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Abstract.—Thalattosuchians are crocodylomorphs mainly known from marine strata of Early Jurassic to
Early Cretaceous age. They represent the earliest crocodylomorph radiation to an aquatic habitat and
their evolutionary history offers very few records from freshwater settings. Here, we report several
exquisitely preserved thalattosuchian skulls attributed to a derived teleosaurid from a pedogenic
horizon located at the base of a fluvial series of alternating silts and sandstones of the Phu Kradung
Formation (Upper Jurassic) of northeastern Thailand. Using laser ablation multicollector inductively
coupled mass spectrometry (MC-ICP-MS) on tooth enamel and dentine, we measured isotopic ratios of
strontium (87Sr/86Sr) to test the habitat of these teleosaurids. In addition, Sr concentrations of the
dental tissues were estimated from the calibrated signal intensities of the Sr isotope measurements.
The dataset includes bioapatite (teeth or scales) of eight terrestrial and five aquatic vertebrates.
Theropods exhibit lower Sr concentrations both in enamel and dentine compared to others groups, a
pattern in accordance with the calcium biopurification process, which predicts that Sr concentrations in
the body of vertebrates decrease up the trophic chain. It also excludes the possibility that diagenesis
has completely overprinted the Sr isotope compositions of the fossil assemblage, which exhibits a
homogeneous 87Sr/86Sr signature above the Late Jurassic seawater value. Values for teleosaurid teeth are in
the range of other values for vertebrates in the continental assemblage and imply that these crocodylomorphs
did not migrate between freshwater and marine habitats at least in the time constraint of the mineralizing
tooth. This result represents the first demonstration that a population of teleosaurids was established for a
prolonged time in a freshwater environment.Whether the ability of teleosaurids to inhabit freshwater habitats
is a secondary adaptation orwhether it is plesiomorphic and inherited from freshwater ancestors is discussed.
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Introduction

The name Thalattosuchia translates as
‘marine crocodiles’ and refers to their frequent
occurrence in near-shore and pelagic deposits
of Early Jurassic to Early Cretaceous age (e.g.,
Martin et al. 2014). Thalattosuchia comprise
Pelagosaurus typus representing a monospecific
group (Pierce and Benton 2006), the mono-
phyletic Metriorhynchoidea (Young and
Andrade 2009) and Teleosauridae, a clade of
uncertain monophyletic content according
to recent hypotheses (Mueller-Töwe 2005;

Jouve 2009; Young and Andrade 2009). The
Metriorhynchoidea exhibit a number of mor-
phological and physiological specializations
(paddle-like limbs, salt-excreting gland, a
fluked tail) that are assumed to have been
associated with a pelagic lifestyle (e.g., Hua
and de Buffrénil 1996; Fernández and Gasparini
2008). On the other hand, Pelagosaurus and the
Teleosauridae, although not exhibiting such
derived features are nonetheless adapted to a
highly specialized aquatic lifestyle as exhibited
by the size contrast between forelimbs and hind
limbs. Their general appearance is reminiscent
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of that of modern gharials, their terrestrial
locomotion was most probably restricted to
crawling on sandy banks (Westphal 1962a).
Teleosaurids occur in a variety of proximal
deposits such as coastal or lagoonal sediments,
therefore presumably in close proximity to
emerged lands for laying eggs or basking.
In addition, the teleosaurid Machimosaurus
hugii has been reported from a brackish deposit
in the lignite seam of Guimarota, Portugal
(Krebs 1967, 1968) and this is probably also
the case for some fragmentary remains of
indeterminate teleosaurids from the Jurassic
Khlong Min Formation of Peninsular Thailand
(Buffetaut et al. 1994). More exceptional are the
occurrences of teleosaurids in fully continental
formations. This is the case for the Jurassic
Peipehsuchus teleorhinus from the Ziliujing
Formation of China (Young 1948).

Here, we document the unambiguous occur-
rence of a teleosaurid taxon in Late Jurassic
freshwater deposits of northeastern Thailand
(Fig. 1) providing a brief description and
discussing its affinities. Then, we explore
habitat preferences of these animals using
strontium isotopes (Schmitz et al. 1997; Balter
et al. 2008, 2012; Tütken et al. 2011) and discuss
the adaptation of thalattosuchians to the
freshwater environment.

