 4 cm) obstacles. For
small obstacles (D � 1.5 cm), hmax is roughly constant and of
about 3.5 cm, close to the value without obstacle [dashed line,
Fig. 6(b)]. It corresponds to the steady air finger that forms, in
most experiments, from the injection nozzle and remains open
for long time scales [see Fig. 1(a)]. In this case, the obstacle
deviates this finger (|xmax| 	= 0), but the bubbles’ location in
the fluidized zone is not drastically affected. For large obstacles
(D � 4 cm), a linear trend is observed, hmax � h, except
for the square obstacles. This linear trend can be explained

by the fact that large obstacles tend to trap bubbles at their
side. For large square obstacles, bubbles are also trapped
but preferentially below the obstacle, which explains why the
squares are below the hmax � h trend. Note the particular case
of the small circular obstacle (D = 1 cm, h = 15 cm), which
aligns perfectly on this trend. A careful observation of the
images revealed a bubble often trapped close to the obstacle,
similar to what happens for large obstacles.

V. DISCUSSION AND CONCLUSION

This work reports on the dynamics of gas channels in a
dense suspension in the presence of an obstacle. We have
shown that the repetitive pathways of the gas define a central
zone of roughly parabolic shape, as was already pointed out
in the case without obstacle. Depending on the obstacle size,
geometry, and position, the central air channel follows different
paths. It leads to three different patterns on the cumulated
motion, depending on the number of gas pathway signatures
below → above the obstacle: 1 → 1, 1 → 2, or 2 → 2. These
patterns define two regimes: (i) the channel is stabilized by
the obstacle (1 → 1), or (ii) the channel switches position
either above or both above and below the obstacle (1 → 2 or
2 → 2). The formation of a wake above the obstacle follows
the intuition, by analogy to fluid flow: it is larger for large
obstacles, and almost negligible for smaller ones.

The maximum gas concentration increases linearly with
the obstacle height for large obstacles, indicating that bubbles
are systematically trapped close to the obstacle. In real soils,
the gas will therefore be trapped preferentially close to large
heterogeneities. This does not hold true for small obstacles, i.e.,
typically of the order of or smaller than the width of the central
air channel. In this case, the maximum gas concentration
location is constant and fixed by the formation of a steady
gas finger developing from the injection nozzle.

This steady air finger, clearly visible in most of the
experiments [see, for example, Fig. 1(a)] and already reported
in the literature [20,24], seems to have a direct impact on the
dynamics of the system. Indeed, in the presence of obstacles
we observe a change for hc ∼ 7 cm, which corresponds to
the height at which the gas undergoes a transition between
fingering and fracturing. For instance, for h � hc, a different
behavior is reported between small obstacles (typically of the
order of the gas finger width, w � 1 cm, or smaller), which do
not perturb much the maximum gas concentration height, and
obstacles larger than the gas finger width (D � 4 cm), which
trap bubbles at their side.

To quantify the transition between channel fingering and
fracturing and its role in channel stabilization in the presence
of an obstacle, we follow an argument similar to that of
Holtzman et al. [25]. We introduce a modified fracturing
number, N∗

f , a dimensionless number that predicts fracturing
in the system by comparing the pressure force that drives
fracturing, �fp, to the resisting frictional force, �ff . The
pressure force is similar to that in the horizontal system of
Holtzman et al. [25]. It is the sum of the capillary pressure,
γ /d, where γ = 0.07 N/m is the air-water surface tension,
and the viscous pressure drop, ηv/d, where η is the viscosity
and v is the finger velocity, leading to �fp = γ d(1 + Ca),
where Ca = ηv/γ is the capillary number. The resisting
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force is mainly due to the frictional resistance [25], and
in our vertical configuration the confinement is imposed by
the weight of the grains and the water column estimated at
the bottom of the obstacle, at a height (h − D/2), which
is the height to be compared to the fingering-to-fracturing
transition of the rising air finger. It therefore leads to
�ff = μ�ρg[hg − (h − D/2)]d2, where μ � 0.3 is the fric-
tion coefficient [25,26] and �ρ = ρ̄ − ρair � ρ̄ is the density
difference between the grains-water mixture and air. We can
therefore write the modified fracturing number as

N∗
f = γ (1 + Ca)

μρ̄gd(hg − h + D/2)
. (3)

To estimate the capillary number, we compute the velocity
as v = Q/(ew), where Q = 1.98 mL/s is the air injection
flow rate, e = 2 mm is the cell gap, and w � 1 cm is the
finger width, leading to v � 10 cm/s, which is compatible
with the experimental observations. The effective viscosity of
the grains and water mixture is estimated by the semiempirical
model of Zarraga et al. [27], which predicts the viscosity of
dense suspensions up to φ � 60%:

η = ηw

e−2.34φ

(1 − φ/φmax)3
, (4)

where ηw � 10−3 Pa s is the water viscosity and φmax = 62%
is the poured random packing [27]. Here we consider φ � 56%
as the packing fraction in the fluidized zone (very loose random
packing), leading to η � 0.3 Pa s. The effective density of the
grains and water mixture in the fluidized zone is estimated
by ρ̄ = φρg + (1 − φ)ρw, with ρg = 2300 kg/m3 the grains
density and ρw = 1000 kg/m3 the water density, leading to
ρ̄ � 1730 kg/m3.

Figure 7 displays the phase diagram from Fig. 3(b),
modified by representing the obstacle diameter D normalized
by the air finger width w,D/w, as a function of the modified
fracturing number N∗

f [Eq. (3)]. This scaling makes it possible
to separate the stable and unstable regions for the central air
channel. For N∗

f > 0.5, fracturing occurs before the air finger
has reached the obstacle, and thus it chooses randomly to
pass the obstacle on one side or the other, leading to channel
instability in time. For N∗

f < 0.4, the central channel still rises
as a stable air finger when it reaches the obstacle. It thus
chooses one side that is stable in time.

11 21 22

stable unstable

D
/w

0

2

4

6

N*
f

0.2 0.4 0.6 0.8 1.0

FIG. 7. Normalized phase diagram (D/w,N∗
f ), where N∗

f denotes
the modified fracturing number describing the transition between
fingering and fracturing (see the text). The colors indicate the number
of air channels before → after the obstacle, and the symbols represent
the obstacle shape. The gray zone displays the transition region,
N∗

f � 0.45 ± 0.07.

The width of the transition zone (N∗
f = 0.45 ± 0.07, gray

region in Fig. 7) can have different origins. First, the viscosity
of the grains-water mixture may vary locally and change the
value of the capillary number [Eq. (3)]. Then, the friction
coefficient μ has not been measured for our glass beads, and
it may be different from the value μ = 0.3; however, it would
only shift the transition, and not widen the transition zone. Fi-
nally, the grain polydispersity has a direct consequence on the
width of the transition zone. Indeed, if we consider the average
modified fracturing number at the transition, N∗

f = 0.45, to
be representative of the average grain size, taking into
account the polydispersity d = 318 ± 44 μm leads to
N∗

f = 0.39–0.52, in agreement with the limits of the transition
zone in Fig. 7. We conclude that the transition between
fingering and fracturing of the central air channel, and its
interaction with the obstacle, is the mechanism controlling
the channel stability in time.
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