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The oxygen isotopic composition (δ18Op) and strontium/calcium (Sr/Cap) ratios have beenmeasured in Late De-
vonian conodonts (Palmatolepis sp.) from contemporaneous sections at Coumiac (France) andM'rirt (Morocco).
The sequences encompass two anoxic horizons, the Lower Kellwasser (LKW) and Upper Kellwasser (UKW)
events with the top of the UKW coinciding with the mass-extinction at the Frasnian–Famennian boundary.
The genus Palmatolepis survived the faunal crisis but exhibited plastic responses to the environmental changes,
which are recorded in the evolution of shape during the anoxic events. The present study demonstrates that
shape, δ18Op and Sr/Cap values of conodonts are correlated in both localities excluding diagenesis as the driving
process for the measured δ18Op and Sr/Cap values. The conodonts δ18Op and Sr/Cap values are correlated in both
localities and distributed into either a “pre-crisis” and “crisis” group. Using the relationships between the δ18Op

and Sr/Cap values, we estimate that the variation of the seawater Sr/Ca ratio during the Frasnian–Famennian
mass extinction was of about 20% its initial value. This drastic decrease of the seawater Sr/Ca ratio is discussed
in the light of the reef demise that occurred during the faunal crisis.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The Frasnian–Famennian faunal crisis, which occurred during Late
Devonian (376 My), is one of the big five Phanerozoic biodiversity
crises (Bambach et al., 2004; Kaufmann et al., 2004; De Vleeschouwer
et al., 2012). This crisis culminated at the Frasnian–Famennian bound-
ary,which is dated in some sections at the top of the globally recognized
anoxic horizon called the Upper Kellwasser Horizon (UKW). The UKW
is preceded by about 0.8 Myr by the Lower Kellwasser Horizon
(LKW), a similar horizon documenting only a minor impact on the bio-
sphere (Buggisch, 1991). The environmental processes at the onset of
these events are complex, and numerous scenarios have been proposed
(e.g. Copper, 1986; Thompson andNewton, 1988;Wang et al., 1991;Mc
Ghee, 1996; Racki, 2005; Becker et al., 2012; Stigall, 2012). One particu-
lar aspect of the F–F biodiversity crisis, is the occurrence of various en-
vironmental events during the Devonian period, i.e. appearance of
forests on land (Algeo and Scheckler, 1998), large decrease of pCO2

(Xu et al., 2012), and sea level changes (Copper, 1986), which might
have been connected or not. As a consequence, widespread reefal
build-ups have been emerged and were wiped out by the end Frasnian
r).

rights reserved.
(Copper, 2002). Concomitant black shale deposition might have been
initiated by an intensification of seasonal water column stratification
and an efficient nutrient recycling allowing for enhanced primary pro-
ductivity (Algeo, 2004). However, this scenario has been recently chal-
lenged by the observation ofmass occurrence ofmicrobialmats arguing
for a marine environment pulsating between anoxic, dysoxic, and
weakly oxic conditions (Kazmierczak et al., 2012).

The oxygen isotope compositions of conodont apatite suggest that a
cooling period may be the ultimate cause of the enhanced burial of
organic carbon (Joachimski and Buggisch, 2002). Despite the fact that
the succession of the processes triggering the cooling pulses is still
debated (Averbuch et al., 2005; Riquier et al., 2006), the cooling pulses
associated with the Kellwasser events probably contributed to the Late
Devonian biodiversity crisis (Joachimski and Buggisch, 2002).

