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Abstract

The oxygen isotope fractionation between the structural carbonate of inorganically precipitated hydroxyapatite (HAP) and
water was determined in the range 10–37 �C. Values of 1000 ln a(CO3

2�–H2O) are linearly correlated with inverse temperature
(K) according to the following equation: 1000 ln a(CO3

2�–H2O) = 25.19 (±0.53)�T�1 � 56.47 (±1.81) (R2 = 0.998). This frac-
tionation equation has a slightly steeper slope than those already established between calcite and water (O’Neil et al., 1969;
Kim and O’Neil, 1997) even though measured fractionations are of comparable amplitude in the temperature range of these
experimental studies. It is consequently observed that the oxygen isotope fractionation between apatite carbonate and phos-
phate increases from about 7.5& up to 9.1& with decreasing temperature from 37 �C to 10 �C. A compilation of d18O values
of both phosphate and carbonate from modern mammal teeth and bones confirms that both variables are linearly correlated,
despite a significant scattering up to 3.5&, with a slope close to 1 and an intercept corresponding to a 1000 ln a(CO3

2�–PO4
3�)

value of 8.1&. This apparent fractionation factor is slightly higher or close to the fractionation factor expected to be in the
range 7–8& at the body temperature of mammals.
� 2009 Elsevier Ltd. All rights reserved.
1. INTRODUCTION

Stable isotope compositions of biogenic apatites are now
widely used to reconstruct terrestrial and marine environ-
ments. Since the pioneering studies of Longinelli (1965,
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1966), Longinelli and Nuti (1968, 1973) and Kolodny
et al. (1983), several oxygen isotope fractionation equations
between apatite phosphate and water have been established
(e.g. Longinelli, 1984; Luz and Kolodny, 1985; Kohn, 1996;
Lécuyer et al., 1996; Amiot et al., 2007) to quantify marine
and air temperatures over the Phanerozoic (Kolodny and
Luz, 1991; Fricke et al., 1998; Vennemann and Hegner,
1998; Joachimski and Buggisch, 2002; Pucéat et al., 2003;
Daux et al., 2005; Kocsis et al., 2007; Trotter et al.,
2008). Minor amounts of carbonate (3–6 wt%) occur natu-
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rally in substitution of phosphate in the crystal lattice of
apatites (LeGeros, 1981; Okazaki et al., 1982; Schuffert
et al., 1990; LeGeros et al., 1996). Decreasing amounts of
structural carbonate are correlated with increasing apatite
crystallinity, thus improving the stability of apatite crystals
by reducing its solubility (Shemesh, 1990; Kohn et al.,
1999). These carbonate contents have been used as indica-
tors of bone or enamel diagenesis (Shemesh, 1990; Bryant
et al., 1994). In the apatite of living vertebrates, oxygen
from phosphate and carbonate exchanges isotopes with
body water, and co-existing d18Oc and d18Op values are lin-
early correlated (Bryant et al., 1996; Iacumin et al., 1996).
This property was used as a test for identifying diagenetic
alteration in fossil teeth and bones (Iacumin et al., 1996;
Tütken et al., 2006). Because different rates of oxygen iso-
tope exchange in the phosphate–water and carbonate–
water systems are expected in the case of inorganic or
microbially mediated interactions, the d18O values of al-
tered fossils should deviate from equilibrium values (Zazzo
et al., 2004). For samples which escaped diagenetic alter-
ation, both carbon and oxygen isotope ratios of carbonate
from apatites constitute valuable proxies of the diet, ecol-
ogy and environments of many terrestrial vertebrates since
the Mesozoic (e.g. Wright and Schwarcz, 1998; Kohn and
Cerling, 2002; Smith et al., 2002; Zazzo et al., 2002; Jim
et al., 2004; Hoppe, 2006). The record of seasonal temper-
ature variations has been proposed on the basis of mea-
sured sinusoidal-like isotopic time series obtained from
the intra-tooth sampling of hypsodont vertebrates (e.g. Fer-
anec and MacFadden, 2000; Gadbury et al., 2000; Boche-
rens et al., 2001; Balasse, 2002; Stanton Thomas and
Carlson, 2004; Arppe and Karhu, 2006). However, the
quantification of temperatures is still lacking in the absence
of any experimental determination of the oxygen isotope
fractionation between hydroxyapatite (HAP) carbonate
and water. Such an isotopic fractionation equation would
be very useful for understanding the meaning of d18O val-
ues of apatite carbonate that are now commonly measured
along those of apatite phosphate in the same tooth or bone
samples (Zazzo et al., 2002; Lécuyer et al., 2003; Stanton
Thomas and Carlson, 2004; Tütken et al., 2004). Oxygen
isotope ratios of phosphate and carbonate are roughly lin-
early correlated (Bryant et al., 1996; Iacumin et al., 1996;
Zazzo et al., 2004). However, the isotopic difference be-
tween carbonate and phosphate recorded in terrestrial
mammals samples is not a constant (D18OðCO3