Institutional abbreviations.—KS, collection
numbers for fossils from Kalasin Province at
Sirindhorn Museum, Sahatsakhan, Thailand;
PRC, Palaeontological Research and Education
Centre, Maha Sarakham University, Thailand

Methods

Geological setting.—The age of the Phu
Kradung Formation is not precisely defined
and has either been considered as Late Jurassic
on the basis of vertebrate assemblages (Buffetaut
et al. 2001; Buffetaut and Suteethorn 2007; Tong
et al. 2009) or Early Cretaceous on the basis
of detrital mineralogy and palynomorphs
(Carter and Bristow 2003; Racey and Goodall
2009). Teleosaurids are unknown in Cretaceous
deposits and if the presently described
specimens are not an exception, their presence
at Phu Noi may reject a Cretaceous age for this

locality. On the basis of freshwater sharks, a
Late Jurassic age has been suggested for most
of the Phu Kradung Formation (Cuny et al.
2014). The Phu Noi fossil site is located in the
upper part of the Phu Kradung Formation
but lies stratigraphically below most of the
early Cretaceous fossiliferous localities of the
Phu Phan Range (Liard and Martin 2011),
therefore a Late Jurassic age for the Phu Noi
locality is likely.

Two skulls (KS33-209 and PRC-8) were
surface collected during prospecting work on
the Phu Noi hill. Subsequently, excavation of a
single silty pedogenic horizon (surface area
approximately 20m×15m) led to the dis-
covery of several teleosaurid specimens (see
description below). In this horizon, some
dinosaur bones, ribs, and limbs bear on their
external surface peculiar marks (Fig. 1)
comparable in morphology to the rosettes
described on sauropod bones from the Jurassic
of Wyoming (Bader et al. 2009). Accordingly,
the most likely trace makers are dermestid
larvae in pupation chambers developing on
decaying carcasses. This indicates that the fos-
siliferous horizon at Phu Noi was exposed
under aerial conditions for extended periods of
at least a few weeks, as implied by the devel-
opment of necrophagous arthropods on the
dinosaur carcasses. Gleyey structures (Fig. 1)
indicative of temporarily waterlogged condi-
tions are found at several horizons below and
above the vertebrate-bearing horizon. This
fossiliferous horizon is part of a thick sequence
of alternating sandstone bars and silts, typical
of floodplain deposits, which is thought to be
indicative of a lake-dominated floodplain
(Racey and Goodall 2009). Estimating a rough
distance to the nearest coast is difficult, but
according to paleogeographic reconstructions
for the Late Jurassic, the Phu Noi locality was
located far from the coast (>100 km?) when the
Indochinese block was already connected to
the South China block (Metcalfe 2009).

Laser ablation.—All fossil teeth analyzed
in this study originate from a single horizon
of the Phu Noi excavation site (Fig. 1), part of
the Phu Kradung Formation of northeastern
Thailand. Fossil specimens include three
teleosaurid teeth; four sauropod teeth; four
theropod teeth; two Lepisosteiformes scales;
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two Hybodus teeth and one turtle bone. Teeth
were broken and fixed in epoxy resin before
polishing so as to obtain a flat surface of the
sectioned enamel-dentine junction. Sintered
SRM-1400 (Bone Ash) served as a bracketing
reference, correcting instrumental biases
during isotopic measurements (Balter et al.
2008). The 87Sr/86Sr ratio was measured at the
LGLTPE, ENS Lyon on a Nu instrument-500
HRmulticollector-ICP-MS (Inductively Coupled
Plasma – Mass Spectrometer) with an Excite
laser ablation system (193 nm excimer, Photon

Machines/Cetac Analyte Teledyne). The
standard SRM-1400 contains 249 μg/g of
strontium, which yields about 3 volts on mass
88Sr for a laser power of 9mJ with a spot
diameter of 40 to 65 μm, a fluence of 15 J/cm2

and a repetition rate of 30 Hz. The strontium
concentration was evaluated using the total
strontium voltage, which was set at the
certified value of 249 μg/g for the standard
SRM-1400. Each sample was ablated at least
three times across the dentine-enamel junction
for teeth and across the ganoin-dentine junction

FIGURE 1. The geographic and geological context of the locality of Phu Noi. A, Geographic situation in northeastern
Thailand with outcrops of the Phu Kradung Formation indicated in black. Number 1 refers to Phu Noi; B, Simplified
stratigraphic framework; C, Traces fossils (rosettes) on the surface of a sauropod rib, indicating developmental activity
of dermestid beetles; D, Gleyey structures part of a paleosoil horizon; E, General view of the locality of Phu Noi,
Thailand.
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for ganoid scales of lepisosteids (supplementary
material). The turtle bone was ablated at eight
different locations. In order to test for changes
in 87Sr/86Sr during the mineralization of the
teleosaurid teeth, two teeth were sectioned
along a base-apex axis and were ablated across
the dentine-enamel junction at eight different
locations (Supplementary Appendix). The
crown height of each tooth is about 20 mm and
teeth were selected from specimen PRC-239.
Finally, a polished section of a belemnite from
the Lower Jurassic strata of Beaujolais, France
(Toarcian, Suan et al. 2013) was ablated in order
to have a marine reference in the sample list. An
aliquot of this belemnite sample was dissolved
in concentrated nitric acid, purified through a
strontium-specific resin (Sr-Spec Eichrom®) and
analyzed for 87Sr/86Sr ratios at the LGLTPE,
ENS Lyon on a Neptune Plus multicollector-
ICP-MS (Thermo Scientific).