Biogenic calcite is the most commonly used mineral phase to esti-
mate paleotemperatures of Palaeozoic seawater using oxygen isotope
compositions (e.g. Veizer et al., 1999). This preference is due to the rel-
ative abundance of calcitic remains and the well-defined analytical
methodology. However, biogenic apatite constitutes an interesting
alternative to overcome the problems of calcite diagenesis, because
the oxygen atoms, which are incorporated in the phosphate group of
the fluorapatite mineral, are less prone to exchange with diagenetic
fluids than in the case of calcite (Wenzel et al., 2000; Bassett et al.,
2007; Joachimski et al., 2009; Barham et al., 2012; Wheeley et al.,
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2012). Conodont elements, which are millimeter-sized fossils com-
posed of fluoro-apatite, were thought to represent the sole remain of
the conodont extinct jawless early vertebrate group (Briggs, 1992;
Sansom et al., 1992), but their relationship to vertebrate has been re-
cently challenged (Turner et al., 2012). The oxygen isotope composition
of phosphate (δ18Op) in biogenic apatite is known to vary as a function
of temperature (Kolodny et al., 1983; Pucéat et al., 2010) and the oxy-
gen isotope composition of aqueous medium, i.e. seawater (δ18Ow).
Therefore, it is necessary to know the δ18Ow value in order to calculate
the temperature, and vice versa. In a similar approach, Balter and
Lécuyer (2010) have recently shown that the strontium/calcium ratio
in bone and teeth of fish, (Sr/Ca)p, depends also on both temperature
and Sr/Ca ratio of ambient seawater, (Sr/Ca)w. Using coupled δ18Op

and (Sr/Ca)p ratios on Cenozoic fish teeth, it has been possible to elim-
inate the temperature effect, and reconstruct the evolution of the
Sr/Caw for the last 70 My (Balter et al., 2011).

The aim of the study is to measure the (Sr/Ca)p and δ18Op ratios on
Devonian conodonts in order to evaluate the range of variations of the
δ18Ow and (Sr/Ca)w ratios during the Frasnian–Famennian (F–F)
faunal crisis. The evolution of the δ18Ow value at the F–F boundary
is unclear. Some authors (e.g. Joachimski et al., 2009), by setting con-
stant the δ18Ow value, calculate seawater temperatures that slightly
decrease at the F–F boundary. However, due to the effects of a puta-
tive glacial episode that would have triggered the biotic crisis (e.g.
Copper, 1986), the δ18Ow value is expected to increase at the F–F
boundary. The knowledge of the evolution of (Sr/Ca)w is of great in-
terest. This ratio is a proxy of the relative variations in riverine runoff,
carbon burial (France-Lanord and Derry, 1997), type of carbonate
sedimentation (calcite vs. aragonite precipitation, e.g. Sandberg,
1983) and hydrothermal alteration (Elderfield and Schultz, 1996).
Large variations of (Sr/Ca)w are expected at the F–F boundary, be-
cause reefal buildups, which represent an effective sink of Sr and Ca,
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Fig. 1. Paleogeographic reconstruction for the Middle/Late Devonian (G
are considered to be at the maximal expansion of the Earth history
during the Middle Devonian to Frasnian (Copper, 1986, 2002), and
collapse during the F–F faunal crisis.

2. Material and methods

Conodont elements were studied from two sections: the Coumiac
Upper Quarry (CUQ) in the Montagne Noire (Southern France) and
M'rirt (MR) in the Moroccan Meseta. Both areas were located on the
north Gondwanan margin (Fig. 1) during the Late Devonian (Matte,
2001). The sedimentological characteristics of both sections reflect
comparable paleoenvironmental settings in shallow tropical waters.
However, the sedimentation rate is higher at M'rirt than at Coumiac
(Lazreq, 1999). The Upper Quarry of Coumiac (France) has been chosen
because it represents the stratotype of the F–F boundary. The section
exposes a time-interval of 1–2 My from the Late Palmatolepis rhenana
to the Palmatolepis triangularis conodont Zone and is characterized by
gray limestones except for two dark gray carbon-rich horizons which
start at the top of the Early rhenana Zone, below the F–F transition.
The same time interval has been studied at M'rirt (Morocco).

Carbonate samples of 0.2 to 1 kg were crushed and dissolved in
10% formic acid. The insoluble fraction has been separated by filtra-
tion and conodonts were handpicked using a binocular microscope.
Conodonts were taxonomically determined and only mono-generic
conodont samples (Palmatolepis spp.) were analyzed. This genus ap-
pears as a homogeneous and abundant group and is one of the survi-
vor genera of the F–F crisis.