2�–PO4
3�Þ differ-

ences range from about 8& to 11&) despite near constant
body temperatures (T = 37 ± 2 �C). Therefore, we propose
to determine the oxygen isotope fractionation between the
carbonate ions of inorganically precipitated HAP and water
in the range (10 �C < T < 37 �C) of Earth’s surface and ter-
restrial vertebrate body temperatures.

2. EXPERIMENTAL PROTOCOL AND ANALYTICAL

TECHNIQUES

2.1. Precipitation of inorganic hydroxyapatites

In this study, carbonate-bearing hydroxyapatite was
synthesized by adapting the protocol given by Balter and
Lécuyer (2004). A first aqueous solution (“PC”) was pre-
pared by adding 0.5 ml of KNaCO3 (10�1 M) to 500 ml
of Na2HPO4�2H2O (10�2 M), pH was then adjusted to 7.4
by adding 0.3% HNO3. A second solution was made by
adding NaOH (10�1 M) to 500 ml of CaCl2�2H2O
(10�2 M) until a pH of 7.4 was reached (solution “CA”).
Aqueous solutions were held at constant temperatures of
10 �C, 15 �C, 20 �C, 25 �C, 30 �C and 37 �C, respectively,
for 48 h to ensure oxygen isotope equilibrium in the carbon-
ate–water system for the “PC” solutions according to ki-
netic data determined by Zeebe and Wolf-Gladrow
(2001). Equal volumes of “PC” and “CA” solutions were
mixed at a given temperature. Concentrations of Ca2+

and PO4
3� in the resulting solution are the same order of

magnitude as in blood plasma ([Ca2+] = 2.5 mM and
[PO4

3�] = 1 mM) and seawater ([Ca2+] = 10 mM), but P
in seawater typically has a concentration of 1 lM (Broecker
and Peng, 1982; Kaim and Schewderski, 1994) compared to
our solutions having a [PO4

3�] of 5.3 � 10�3 M. According
to Balter and Lécuyer (2004), at least 96 h of maturation of
the solid phase is required to obtain well-crystallized HAP
crystals in the temperature range of this study. During the
maturation of the solid phase, the Erlenmeyer flasks, cov-
ered with watch glasses to prevent evaporation of the solu-
tion, were gently shaken at regular intervals in order to
avoid extensive sedimentation as well as the development
of a concentration gradient in the solution. At the end of
the experiment, the solid phase was separated from the
supernatant by centrifugation, washed with distilled water
and dried at room temperature whereas the aqueous solu-
tions were filtered through a 0.22 lm filter and sealed in a
glass tube.

2.2. Scanning Electron Microscopy and Infrared

Spectroscopy

HAP samples were mounted on the conductive support
(i.e., aluminium stub) with double-sided conductive carbon
tape. An ultra-thin coating (ca 20 nm) of gold was then
deposited on the samples by low vacuum sputter coating
prior to imaging with a Jeol JSM 6400 SEM (University
of Geneva, Geneva, Switzerland). Transmission IR spectra
were recorded using a Perkin-Elmer GX II FTIR spectrom-
eter. Disks containing 1 mg of sample in 150 mg of KBr
were employed. The spectra were collected after 40 accumu-
lations with a spectral resolution of 0.4 cm�1 in the 400–
4000 cm�1 range.

2.3. Oxygen isotope analysis of HAP-bound carbonate

Oxygen isotope ratios were determined by using a Mul-
tiPrepe automated preparation system coupled to a dual-
inlet Elementare Isoprimee isotope ratio mass spectrome-
ter (IRMS). For each sample, an aliquot of about 1200 lg
of carbonate-bearing HAP was reacted with anhydrous
supersaturated phosphoric acid at 90 �C for 90 min. An
acid fractionation factor value of 1.0080 was used to calcu-
late the oxygen isotope composition of carbonate, the same
as that used for calcite reacted with anhydrous phosphoric
acid at 90 �C (Swart et al., 1991), which is also the value
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recommended by Passey et al. (2007) for F-poor apatite
(modern tooth enamel). Isotopic compositions are reported
in the delta notation in & relative to V-SMOW. All sample
measurements were adjusted to the international reference
NIST NBS19 according to the method developed by Wer-
ner and Brand (2001). Reproducibility of oxygen isotope
measurement was ±0.1& (1r).