Sediments were not rich enough to yield
sufficient Sr voltage using laser ablation.
Therefore, about 400mg of sediment was
leached over three days in 1M HCl. The
leachate was centrifuged and purified through
a strontium-specific resin (Sr-Spec Eichrom®).
The purified sample was then analyzed for
87Sr/86Sr ratios at the LGLTPE, ENS Lyon on a
Neptune Plus multicollector-ICP-MS (Thermo
Scientific).

Results

Systematic paleontology.—Superorder Croco-
dylomorphaHay, 1930; Suborder Thalattosuchia
Fraas, 1901; Family Teleosauridae Geoffroy
Saint-Hilaire, 1825

(Fig. 2)
Referred material.—KS33-209, a skull with

part of the mandible in occlusion lacking the
rostrum (maxillary and mandibular), PRC-238,
PRC-239, PRC-240, three complete skulls with
mandibles in occlusion; PRC-8, right skull table
and basicranium and associated osteoderms;
PRC-9, a fragmented skull table.

Geographic occurrence.—Phu Noi, Phu Phan
Range, Kham Muang district, Kalasin
province, Thailand.

Geological provenance.—Upper part of the
Phu Kradung Formation, Upper Jurassic
(?Tithonian).

Comparative description and affinities.—The
best preserved and most complete skulls
including mandibles are PRC-238 and
PRC-239 (Fig. 2) and four other skulls are
currently under technical preparation and
study. An in-depth description will be
presented elsewhere.

The taxon from Phu Noi displays a combi-
nation of apomorphies for Thalattosuchia
(Young and Andrade 2009) such as the absence
of contact between nasal and premaxilla,
a nearly tubular rostrum, a complex dorsal
surface of the supratemporal roof, the post-
orbital located laterally to the jugal, a post-
orbital longer than the squamosal, a long
mandibular symphysis about half of the skull

FIGURE 2. Two examples of teleosaurid skulls from Phu
Noi. Dorsal (A) and ventral (B) views of PRC-239; dorsal
(C) and ventral (D) views of PRC-238. Abbreviations: an,
angular; bsph, basisphenoid; ch, choana; den, dentary;
emf, external mandibular fenestra; ec, ectopterygoid; en,
external nares; fr, frontal; j, jugal; l, lacrimal; ltf, lower
temporal fenestra; mx, maxilla; n, nasal; or, orbit;
p, parietal; pa, palatine; pfr, prefrontal; pmx, premaxilla;
po, postorbital; pt, pterygoid; q, quadrate; ra, retroarticular
process; san, surangular; sp, splenial; sof, suborbital
fenestra; stf, supratemporal fenestra; sq, squamosal.
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length, a non-planar posterior margin of the
skull table, the dorsal primary head of the
quadrate contacting only the squamosal
and not the laterosphenoid, the absence of a
squamosal groove for the external earflap
musculature and large pendulous basioccipital
tubera. Furthermore, the taxon from Phu Noi is
referred to Teleosauridae on the basis of the
following apomorphies: the basisphenoid is
long and projects further anteriorly than the
quadrates and the cranial nerve XII opens in
line with the foramen magnum.

The taxon from Phu Noi is longirostrine
with a tubular rostrum that is ovoid in
cross section. Its supratemporal fenestrae are
longer than wide in dorsal view as in most
teleosaurids except Teleosaurus cadomensis,
which possesses large and as long as wide
supratemporal fenestrae (Eudes-Deslongchamps
1870). Within members of the genus
Steneosaurus, the supratemporal fenestrae are
indeed longer thanwide but appear also longer
than in the taxon from Phu Noi. One exception
concerns Steneosaurus bollensis, presenting
supratemporal fenestrae of similar proportions
to those of Peipehsuchus teleorhinus and the
taxon fromPhuNoi (Westphal 1962b: Figs. 1–2).
Machimosaurus hugii also possesses longer
supratemporal fenestrae than those of the
taxon from PhuNoi. Also, the posterior margin
of the fenestrae of Machimosaurus hugii are
convex in dorsal view whereas in the taxon
from Phu Noi and Peipehsuchus teleorhinus they
widely expose the squamosal in this area, thus
giving to the posterior margin of the fenestrae a
concave outline in dorsal view, a condition
moderately expressed among species of the
genus Steneosaurus.

The orbits of the taxon from Phu Noi are
circular as in all other teleosaurids. Their ventral
margin is slightly protruding, a condition diffi-
cult to assess in other teleosaurids due to the
dorsoventral compression of most specimens.
However, a similar conditionwas reported for a
nicely preserved skull of Machimosaurus hugii
(Buffetaut 1982). The orbits of the Phu Noi tel-
eosaurid are relatively large but their size does
not depart much from the condition in Steneo-
saurus or Teleosaurus cadomensis. On the other
hand, the orbits of Machimosaurus hugii are
smaller relative to the total skull length.

