EVIDENCE OF PHYSICO-CHEMICAL AND ISOTOPIC MODIFICATIONS IN ARCHAEOLOGICAL BONES DURING CONTROLLED ACID ETCHING

V. BALTER,1,4* J.-F. SALIÈGE,2 H. BOCHERENS3† and A. PERSON1

1CNRS-UP6 FRE 2400 ‘Laboratoire de Géologie des Bassins Sédimentaires’, Université Pierre et Marie Curie, CP 116, 4 Place Jussieu, 75252 Paris Cedex 05, France
2L.O.D.Y.C. Université Pierre et Marie Curie, CP 100, 4 Place Jussieu, 75252 Paris Cedex 05, France
3CNRS-INRA UMR 7618 ‘Laboratoire de Biogéochimie Isotopique’, Université Pierre et Marie Curie, CP 120, 4 Place Jussieu, 75252 Paris Cedex 05, France
4Laboratoire d’Anthropologie des Populations du Passé, Université Bordeaux I, Avenue des Facultés, 33405 Talence Cedex, France

It has been repeatedly shown that palaeoecological inferences from the elemental and isotopic content of carbonate hydroxylapatite of fossil teeth and bones are unrecoverable without removing diagenetic overprinting by chemical pretreatments. Such pretreatments may in turn cause modification of the biogenic signature. In this paper, we focus upon optimal removal of Ca-bearing carbonates (mainly calcite). In order to control the progress with time of calcite dissolution, we perform leaching under vacuum, and we monitor the evolution of the pH, pCO₂, δ¹³C of released CO₂, %C, δ¹³C and δ¹⁸O of the remaining mineral. For a set of different Quaternary bones and teeth, mass and isotopic balances indicate that 1 h at most is necessary for complete dissolution of calcite with an optimal conservation of carbonate hydroxylapatite. Long-lasting experiments lead to δ¹⁸O/¹⁶O fractionation of hydroxylapatite carbonates.

KEYWORDS: QUATERNARY BONES AND TEETH, CARBONATE HYDROXYLAPATITE, CARBON AND OXYGEN ISOTOPES, PALAEOECOLOGY, RADIOCARBON, DIAGENESIS, CHEMICAL PRETREATMENT

INTRODUCTION

The inorganic phase of bone and teeth (enamel and dentine) is composed of carbonate hydroxylapatite (HAP), which mineralizes in relation to environmental conditions (mainly diet and climate) that can be depicted using isotopic and elemental proxies. These tools have been widely used to reconstruct past environments and behaviour with fossil HAP (see, e.g., van der Merwe 1982; Sponheimer and Lee-Thorp 1999 for δ¹³C/¹²C: e.g., Longinelli 1984; MacFadden et al. 1999 for δ¹⁸O/¹⁶O: e.g., Lambert and Weydert-Homeyer, 1993; Burton et al. 1999 for Sr/Ca and Ba/Ca). To be successful, these approaches must take into account that post mortem modifications, due to burial, are a priori effective (Kohn et al. 1999). Authigenic solid solutions of Ca-bearing carbonates (mainly calcite) are frequently present in fossil bones and teeth. Because of its composition, calcite represents one of the most disturbing diagenetic compounds

† Present address: CNRS-UM2 UMR 554 ‘Laboratoire de Paléontologie’, Université Montpellier 2, Place Eugène Bataillon, case courrier 064 F-34095 Montpellier Cedex 5, France.
© University of Oxford, 2002
by yielding exogenous substrates for carbonate isotopes, radiocarbon and Sr/Ca analysis. Many authors have proposed chemical pretreatment protocols to remove such compounds (Sillen and LeGeros 1991; Hedges et al. 1995; Saliege et al. 1995; Koch et al. 1997), but no general agreement has ever been reached, notably regarding the duration of leaching experiments. This is of particular importance because it has been demonstrated that pretreatments may dissolve the most soluble HAP, a fraction considered to be less modified by diagenesis (Sillen and LeGeros 1991). Since the solubility of calcite ($K_{\text{calcite}} \approx 10^{-8}$) is ten orders of magnitude greater than that of HAP ($K_{\text{HAP}} \approx 10^{-60}$), total dissolution of calcite must be completed rapidly. The acid etching has been prolonged by several authors for a long time, leading to unavoidable partial dissolution and/or recrystallization of HAP. Not surprisingly, different studies have demonstrated that the quality of pretreatment may interfere with the values and reproducibility of the results (Lee-Thorp and van der Merwe 1991; Price et al. 1992; Koch et al. 1997). In isotopic chemistry, partial reactions lead to a relative isotopic enrichment of the remaining phase. Thus the carbon and oxygen isotopic ratios during HAP partial dissolution might be influenced by this kinetic rule, yielding inappropriate results for palaeobiological investigations. We performed acid etching under vacuum for a set of archaeological and palaeontological bones and teeth in order to (1) accelerate the kinetics of the calcite dissolution (and thus minimize the HAP contact with acid) and (2) control the progress of the reaction with time by mass and isotopic balance.