2.4. Oxygen isotope analysis of water

Oxygen isotope measurements of water from HAP syn-
thesis experiments were also performed by using a Multi-
Prepe automated preparation system coupled to a dual-
inlet Elementare Isoprimee isotope ratio mass spectrome-
ter. The method used was the water–carbon dioxide equili-
bration technique (Cohn and Urey, 1938). Aliquots of
200 ll of water were automatically reacted at 40 �C with
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Fig. 1. Infrared spectrum of a carbonate-bearing hydroxyapatite precip
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CO2. Reproducibility of oxygen isotope measurements
was ±0.05&. Oxygen isotope ratios are reported relative
to V-SMOW in & d units after scaling the raw data to
the “true” isotopic ratios of SMOW, SLAP and GISP inter-
national standards.

3. RESULTS

3.1. Mineralogy of the chemical precipitates

IR-spectroscopy (Fig. 1) spectra show that the mineral
phases that were precipitated in the temperature range
10–37 �C are well-crystallized HAP. According to previous
IR-spectroscopy studies of apatite (e.g. Pucéat et al., 2004),
the three intense absorbance peaks of the phosphate group
occur at 1035, 603 and 565 cm�1 (Fig. 1A) whereas the
three peaks representing the B-type carbonate substitution
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are observed at 1456, 1423 (stretching modes) and 873 cm�1

(deformational modes). The peaks observed at 3435 cm�1

can be attributed to the OH� groups (Fig. 1B). Scanning
Electron Microscope (SEM) photomicrographs show that
HAP precipitates form subhedral to euhedral hexagonal
crystals with a tabular habit (5–10 lm in size) co-existing
with smaller (<1 lm) poorly crystallized HAP (Fig. 2). Car-
bonate-bearing HAP is the only solid phase that was iden-
tified during these experiments. It is noteworthy that below
Fig. 2. Photomicrograph by Scanning Electron Microscopy of
inorganically precipitated crystals of carbonate-bearing hydroxy-
apatite. (A) HAP crystals precipitated at 10 �C (magnification of
9000�). (B) HAP crystals precipitated at 37 �C (magnification of
5000�).
10 �C, brushite was precipitated instead of HAP as was pre-
viously observed by Balter and Lécuyer (2004). The amount
of structural carbonate has been roughly estimated by mea-
suring the CO2 pressure generated from the carbonate reac-
tions with phosphoric acid using the calibrated transducer
readings from the dual inlet of the IRMS. Carbonate con-
tent ranges from 0.05 to 0.23 ± 0.05 wt% (Table 1).

3.2. Oxygen isotope fractionation between HAP-bound

carbonate and water

Carbonate-bearing HAP was precipitated in waters with
d18O ranging from �10.46& to �6.89& V-SMOW (Table
1). Experiments were performed in a restricted range of
low temperatures from 10 �C to 37 �C, therefore resulting
values of 1000 ln a(CO3

2�–H2O) were reported as a func-
tion of the inverse of the temperature (K) according to
the recommendation given by O’Neil (1986). Both variables
are linearly correlated according to the following equation
(Fig. 3):

1000 ln aðCO3
2�–H2OÞ ¼ 25:19 ð�0:53Þ � T�1

� 56:47 ð�1:81Þ ðR2 ¼ 0:998Þ ð1Þ

This fractionation equation has a slightly steeper slope
than those already established between calcite and water
(O’Neil et al., 1969; Kim and O’Neil, 1997) even though
measured fractionations are comparable within analytical
uncertainties in the temperature range 20–37 �C (Fig. 4).
Blake et al. (1997), Lécuyer et al. (1999) and O’Neil et al.
(2003) have shown that oxygen isotope exchange between
dissolved phosphate and water is extremely slow. Indeed,
according to the temperature dependence of the rate con-
stant ‘k’ as determined by Lécuyer et al. (1999), the fraction
of exchanged oxygen isotopes between phosphate and
water is negligible for reaction times of 96 h and tempera-
tures ranging from 10 �C to 37 �C. Consequently, compar-
ison of oxygen isotope fractionation between HAP-bound
carbonate and water with that of phosphate–water can only
be made with oxygen isotope fractionation equations that
were established empirically with apatites of biogenic ori-
gin. It is then observed that the oxygen isotope fraction-
ation between apatite carbonate and phosphate (Kolodny
et al., 1983) increases from about 7.5& up to 9.1& with
the temperature decreasing from 37 �C to 10 �C (Fig. 5).
4. DISCUSSION

4.1. Did HAP-bound carbonate reach isotopic equilibrium

during precipitation?