The palate of the Phu Noi taxon is
reminiscent of other teleosaurids in presenting
choanae that are wide and opening both on the
pterygoids and palatines. Among teleosaurids,
the only exception is Teleosaurus cadomensis,
which possesses choanae wider than the
palatines (Jouve 2009). Another similarity of
the Phu Noi taxon with teleosaurids concerns
the presence of a relatively large external
mandibular fenestra.

In teleosaurids, the antorbital fenestra is
present but can easily be overlooked due to its
small size. On the other hand, the antorbital
fenestra consists of a large slit-like opening and
is bordered dorsally by the lacrimal in the
taxon from Phu Noi. This is also the case in
Peipehsuchus teleorhinus from China. Further
similarities between the two taxa are listed as
follows: the nasal contributes to most of the
rostrum length but is excluded from the narial
border by a posteriorly V-shaped premaxilla;
wide and dorsally facing posterolateral wall of
the supratemporal fenestra, mostly built by the
squamosal. The maxillary alveolar count in
Peipehsuchus teleorhinus is 27 and the maxillary
count in the taxon from Phu Noi is at least 25.
As a comparison, this count can be approach-
ing or surpassing 30 alveoli in Steneosaurus
(Andrews 1913). Therefore, the taxon from Phu
Noi exhibits characters reminiscent of the
genus Peipehsuchus Young (Young 1948). As a
side note, Peipehsuchus teleorhinus is possibly as
old as Toarcian (Wang et al. 2008). An in-depth
description and phylogenetic analysis of the
younger (?Tithonian) PhuNoi taxon is pending
and for the moment, it is provisionally referred
to Teleosauridae indet.

Phylogenetic analysis.—The Phu Noi
teleosaurid was coded and included in a
matrix for a total of 73 taxa and 240 characters
(Young et al. 2012) using the software TNT
(Goloboff et al. 2003). The analysis resulted in a
strict consensus of 10 trees with a best tree
length of 663 steps. Bremer decay indices were
computed and are superimposed on Figure 3.
The recovered topology follows what has been
reported previously (Young et al. 2012; Martin
and Vincent 2013); only the Thalattosuchia are
represented infigure 3 because thiswork focuses
on the intrarelationships of teleosaurids, not on
the interrelationships of Thalattosuchia with
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other crocodylomorphs (see also recent work,
Wilberg 2015). The topology recovered within
Thalattosuchia differs from previous works
(Goloboff et al. 2003; Young et al. 2012; Martin
and Vincent 2013) in the placement of
Metriorhynchoidea relative to Teleosauridae.
Here, the Teleosauridae are non-monophyletic
(for similar results see: Mueller-Töwe 2005;
Jouve 2009; Young and Andrade 2009) and
Metriorhynchoidea are not the sister group to
Teleosauridae but are sister taxon to a group
comprising the most derived teleosaurids
(Phu Noi teleosaurid, Steneosaurus obtusidens
and Machimosaurus hugii). Pelagosaurus typus is
recovered as the basalmost thalattosuchian.

Isotopic analysis.—Calculated strontium
concentrations in samples from Phu Noi
range from ~100 to ~2000 μg/g (electronic
supplementary material, table S1) with an
average value of 631± 872 μg/g. Theropods
exhibit Sr concentrations (208± 127 ppm) that
are significantly lower than sauropods
(764± 294 ppm; Student’s t-test: p**= 0.0017)
or total fauna (766± 413 ppm; Student’s t test:
p***< 10−4; Fig. 4).

During theNeptune session, the international
standard SRM-987 gave an average value of
0.71025± 0.00001 (2 SD, n= 3). During the laser
ablation session, the standard SRM-1400 yielded
an average 87Sr/86Sr value of 0.71371± 0.00526
(2 SD), which was compared to a TIMS value of
0.71310± 0.00002 (2 SD) (Schweissing and
Grupe 2003) for sample bracketing during laser
ablation sessions. The belemnite yielded a
value of 0.70697± 0.00097 (2 SD) using laser

ablation and a value of 0.70719± 0.000007
(2 SD) using wet chemistry (Neptune session).
The 87Sr/86Sr values of the belemnite obtained
by means of wet chemistry and laser
ablation compared well with the accepted
values of the strontium isotope curve for
Toarcian seawater based on belemnites (e.g.,
McArthur et al. 2001).

The range of the 87Sr/86Sr values is narrow,
from 0.71088 to 0.71179, with the exception of
three values that deviate from this range,
namely a theropod tooth at 0.70754 and two
turtle bone values at 0.71879 and 0.72144
(Fig. 5; Supplementary Appendix, Table S1),
which are indicative of diagenesis as discussed
below. The leachate of the sediment at Phu Noi
yielded a 87Sr/86Sr value of 0.71334± 0.000007
(2 SD). Results of the intra tooth analyses show
a narrow range of values from 0.710282 to
0.711840.