Materials

Several archaeological bones that had completely lost their organic matter (because it would have complicated interpretations) were selected. The nitrogen content (%N) was measured to assess the quantity of the remaining collagen. Fresh bone typically contains about 4–5% of nitrogen (Person et al. 1995). Iwelen and Hili (samples Hili 1&3) are two Neolithic (≈ 3 ka BP) sites from Niger and Saudi Arabia. The bones from Iwelen came from sealed tombs and no secondary carbonates were detectable (Saliege et al. 1995): %N is 0.11 for Iwelen. Azé and Saint-Césaire are a middle (≈ 300 ka BP) and an upper (35 ka BP) Palaeolithic French cave, respectively: %N is 0.05% for Azé and 0.2% for Saint-Césaire. Enamel HAP is widely used in palaeoecological studies due to its resistance to diagenetic modification. One sample of palaeontological elephant enamel (Chad, ≈ 1 Ma, denoted Enamel 1) was selected in addition to a modern one (Enamel 2, cow sample). The latter serves as a control for the HAP dissolution. Since %N is generally lower than 1% in enamel (Carlson 1990), we did not perform %N analysis for the enamel samples.

Methodology

The bone and enamel samples were ground manually in an agate mortar and sieved at 60 μm. They were soaked in doubly distilled water in the reaction vessel with a constant ratio of 1 g/200 ml (Fig. 1). The quality of the vacuum was visualized by the evolution of water degassing and controlled with a Pirani gauge. Then, an exact volume of concentrated (100%) acetic acid was added in the reaction vessel to obtain a 0.1 M final concentration. This represents the exact quantity of 0.1 M acetic acid necessary for the dissolution of a supposed 1 g pure calcite sample. Trap A is constantly maintained at −80°C to avoid additive effects of water and acetic acid vapour strength. Moreover, following the process of the double distillation control, the partial pressure of CO₂ (pCO₂) was measured at −80°C in trap B with the manometer (after trapping at −180°C) at different stages of the reaction. Finally, CO₂ was trapped and cryogenically purified.
twice before 13C/12C measurement. Simultaneously, the pH was measured and an aliquot of the remaining mineral was sampled, thoroughly washed with distilled water, dried overnight at room temperature, weighed and analysed for its 13C/12C and 18O/16O ratios. Stable isotope ratios were determined with a VG OPTIMA isotopic ratio mass spectrometer, coupled to an ISOCARB system. Oxygen and carbon are reported as $\delta = [(R_{\text{sample}} - R_{\text{standard}}) - 1] \times 1000$, where $R = ^{13}$C/12C or 18O/16O, and the standard is PDB. The standard deviation is typically <0.1‰ for δ^{13}C and δ^{18}O. The inorganic carbon content (%C) was evaluated by monitoring the CO$_2$ generated from samples with the pressure transducer on the mass spectrometer. The crystallinity of HAP was determined by means of X-ray powder diffraction using a crystallinity index (CI) defined between 30° and 38° 2θ Cu–K$_\alpha$ (Person et al. 1995).

RESULTS AND DISCUSSION

The first hour (Fig. 2)

The pH and cumulate pCO$_2$ results indicate rapid evolution of the reaction during the first ten minutes, with an expected delay of pCO$_2$ increasing in comparison to the pH, due to liquid/gas phase transformation of CO$_2$ (Fig. 2 (a)). Simultaneously, %C may exhibit a rapid decrease (Hili 1 and Hili 3, Azé and Saint-Césaire) concomitant with calcite dissolution and CO$_2$ release. Contrary to the previously noted absence of secondary CO$_3$ in the bone sample from Iwelen (Saliège et al. 1995), which was determined on the basis of the variation of %C, pCO$_2$ for this sample increases slightly during the first five minutes, whereas no sizeable variation occurs in %C. Since the precise crystallographic origin of this emitted CO$_2$ could not be rigorously determined, the results suggest that measurement of pCO$_2$ is a sensitive proxy of the presence of minute CO$_3$ amounts in soluble crystallographic sites. The fossil enamel (Enamel 1) and the modern enamel (Enamel 2) show no additional CO$_2$ in relation to the %C variations with time (Fig. 2 (a)), but sample Enamel 2 exhibits an unexpected slight increase of pCO$_2$, which is possibly related to the dissolution of adsorbed clusters of CO$_3$. The evolution of δ^{16}O and δ^{13}C with time (Fig. 2 (b)) exhibits important variations for samples containing high initial and further decreasing %C (i.e., the Hili 1, Hili 3, Azé and Saint-Césaire samples). At initial time t_0, the δ^{13}C of these raw samples is influenced by the δ^{13}C value of calcite (see ‘Crystallinity control’ below), which is in equilibrium with the atmospheric CO$_2$ and thus theoretically close.
to 0‰. This implies that raw samples containing calcite have a systematically higher δ13C than etched samples. It follows that, for the high calcite content Hili 3 sample, the precise evolution of solid and CO2 released δ13C (Fig. 3). The δ13C of the released CO2 reaches its most positive value in the first ten minutes. At the same time, pCO2 is initially high and tends to decrease as δ13C increases. This illustrates the rapid dissolution of a mineral phase characterized by a quite different δ13C value from the remaining mineral, whose values tend to decrease. We interpret this as the pure calcite δ13C value. All these trends indicate that calcite dissolution is characterized by rapid kinetics, and that it runs to completion in less than half an hour under conditions of dynamic vacuum.