Podlesak et al. (2008) performed diet-controlled exper-
iments on woodrats and measured oxygen isotopic fracti-
onations between enamel carbonate and body water in the
range 24.4–29.4&. These values bracket the fractionation
value determined during our experiments performed at
37 �C. Oxygen isotope fractionations that were measured
between HAP carbonate and water are also close to those
determined between calcite and water (O’Neil et al., 1969;
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hydroxyapatite carbonate and water compared to the inorganic
calcite–water equation (Kim and O’Neil, 1997).

Table 1
Oxygen isotope compositions of carbonate ions in hydroxyapatites that were inorganically precipitated in waters of known isotopic
compositions in the range 10–37 �C. Samples correspond to HAP precipitates obtained from distinct aqueous solutions, each HAP sample has
been duplicated or triplicated (n) for the d18O analysis of apatite carbonate.

Sample n CO3
2� (wt%) d18O (CO3

2�) (& V-SMOW) d18O (H2O) (& V-SMOW) 1000 ln a T (�C)

HAP10-1 2 0.1 22.57 �10.09 32.46 10
HAP10-2 2 0.12 22.92 �10.09 32.80 10
HAP10-3 2 0.15 22.79 �10.09 32.68 10
HAP15-1 3 0.11 21.23 �10.07 31.13 15
HAP15-2 3 0.21 21.03 �10.04 30.90 15
HAP20-1 3 0.05 19.99 �9.96 29.80 20
HAP20-2 3 0.06 19.37 �9.94 29.17 20
HAP25-1 3 0.21 17.50 �10.46 27.86 25
HAP30-1 3 0.19 17.33 �9.81 27.04 30
HAP30-2 3 0.17 16.85 �9.77 26.53 30
HAP37-1 2 0.23 16.02 �9.30 25.24 37
HAP37-2 2 0.18 17.74 �6.89 24.50 37
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Kim and O’Neil, 1997) for temperatures between 20 �C
and 37 �C (isotopic differences do not exceed 0.5&). How-
ever, the steeper slope observed for the fractionation equa-
tion between HAP carbonate and water is rather
surprising (Fig. 3) when considering that equations deter-
mined for calcite, aragonite and HAP phosphate have sim-
ilar slopes (O’Neil et al., 1969; Kolodny et al., 1983;
Grossman and Ku, 1986). It must be also kept in mind
that oxygen isotope fractionation between HAP-bound
carbonate and water can be distinct from the fractionation
between calcite and water considering the differences in
chemistry and crystal lattice between the two minerals.
However, we must question whether or not our experi-
mental data reflect the oxygen isotope composition of nat-
ural carbonate-bearing HAP, taking into account that the
amount of carbonate in experimental HAP is much lower
than that of most biogenic apatites. Indeed, Koch et al.
(1997) and Zazzo et al. (2004) reported CO3

2� amounts
ranging from 3.4 to 4.0 wt% for untreated enamel and en-
amel treated with acetic acid or sodium hypochlorite solu-
tions. Experimental HAP crystals precipitated in this
study contain only 0.05–0.23 wt& of CO3

2�, which is
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calcite and phosphate fractionation equations from Kim and
O’Neil (1997) and Kolodny et al. (1983). Dotted line:
1000 ln a(CO3