Discussion

Strontium isotopes and teleosaurid provenance.—
The ingested strontium is incorporated into

FIGURE 3. Strict consensus tree recovered in this work
showing the relationships within Thalattosuchia. The
habitat in which the different taxa were recovered
(marine, freshwater, brackish) is indicated by a symbol
and are superimposed on the tree. Numbers refer to
Bremer Decay indices.

FIGURE 4. Isotope ratios of 87Sr/86Sr against 1/strontium
concentrations (in ppm−1) for all the vertebrate samples
analyzed in this study. We consider the inverse of the
concentration to linearize potential relationship with
isotopic ratio in case of diagenesis. For the sake of clarity,
we took the average value of the Sr isotopic ratio and
concentration. The mixing with a diagenetic end-member
is recognized for turtle bone aliquots (grey symbols)
arising from a single sample.
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the crystal lattice of bioapatite during
mineralization of teeth and bones (Reynard
and Balter 2014) and therefore its isotopic
composition reflects that of the environment
in which the animal lived, as derived from
food and drinking water (e.g., Graustein 1989;
Blum et al. 2000; Maurer et al. 2012). That
fossil teeth do not retain an in vivo strontium
signal is always an issue because biogenic
strontium may be rapidly replaced after
burial by diagenetic strontium (e.g., Nelson
et al. 1986; Sillen 1986; Hoppe et al. 2003).
Diagenesis can be detected by several
means, but here we take advantage of the
lower Sr concentrations in theropod teeth to
assume, as a general rule, that the Phu Noi
assemblage has not been overprinted
significantly by diagenesis. Strontium, and
barium concentrations decrease up the trophic

chain because these are two non-essential trace
elements that tend to mimic Ca, which is bio-
essential (Elias et al. 1982; Burton et al. 1999;
Balter 2004). Although interpretations can be
complicated by the ingestion of trace elements
from dust or soil (Kohn et al. 2013), this process
has been widely used as a paleodietary tool,
but has been restricted to the reconstruction of
the diet of Late Paleolithic Neanderthals (Balter
et al. 2001, 2002) and of Early Pleistocene
hominins (Sillen 1986; Sponheimer et al. 2005;
Balter et al. 2012), i.e., of Quaternary age. Thus,
the low Sr concentrations in the teeth of
theropods compared to other taxa reflect that
the most parsimonious interpretation is that
these animals were feeding at a higher trophic
level. It is noteworthy that the preservation of a
Ca biopurification pattern in the Phu Noi
assemblage dated at about 150 Ma is

FIGURE 5. Strontium isotopic variability (87Sr/86Sr) in the Upper Jurassic vertebrate continental assemblage of the
locality of Phu Noi. Sample names of individual taxa are indicated on the left hand side. The vertical stipple line on the
left is the approximate 87Sr/86Sr value for the marine environment during the Late Jurassic (after Prokoph et al. 2008).
Error bars represent 2SD.

STRONTIUM AND THALATTOSUCHIAN ECOLOGY 149

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/pab.2015.42
Downloaded from http:/www.cambridge.org/core. Bibliothèque Diderot de Lyon, on 05 Sep 2016 at 14:58:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/pab.2015.42
http:/www.cambridge.org/core


exceptional and to our knowledge, has never
been described before for Mesozoic fossils.
Also, the large range of strontium isotope
values in the various fossils analyzed here
argue that all the samples have not converged
on a single diagenetic value. However, possible
diagenetic effects have to be scrutinized
sample by sample in order to discard samples
suspected of diagenetic overprinting.
Diagenetic process can be modeled as a
conventional mixing balance between
biogenic and diagenetic end-members with
distinct strontium concentrations [Sr] and
isotopic ratios 87Sr/86Sr: samples affected by
diagenesis would fall on a mixing hyperbola
in a [Sr] vs 87Sr/86Sr space (Albarède 1995;
Balter et al. 2012). Here, no such correlation is
observed, except for the two turtle bone
outliers PN-TU1-6 and PN-TU1-7 (Fig. 4;
Supplementary Appendix, Table S1), for
which both the strontium concentration and
the isotopic ratio are different from the rest
of the samples. Both samples have more
radiogenic 87Sr/86Sr values than the soil
strontium soluble fraction (Fig. 5). The
87Sr/86Sr values of the two turtle bone outliers
must have been driven by another diagenetic
pool with a higher 87Sr/86Sr value, at least
~0.722, possibly a secondary mineral phase
that precipitated in the porous structure of
bone (e.g., calcite, gypsum). In this condition,
the soil strontium soluble fraction (i.e., “soil
water” on Fig. 5) cannot be considered as the
prevalent diagenetic end-member for the
PN-TU1-6 and PN-TU1-7 samples. However,
three other turtle bone samples exhibit
suspicious 87Sr/86Sr value, i.e., higher than
~0.711 (which is the average value of the
dataset) and lower than the soil soluble fraction
value at 0.71334. These samples are PN-TU1-2,
PN-TU1-3 and PN-TU1-8 (Supplementary
Appendix, Table S1). For these three samples,
slight diagenetic strontium overprinting
originating from the “soil water” strontium
can be suggested, but is not demonstrated, as
no increase of strontium concentration is
concomitantly observed. In the present study,
diagenesis has affected bone samples, leaving
dentine and enamel seemingly unaffected by
diagenetic overprints. This is in contrast, for
instance, with the results obtained at the