For M'rirt, the oxygen isotopic analyses of conodonts have been
performed at the GeoZentrum Nordbayern in Erlangen (Germany).
Conodonts (around 1 mg) were dissolved in nitric acid and chemically
converted to Ag3PO4 using the method described in Joachimski et al.
(O'Neil et al., 1994; Joachimski et al., 2009). The oxygen isotope
rg Quarry and Behringhäuser Tunnel (Germany) 

ee (Austria) 

n continents Epicontinental seas

olonka, 2000) and location of the sections mentioned in the text.
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composition has been measured on CO using a TC-EA coupled online to
a ThermoFisher Delta plus mass spectrometer. δ18O values are reported
in per mil relative to V-SMOW (Vienna Standard Mean Ocean Water).
Accuracy of the measurements has been monitored by multiple analy-
ses of NBS 120c (δ18O = 22.61 ± 0.11‰ 1σ) which is almost identical
to the value reported by (Vennemann et al., 2001) using conventional
fluorination with BrF5. The oxygen isotopic analyses of conodonts
from Coumiac have been previously published in Balter et al. (2008)
using the same technique. The Sr/Ca ratios have beenmeasured on sev-
eral conodonts at the École Normale Supérieure de Lyon (France). Each
of the Sr/Ca values present here represents the average of the Sr/Ca
value from 3 to 5 conodont elements. Each of these elements was
cleaned in ethanol in order to remove clay minerals and dissolved in
30 μL of distilled and concentrated nitric acid. Solutions have been
diluted in 1 mL of nitric acid (2%) with an indium spike at 2 ppb. The
concentrations of Sr, Ca and Rare Earth Elements (REE) were measured
by ICPMS (ThermoElement X7). Using certified values of the SRM1400
“Bone Ash”, the accuracy is 3.8% for Sr/Ca analyses (Balter and
Lécuyer, 2004).

3. Results

3.1. The Coumiac section

The δ18Op values of conodonts at Coumiac range from 17.4‰ to
19.1‰ (Table 1, Fig. 2). The evolution of the δ18Op values shows two
positive 18O shifts, which coincide with the Upper (UKW) and Lower
Kellwasser (LKW) anoxic events, respectively. The first excursion
(through LKW) has an amplitude of about +1‰, with a minimum
Table 1
δ18Op, Sr/Cap, and REE composition of conodonts from the Coumiac section (Montagne Noi

Location Period OAE Samples Position
(cm)

Shape δ18Op

(o=oo, SM

Coumiac Frasnien CUQ 23d 0 −0.7 18.29
Frasnien CUQ 23e 15 −0.3 18.10
Frasnien LKW CUQ 24a 25 −0.4 18.18
Frasnien CUQ 24b 35 1.4 18.90
Frasnien CUQ 24d 50 1.9 19.00
Frasnien CUQ 24e 70 1.0 19.07
Frasnien CUQ 25cd 100 0.6 18.76
Frasnien CUQ 26b 145 0.3 18.85
Frasnien CUQ 27 180 −0.2 18.55
Frasnien CUQ 28c 210 −0.1 18.57
Frasnien CUQ29b 245 −0.29 18.34
Frasnien CUQ 30a 275 −0.4 18.23
Frasnien CUQ 31c 300 −0.8 17.89
Frasnien CUQ 31e1 330
Frasnien CUQ 31e2 340
Frasnien CUQ 31f 350 −0.5 17.77
Frasnien UKW CUQ 31g1 360 −0.40 17.41
Frasnien UKW CUQ 31g2 365 −0.26 17.63
Famennien CUQ 32a 375 5.5 18.11
Famennien CUQ 32b 390 5.4 17.98
Famennien CUQ 32c 410 4.2

M'rirt Frasnien MR1 0 −1.08 15.91
Frasnien MR2 5 −1.88 17.16
Frasnien MR3 18 −1.51 17.77
Frasnien LKW MR4 30 −0.16
Frasnien MR5 42 0.13 17.48
Frasnien MR6 47 −0.35 17.39
Frasnien MR7 58 −0.65 17.11
Frasnien MR8 71 −0.95 16.90
Frasnien MR9 89 −0.01 16.54
Frasnien UKW MR11a 106 −0.61 16.16
Frasnien UKW MR11b 110 −0.78 16.42
Frasnien UKW MR11c 115 16.46
Famennien MR12 126 3.35 16.86
Famennien MR13 136 3.35 17.25
Famennien MR15a 152 2.56 16.68
Famennien MR15b 160 16.70
δ18Op value of 18.1‰ at the bottom of the LKW event (between the
top of the Early rhenana zone and the bottom of the Late rhenana
zone) and a maximum δ18Op value of 19.1‰ after the end of the LKW
event. After the LKW event, the δ18Op slightly decreases and reaches
the minimum value (17.4‰) at the end of the linguiformis zone, during
the UKW event. The second positive δ18Op excursion is initiated after
the minimum value and has a range of variation of +0.5‰. The
(Sr/Ca)p ratios of conodonts show an evolution similar to that of δ18Op