2�–PO4
3�) by combining fractionation equations

from this study and the phosphate equation from Kolodny et al.
(1983).
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most likely the result of a high degree of crystallization in
the absence of organic matrix. It has been documented
that collagen-rich biogenic apatites such as bone and den-
tine have a poor crystallinity and a high carbonate content
(LeGeros et al., 1967; Daculsi et al., 1997), thus at least
partly explaining this difference in chemical composition.
As observed in the case of divalent carbonates by Kim
and O’Neil (1997), highly concentrated solutions or high
rates of precipitation can generate ‘non-equilibrium’ min-
erals that are characterized by larger fractionation factors
by as much as 2–3& associated with a poorer reproduc-
ibility. Similarly, Liang and Blake (2006, 2007) observed
that apatite precipitates may be enriched in P16O4 relative
to residual dissolved phosphate. Consequently, fraction-
ation equations have a steeper slope than those attributed
to ‘equilibrium minerals’. However, several observations
argue in favour of HAP precipitated near oxygen isotope
equilibrium with the aqueous solution, which are (1) most
crystals are well-crystallized as shown by XRD and IR-
spectroscopy data, (2) the low solubility of HAP precludes
the use of highly concentrated aqueous solutions, (3) frac-
tionation values are independent of the water d18O at
37 �C (Table 1). Oxygen isotope equilibrium between pre-
cipitated HAP carbonate and water cannot be demon-
strated, however, these first experimental data suggest
that measured fractionations are close to those established
between calcite and water in the range of temperature of
most living ectothermic and endothermic animals.
4.2. Oxygen isotope compositions of carbonate and

phosphate in biogenic apatites

The dependence on temperature of the oxygen isotope
fractionation between biogenic phosphate and water has
been empirically determined several times and according
to the Longinelli and Nuti (1973), Kolodny et al. (1983)
and Lécuyer et al. (1996); 1000 ln a(PO4

3�–H2O) equals
17.4 ± 0.5& at 37 �C. Consequently, when using the frac-
tionation equations experimentally determined for calcite
by O’Neil et al. (1969) and Kim and O’Neil (1997), the oxy-
gen isotope fractionation factor between carbonate
(approximated by that of calcite–water) and phosphate in
apatite from vertebrate bones and teeth lies between 7&

and 8& over the studied range of temperatures (10–
37 �C) because the slopes of these curves are close to each
other. This estimate is in agreement with the result of calcu-
lations made by Bryant et al. (1996) who combined frac-
tionation equations proposed by both Shemesh et al.
(1988) and Zheng (1996) and which were based on measure-
ments of natural samples and theoretical calculations,
respectively. Measured oxygen isotope fractionation be-
tween HAP-bound carbonate (this study) and phosphate
(Kolodny et al., 1983) is close to 7.5 at 37 �C (Fig. 5) and
is in agreement with previous estimates presented above.
However, an increasing oxygen isotope fractionation with
decreasing temperature remains to be confirmed (Fig. 5).

A compilation of d18O values of both phosphate and
carbonate (Fig. 6) from teeth and bones (Bryant et al.,
1996; Iacumin et al., 1996; Zazzo et al., 2004) from modern
mammals—which regulate body temperature close to
37 �C—confirms that both variables are linearly correlated
with a slope close to 1 (1.03 ± 0.02) and an intercept of
8.3& that corresponds to a 1000 ln a(CO3

2�–PO4
3�) value

of 8.1&. This fractionation factor is slightly higher or close
to the fractionation factor expected to be in the range 7–
8&. It is noteworthy that the observed apparent oxygen
isotope fractionation between carbonate and phosphate in
apatite is more scattered in fish than in mammals (Fig. 6)
as reported by Vennemann et al. (2001). These authors con-
sider that the mean Dcarbonate–phosphate value of 9.1& associ-
ated with a large standard deviation of 1.5& (n = 44) could
reflect temperature of carbonate formation either higher or
lower than that of phosphate, most of the analyzed fish
having evolved in waters for which the temperature was
in the range 12–23 �C (Vennemann et al., 2001).

Several mechanisms may be involved to explain the
slight difference of oxygen isotope composition between
carbonates from mammal apatite and inorganic HAP rela-
tive to the composition of the co-existing biogenic phos-
phate. Bryant et al. (1996) proposed that a difference in
mineral stoichiometry could partly account for the ob-
served relative slight 18O-enrichment of carbonate in mam-
mal apatite. Acid fractionation factors are indeed sensitive
to mineral composition as reported by Friedman and
O’Neil (1977). However, chemical compositions and crys-
tallinity of HAP from mammal tooth or bone and from
our low-temperature precipitates are close enough to ex-
clude a significant influence on oxygen isotope fractionation
factors. A second explanation could be a diachronism in the
closure of oxygen isotope exchange between the carbonate–
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water and phosphate–water systems with a diet-dependent
body water of varying d18O value. However such a diachro-
nism seems unlikely because of the large residence time of
water in the studied mammals (Nagy and Peterson, 1988)
which precludes short-time variations in the d18O of body
water. Moreover, such a process should be responsible for
a scattering of data but without modifying the mean value
of 1000 ln a(CO3