Middle Eocene conservation-Lagerstätte
Messel site, Germany (Tütken 2014), where
dentine samples have systematically lower
87Sr/86Sr values (~0.706) than related enamel
(~0.711). Dentine are thus lower by ~0.06 units
of 87Sr/86Sr as compared with enamel, which is
an important offset that is not observed in the
present study, indicating very different
diagenetic processes observed for the fossils of
the Messel deposits and those of the Phu
Kradung Formation. Moreover, that enamel
and dentine strontium isotope values are not
significantly different from each other is in
agreement with an in vivo signature, as
reported in modern faunas (Budd et al. 2000).

For the reasons presented above, we con-
sider at least our enamel data to be most likely
representative of an in-vivo signal. On average,
the 87Sr/86Sr values measured on the vertebrate
assemblage (~0.711, Fig. 5, Supplementary
Data, tables S1 and S2) reflect a continental
environment, with values significantly more
radiogenic than the values reported for marine
environment of Late Jurassic age (~0.707 as
compiled in McArthur et al. 2001). This implies
that vertebrates recovered from Phu Noi
mineralized their teeth locally in a freshwater
setting incorporating the isotopic ratio of
0.71334. This is in line with sedimentological
and petrographic observations of polycrystal-
line quartz grains and lithic fragments of
quartz-mica schists that indicate a crystalline,
metamorphic bedrock substrate as a source area
for the clastic sediments of the Phu Kradung
Formation (Racey et al. 1996: p. 20).

The outlier theropod with the lowest
strontium value (~0.708) mineralized its tooth
on a different substrate, possibly reflecting
migration from another area. From the general
distribution of 87Sr/86Sr, there is no indication
that the teleosaurid material is allochtonous.
A detailed sampling of two teleosaurid teeth
belonging to PRC-239 along incremental
growth lines allows tracking the evolution of
the strontium isotope signal (and therefore of
the provenance) during the time necessary for
mineralization. Tooth replacement takes about
two months to complete as reported from
a study on a meter long extant Alligator
mississippiensis (Erickson 1996). Erickson (1996)
also concluded that tooth replacement slows
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down during ontogeny. Although not assessed
for large animals, it is reasonable to admit that
in several meter long specimens, several
months are necessary to renew teeth. In the
case of PRC-239 representing an adult, it is
reasonable to assume that the teeth analyzed
here did record more than two months of
environmental signal. Electronic supplemen-
tary material, table S2 reports strontium
isotope values, which are all around 0.711
(n= 48) for these two teeth with a minimum
value of 0.710 and a maximum value of 0.712.
These 87Sr/86Sr values fall in the range of the
seasonal variability of the weathering flux
of a homogeneous catchment, which is
about 2.10-3 in the study of the Xijiang River
(Wei et al. 2013). Indeed, the timeline of the
mineralizing tooth is perhaps too short to
capture significant shifts in 87Sr/86Sr ratios
that would provide evidence for migration.
Therefore, it cannot be excluded that migration
between the freshwater and the marine habitat
could take place in the Phu Noi teleosaurid.
Nevertheless, it can be said that in the time
necessary to mineralize the teeth (over
2 months), there is no evidence of migration of
teleosaurids between the freshwater environ-
ment of Phu Noi and a marine environment.
Thus, the strontium isotopic values of the Phu
Noi teleosaurid fall in the range of values
retrieved for the other vertebrates from Phu
Noi, and the most probable conclusion is that
this teleosaurid is a long-term (over 2 months)
resident of this continental freshwater
paleoenvironment.
Colonization of freshwater drainages.—The

earliest known thalattosuchians are Early
Jurassic in age (early Toarcian) and are
exclusively recorded from marine deposits.
Several million years later, the teleosaurid
from northeastern Thailand illustrates an
unambiguous example of a thalattosuchian
recovered from a freshwater setting. From an
evolutionary perspective, a reconstruction of the
evolution of osmoregulation in thalattosuchians
is hampered by the unclear interrelationships of
its main lineages (Pelagosaurus, Teleosauridae,
Metriorhynchoidea). Therefore, osmoregulation
within Thalattosuchia and more specifically
within Teleosauridae can only be tentatively
superimposed on an evolutionary hypothesis,