After the first hour (Figs 3 and 4)

If we assume that the δ13C values for calcite and HAP in the Hili 3 sample are close to −6‰ and −12‰ respectively, the evolution of the released CO2 after 1 h on a mixing line, progresses from the pure calcite end-member value towards the HAP end-member value; this trend illustrates HAP dissolution (Fig. 3). The δ13C values of the CO2 and the remaining mineral are similar at the end of the experiment, which indicates that HAP is dissolved without sizeable fractionation of the 13C/12C ratio. %C decreases with time (Fig. 4) as expected according to the higher solubility of rich CO3-containing HAP (Sillen and LeGeros 1991). The isotopic kinetics predict a fractionation process between light and heavy isotopes in partial reactions (see, e.g., Faure 1986) with enrichment of the remaining phase. 13C/12C seems to be mostly insensitive to this process, because for all samples no δ13C variation is observed over time (Fig. 4). On the

Figure 2 (a) Evolution in the first hour of pH, pCO2, and C. The units are 10^5 Pa for pCO2 and % for C.
Physico-chemical and isotopic modifications in archaeological bones

Figure 2 (b) The evolution in the first hour of the $\delta^{13}C$ and $\delta^{18}O$ of the remaining mineral. The units are ‰ versus PDB.

Figure 3 The evolution with time of the $\delta^{13}C$ of the released CO$_2$ during the etching reaction of the Hili 3 sample and the $\delta^{13}C$ of the remaining mineral. The units are ‰ versus PDB. Added values indicate, in arbitrary units, the pressure of released CO$_2$.
Figure 4 The evolution of the C, δ13C and δ18O of the remaining mineral after the first hour. The units are % for C and ‰ versus PDB for δ13C and δ18O. All pH values remain acid at the end of the experiment.

other hand, 18O/16O is undoubtedly affected by a fractionation process that seems constant with time. Between 1 h and the end of the experiment, the increase in δ18O can reach 1‰ in some cases. Direct comparisons with experiments carried out under atmospheric conditions are not possible, but it is likely that long-lasting etching, even at a pH around 4.5 (Fig. 1), may lead to an uncertainty with regard to the isotopic carbonate oxygen.

Crystallinity controls

All samples display an HAP diffraction pattern that allows the measurement of the CI. Calcite diffraction peaks were present in the Hili 1 and 3, Azé and Saint-Césaire samples (Fig. 5). Ideally, chemical pretreatment should remove diagenetic compounds without altering the biogenic mineral. We performed in this sense a set of X-ray diffraction analysis measurements, to evaluate the possible modifications of the crystallographic characteristics of HAP. A decrease in %C should correlate with an increase in crystallinity (Person et al. 1995). The studied samples (modern enamel and Azé) exhibit no crystallinity evolution after 1 h of etching. However, one day of experiment is sufficient to promote statistically significant modifications of HAP crystallites.

CONCLUSIONS

We have demonstrated that the vacuum technique is useful in pretreating archaeological bones and teeth, because it allows control of the progress of the reaction with time, and it reduces the
Physico-chemical and isotopic modifications in archaeological bones

Figure 5 The evolution of the crystallinity of modern enamel (Enamel 2) and Azé samples. The crystallinity index (CI) was measured according to the Person et al. (1995) procedure.

duration of the reaction and thus minimizes contact of the biological material with acid. The results show that, under dynamic vacuum, dissolution of Ca-bearing carbonates is achieved in 1 h. Any long-lasting acid etching may lead to a modification of the isotopic oxygen integrity. This alteration is characterized by an isotopic enrichment. With the present method, as calcitic phases could be trapped and characterized, this opens up the possibility of assessing further environmental information through the study of these authigenic compounds (Karkanas et al. 2000).

REFERENCES

