The rate of change of the 64 Zn and 66 Zn abundances in the gastro-intestinal reservoir (g) is described by:

$$\frac{\mathrm{d}^{66}\mathrm{Zn}_g}{\mathrm{d}t} = ^{66} J_d - ^{66} J_b - ^{66} J_f \tag{1}$$

$$\frac{\mathrm{d}^{64}\mathrm{Zn}_g}{\mathrm{d}t} = ^{64} J_d - ^{64} J_b - ^{64} J_f \tag{2}$$

where J_d , J_b and J_f are the fluxes of $^{64}\mathrm{Zn}$ and $^{66}\mathrm{Zn}$ from diet (d), toward bulk (b) and feces (f). The rate of change of the of $^{66}\mathrm{Zn}/^{64}\mathrm{Zn}$ ratio in the gastro-intestinal box equals:

$$\frac{d^{66/64}Zn_g}{dt} = \frac{1}{^{64}Zn_g} \left[\frac{d^{66}Zn_g}{dt} - \frac{^{66}Zn_g}{^{64}Zn_g} \frac{d^{64}Zn_g}{dt} \right]$$
(3)

Using Eq.1 and Eq.2, Eq.3 becomes:

$$\frac{\mathrm{d}^{66/64}\mathrm{Zn}_g}{\mathrm{d}t} = \frac{1}{^{64}\mathrm{Zn}_g} \left[^{66}J_d - ^{66}J_b - ^{66}J_f - \left(\frac{^{66}\mathrm{Zn}}{^{64}\mathrm{Zn}} \right)_g (^{64}J_d - ^{64}J_b - ^{64}J_f) \right]$$
(4)

$$\frac{d^{66/64}Zn_g}{dt} = \frac{1}{^{64}Zn_g} \left\{ ^{64}J_d \left[\frac{^{66}J_d}{^{64}J_d} - \left(\frac{^{66}Zn}{^{64}Zn} \right)_g \right] - ^{64}J_b \left[\frac{^{66}J_b}{^{64}J_b} - \left(\frac{^{66}Zn}{^{64}Zn} \right)_g \right] \right. (5)$$

$$- ^{64}J_f \left[\frac{^{66}J_f}{^{64}J_f} - \left(\frac{^{66}Zn}{^{64}Zn} \right)_g \right] \right\}$$

Replacing the ratios of fluxes by the corresponding ratios of abundances gives:

$$\frac{d^{66/64}Zn_g}{dt} = \frac{1}{64Zn_g} \left\{ {}^{64}J_d \left[\left(\frac{66Zn}{64Zn} \right)_d - \left(\frac{66Zn}{64Zn} \right)_g \right] - {}^{64}J_b \left[\left(\frac{66Zn}{64Zn} \right)_b - \left(\frac{66Zn}{64Zn} \right)_g \right] - {}^{64}J_f \left[\left(\frac{66Zn}{64Zn} \right)_f - \left(\frac{66Zn}{64Zn} \right)_g \right] \right\}$$
(6)

Assuming that there is no fractionation between the digestive tract and the feces simplifies Eq.6 into:

$$\frac{d\delta^{66}Zn_g}{dt} = \frac{^{64}J_d}{^{64}Zn_g} \left\{ \left[\delta^{66}Zn_d - \delta^{66}Zn_g \right] - \frac{^{64}J_b}{^{64}J_d} \left[\delta^{66}Zn_b - \delta^{66}Zn_g \right] \right\}$$
(7)

The gastro-intestinal reservoir shortly goes to steady-state, so $d\delta^{66}{\rm Zn}_g/dt \to 0$, leading to:

$$0 = \delta^{66} Z n_g - \delta^{66} Z n_d + \frac{^{64} J_b}{^{64} J_d} \left[\delta^{66} Z n_b - \delta^{66} Z n_d + \delta^{66} Z n_d - \delta^{66} Z n_g \right]$$
(8)

Or:

$$0 = \frac{^{64}J_d - ^{64}J_b}{^{64}J_d} \left[\delta^{66} Zn_g - \delta^{66} Zn_d \right] + \frac{^{64}J_b}{^{64}J_d} \left[\delta^{66} Zn_b - \delta^{66} Zn_d \right]$$
(9)

Rearranging Eq.9 finally gives:

$$\frac{^{64}J_b}{^{64}J_f} = \frac{\delta^{66}\mathrm{Zn}_g - \delta^{66}\mathrm{Zn}_d}{\delta^{66}\mathrm{Zn}_d - \delta^{66}\mathrm{Zn}_b}$$
 (10)

For a $\delta^{66}\mathrm{Zn}_d$ of 0%, and given that $\delta^{66}\mathrm{Zn}_b = \delta^{66}\mathrm{Zn}_g + 0.25$ %, we obtain a $\delta^{66}\mathrm{Zn}_g$ value of -0.00026%, and a $\delta^{66}\mathrm{Zn}_b$ steady-state value of ~ 0.25 %.