as has been implied for the capacity of members
of this clade to osmoregulate (Fernández and
Gasparini 2008). Based on a transitional stage
model (Mazzotti and Dunson 1989), Fernández
and Gasparini (2008) consider teleosaurids
to be estuarine/marine and metriorhynchoids
to be pelagic swimmers. The presence
of salt-excreting glands in Geosaurus and
Metriorhynchus represents a solid basis for the
latter assumption (Fernández and Gasparini
2000, 2008; Gandola et al. 2006; Herrera et al.
2013). However, characterization of a marine
versus estuarine lifestyle for teleosaurids and
Pelagosaurus is impossible based solely on
morphology, hence there is a lack of resolution
regarding their adaptation to transitional
paleoenvironments. As a comparison, salt-
excreting glands are active in extant Crocodylus
(Mazzotti and Dunson 1989), but do not leave
any osteological information because they occur
on the tongue.

According to our results, three hypotheses
could be advanced for the occurrence of some
teleosaurids in riverine/lacustrine habitats.
First, an adaptation to the freshwater environ-
ment could be an autapomorphy of some
teleosaurids and evolved once in the derived
teleosaurid from Thailand (and possibly also in
Machimosaurus) (Fig. 3) as a secondary adap-
tation from a primitively marine teleosaurid
ancestor. A second possibility is the retention
of an adaptation inherited from a basal mem-
ber of Thalattosuchia or from the ancestors of
Thalattosuchia, if we assume they lived in
freshwater environments during the Late
Triassic-Early Jurassic time interval. In the
latter hypothesis, metriorhynchoids were
exclusively living in the marine environment
(supported by the presence of salt-excreting
glands (Fernández and Gasparini 2008) andwe
could predict that all other thalattosuchians
(Pelagosaurus and Teleosauridae) would
likely be recovered in riverine environments
during the Toarcian-Tithonian interval. The
latter two hypotheses seem likely, considering
Peipehsuchus teleorhinus from the Ziliujing
Formation of China as the oldest representative
of a freshwater thalattosuchian (Lower Jurassic,
Peng et al. 2005). Nevertheless, it should be
stressed that the capacity to tolerate salt may
not have been lost at all as is seen today with
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the following example: the extant species of
Crocodylus do have a capacity for salt excretion
although many of them spend their entire life
in freshwater environments. This does not
prevent many individuals of Crocodylus porosus
or Crocodylus acutus to spend a considerable
amount of time in brackish or marine habitats.
Therefore, a third possibility may be that tele-
osaurids were able to migrate between marine
and freshwater habitats without losing the
capacity for salt excretion.

Whether those teleosaurids recovered in
marine deposits were temporarily visiting
freshwater ecosystems, for example to seek
food, reproduce or avoid competitive interac-
tions with other marine reptiles is plausible
(see below for examples of extant taxa that
migrate in freshwater ecosystems). The fact is
that two teleosaurid genera have been recor-
ded in non-marine habitats. The oldest record
appears to be Peipehsuchus teleorhinus from the
Lower Jurassic Ziliujing Formation of China,
which originates from a lacustrine deposit
(Wang et al. 2008) (a freshwater plesiosaur was
also reported from this same formation by Sato
and Wu (2003)). Secondly, the present study
reports a teleosaurid from a freshwater habitat
of the Late Jurassic, therefore younger than
the Chinese occurrence of Peipehsuchus. In
addition, fragmentary remains of teleosaurids
have been reported from a brackish environ-
ment of the Middle to Upper Jurassic Khlong
Min Formation in Peninsular Thailand (Buffe-
taut et al. 1994). These few records indicate a
capacity for some teleosaurids to live in
non-marine habitats, at least for a few months
as highlighted with the present study.
Conversely, do the abundant teleosaurids
recovered in coastal deposits of Europe
preserve a trace of their passage in freshwater
habitats? The Kimmeridgian Machimosaurus
hugii occurs in the lignite deposits of Guimarota,
Portugal (Krebs 1967, 1968), which has
been interpreted as a brackish environment
(Buffetaut 1982). This taxon is often recovered
in marine deposits (Martin and Vincent 2013)
and the occurrence of the Portuguese specimen
in a transitional environment might be viewed
as an evidence for migration between marine
and brackish habitats and questions its ability
to visit freshwater environments.

For historical reasons, more teleosaurids
have been discovered in Europe than in other
parts of the world. The vast majority of Jurassic
and Lower Cretaceous sediments of Europe
were deposited in marine environments. Thus,
with the exception of terrestrial faunas washed
into marine environments (e.g., Buffetaut
1994), fossil vertebrates including teleosaurids
found in such deposits most likely have a
marine origin. Whether teleosaurids were
present in contemporaneous drainage basins
has been questioned (Westphal 1962b). That
teleosaurids spent some time of their life in the
freshwater habitat could be tested by analyz-
ing the strontium isotopic composition of
their teeth.