2�–PO4
3�). Scattering of data in Fig. 6 is

high relative to the possible cumulative analytical uncer-
tainties associated with the measurement of d18O values
in both carbonate and phosphate components. Indeed,
1000 ln a(CO3

2�–PO4
3�) values range from 7& to 10.5&,

independently of the methods used to analyze oxygen iso-
tope compositions of apatite phosphate and carbonate.
Such a data scattering could result from HAP carbonate
precipitation out of isotopic equilibrium with body water.
Precipitation of biogenic carbonate out of oxygen isotope
equilibrium with ambient water (the so-called “vital effect”)
has been for example widely documented in brachiopods
(Auclair et al., 2003), corals (Swart, 1983; McConnaughey,
1989a,b) and foraminifera (Zeebe, 1999). These isotopic
disequilibria can result from high growth rates of the skel-
eton, varying amounts of metabolic CO2 available during
crystallization and variations in the extracellular pH at
the site of mineralization.

Mineralization of bone and enamel from extracellular
fluids is promoted by specialized cells (osteoblasts for
bones, ameloblasts for enamel). Osteoblasts and amelo-
blasts are requisite for the synthesis of bone and enamel
extracellular matrix production and of mineralized tissues
(Robinson et al., 1979; Arnett, 2003). Bone extracellular
matrix is composed of nearly 90% collagen (Lian, 2006),
while non-collagen proteins comprise enamel extracellular
matrix. Mineral accounts for up to 70% of bone weight
and 95% of enamel. Since no predictable difference of
1000 ln a(CO3

2�–PO4
3�) is observed between bone and en-

amel samples, it is unlikely that the composition of extracel-
lular matrix or bonds between HAP and extracellular
matrix will significantly affect the d18O value of HAP-
bound carbonate. Regulation of pH and ionic conditions
is essential to normal enamel growth and mineralization.
The pH of extracellular fluid varies at different stages of
the amelogenesis between 5.8 and 7.4 (Aoba and Moreno,
1987; Sasaki et al., 1991). Little is known about bone inter-
stitial fluid composition, however, large pH variations of
the extracellular fluid around neutral to acidic values are
likely during bone turn-over. Bone mineralization occurs
at pH around 7.1–7.4, however, acidification by osteoclasts
is required for bone resorption (Fallon, 1984; Arnett and
Spowage, 1996). These pH variations could be responsible
for the 0–1& difference between the oxygen isotope compo-
sition of carbonate from inorganic apatite and carbonate
from biogenic apatite formed under identical conditions.
5. CONCLUSIONS

Our experimental study demonstrates the temperature
dependence of the oxygen isotope fractionation between
HAP-bound carbonate and water, in contrast with previous
studies in which no significant temperature dependence was
reported. This result suggests the existence of a carbonate–
phosphate temperature proxy in ectotherms or endotherms.
Values of 1000 ln a(CO3

2�–PO4
3�) at 37 �C are estimated to

be in the range 7–8& by combining experimental fraction-
ation equations for calcite–water and HAP-bound carbon-
ate–water with empirical fractionations based on phosphate
in biogenic apatites. This value is close to but slightly lower
than the value of 8.1& deduced from a compilation of data
obtained from modern mammals. This data set also shows
a significant scattering independent of the analytical meth-
ods that were used. These isotopic differences could result
either from out-of-equilibrium oxygen isotope fractionation
or changes in pH of the extracellular fluid, both processes
operating during the incorporation of the minor amounts
of carbonate ions in the crystal lattice of the apatite. De-
spite the sensitive dependence on temperature of the isoto-
pic fractionation between the carbonate component of
biogenic apatite and water, the oxygen isotope composition
of phosphate remains the most robust proxy of tempera-
tures or water compositions considering the better knowl-
edge of fractionation equations that were determined for
aquatic ectotherms and terrestrial mammals.

However, the carbon isotope composition of the carbon-
ate component of apatites is very useful for discussing diet
and ecology of past vertebrates while oxygen isotope com-
positions may help to identify a diagenetic alteration as al-
ready shown by Iacumin et al. (1996) and Zazzo et al.
(2004). A better understanding of the mechanisms that
are responsible for the observed variations in the apparent
fractionation factor between carbonate and phosphate
could improve the interpretations of data obtained in the
fossil record, especially if this isotopic fractionation is sen-
sitive to changes in an animal’s physiology such as growth
rate or any metabolic perturbation. Future research should
allow evaluating whether oxygen fractionation between
synthetic HAP-bound carbonate and water differs or not
from the fractionation between biogenic HAP-bound car-
bonate and water.
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