Other predominantly marine predators
are also mentioned in freshwater settings of
Jurassic and Cretaceous age. Plesiosaurs
have been reported from non-marine Lower
Cretaceous deposits of Australia (Bartholomai
1966; Kear 2006), Britain (Andrews 1922; Kear
and Barrett 2011), Germany (Wegner 1914),
Canada (Sato et al. 2005; Vavrek et al. 2014)
and China (Sato and Wu 2003). Mosasaurs
have also been reported from the Upper
Cretaceous (Santonian) freshwater deposits of
Hungary (Makádi et al. 2012) and strontium
and oxygen isotope studies confirmed they
remained in this freshwater setting for some
time (Kocsis et al. 2009). There are also
undescribed large isolated varanoid vertebrae
from Campano-Maastrichtian freshwater
deposits of southern France (Buffetaut et al.
1999). Hybodont sharks derive from a marine
ancestor (Cuny et al. 2014) and are frequently
recovered in Mesozoic brackish and fresh
water deposits (Klug et al. 2010; Fischer et al.
2012; 2013; Cuny et al. 2014). Our results,
including strontium isotope measurements on
two hybodont teeth confirm the long-term
occurrence of hybodonts in the freshwater
habitats of Phu Noi (Fig. 5).

Colonization of the freshwater environment
by marine vertebrates could be tied to a variety
of ecological factors including new available
niches, lack of competition on newly available
resources, or refuges from predators. Beside
thalattosuchians, members of another clade of
marine crocodylomorphs, Dyrosauridae, have
been recorded from transitional environments
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(an account is presented elsewhere (Hastings
et al. 2011)) and from freshwater deposits in the
Maastrichtian of India (Khosla et al. 2009) and
in the Eocene of Punjab, Pakistan (Buffetaut
1977, 1978). The rarity of large specimens and
the abundance of small ones led Buffetaut
(1977) to hypothesize that those freshwater
environments were used as refuges for
juveniles against large marine predators
represented at that time by eusuchians. Sato
et al. (2005) observed that freshwater plesio-
saurs from the Cretaceous of Canada are of
small size, and possibly represent juveniles.
More recently Vavrek et al. (2014) interpreted a
new freshwater locality from the Canadian
High Arctic as a possible plesiosaur nursery.
The situation for the Phu Noi teleosaurid is
however different with specimens represent-
ing different size classes. The abundance of
large gynglymodian fish skeletons in this
locality (Deesri 2012) hints at the availability of
food resources for these teleosaurids.

Modern-day species of Crocodylus and ceta-
ceans offer interesting ecological parallels with
extinct marine reptiles. Out of the 23 species of
living crocodilians, only two species, C. porosus
and C. acutus are frequently found in estuarine
or marine habitats and two others, C. niloticus
and C. johnstoni have known estuarine popu-
lations (e.g., Mazzotti and Dunson 1989;
Wheatley et al. 2012). Occasional accounts also
exist for other members of Crocodylinae in
brackish environments. There are four extant
species of freshwater cetaceans (including
the recently extinct Chinese species Lipotes
vexillifer) living permanently in large fluvial
systems of South America and Asia (Cassens
et al. 2000; Hamilton et al. 2001). Because
it spent a considerable amount of time in
freshwater, the Phu Noi teleosaurid could be
considered an ecological equivalent of these
freshwater dolphins. A closely related species
to the freshwater dolphins (see debate about
monophyly (Cassens et al. 2000; Hamilton et al.
2001), Pontoporia blainvillei inhabits coastal and
estuarine habitats of Argentina and Brazil
but does not venture far inland. This species
represents the marine/estuarine equivalent of
teleosaurids following the interpretation of
(Fernández and Gasparini (2008). A last case
is represented by the delphinid Orcaella

brevirostris, which is euryhaline (Baird and
Beasley 2005): this species spreads along the
shorelines of SE Asia and penetrates deep
within the Mahakam, Mekong, and Irrawaddy
rivers. The species of cetaceans mentioned
above are found in a variety of habitats, some
living permanently in freshwater habitats,
other migrating back and forth between
marine and freshwater habitats and others not
venturing inland but having a distribution
in estuaries and coastal environments. It is
therefore probable that thalattosuchians and
particularly teleosaurids were exploiting such
a variety of environments too. Further isotopic
studies on various fossil assemblages may
reveal specific migratory patterns. According
to the present study, the Phu Noi teleosaurid
could either be viewed as a pioneering taxon
into a novel habitat or as an evidence for the
widespread behavior of teleosaurids to visit
and durably inhabit riverine ecosystems of the
Jurassic. Strontium isotope studies provide a
means with which to test these hypotheses
through the analysis of tooth enamel from the
numerous specimens recovered throughout
European Jurassic localities.
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