(Fig. 2). The (Sr/Ca)p ratio reaches maximum values during the LKW
(5.5 mmol/mol) and at the onset of theUKW(5.5 mmol/mol). Between
the LKW and UKW, the (Sr/Ca)p ratio progressively increases from
(3.9 mmol/mol) to (5.5 mmol/mol). During the UKW, the (Sr/Ca)p
quickly decreases with an amplitude of ~2.3 mmol/mol and reaches
the minimum value of the record (3.1 mmol/mol) at the end of the
UKW.

3.2. The M'rirt section

Despite a low stratigraphic resolution due to high sedimentation
rate, the evolution of conodont δ18Op values from the M'rirt section
is similar to that described for the Coumiac section (Table 1, Fig. 3).
Superimposed to the problem of resolution, we also experienced dif-
ficulties to obtain enough conodont specimens in some levels, notably
for the LKW anoxic event, to obtain representative results. These
problems aside, it is obvious that, as for Coumiac, the δ18Op increases
during the LKW event at M'rirt. After this event, the δ18Op values de-
crease and reach a minimum value of ~16.2‰ at the beginning of the
UKW event. During this second anoxic event, the δ18Op values of
conodonts increase of about +1‰ to ~17.1‰ after the F–F boundary.
re, France) and M'rirt section (Morocco).

OW)
1σ (Sr/Ca)p

(mmol/mol)
1σ La/Ybn 1σ La/Smn 1σ

0.18 0.43 0.06 0.16 0.04
0.11 4.80 0.51 0.77 0.04 0.23 0.03

5.55 0.01

0.01
0.18 3.93 0.18 0.52 0.06 0.17 0.00
0.11 3.95 0.09 0.66 0.16 0.23 0.06
0.08 3.83 0.20 0.53 0.08 0.15 0.02
0.14 4.10 0.27 0.53 0.11 0.17 0.06
0.27 3.94 0.11 0.40 0.04 0.12 0.01
0.11
0.24 4.17 0.19 0.49 0.01 0.16 0.02
0.14 4.62 0.18 0.47 0.06 0.13 0.02

4.77 0.17 0.43 0.00 0.14 0.01
4.79 0.23 0.50 0.06 0.16 0.03

0.15 5.47 0.25 0.39 0.06 0.13 0.03
0.28 4.57 0.36 0.65 0.12 0.16 0.03
0.10 3.79 0.24 0.66 0.02 0.15 0.01
0.17 3.14 0.19 0.67 0.18 0.20 0.04
0.18 3.70 0.12 0.15 0.04 0.15 0.02

3.64 0.25 0.10 0.12 0.01
0.07 5.50
0.01 5.03 0.49 0.15 0.13 0.02
0.09 3.94 0.64 0.11 0.25 0.07

3.77 0.11 0.41 0.35 0.29 0.16
0.13 3.91 0.09 0.28 0.14 0.17 0.05
0.06 3.86 0.16 1.22 0.09 0.28 0.00
0.03 4.46 1.11 0.07 0.21 0.02
0.11 0.28 0.18 0.14 0.04
0.14 4.44 0.42 0.51 0.14 0.27 0.02
0.05

3.47 0.18 0.47 0.19 0.11 0.03
0.24 3.65 0.04 0.33 0.10 0.11 0.02
0.03 3.56 0.16 0.44 0.25 0.12 0.02
0.01 3.04 0.58 0.32 0.24 0.04
0.03 3.95 0.22 1.07 0.18 0.24 0.05
0.04 3.76 0.14 0.86 0.31 0.23 0.06
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The (Sr/Ca)p values increase during the two Kellwasser events with a
range of variation of about 1.1 mmol/mol and 1.4 mmol/mol, for the
Lower and Upper Kellwasser events, respectively (Table 1, Fig. 3).
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4. Discussion

4.1. Preservation of the original δ18Op and (Sr/Ca)p variations

The issue of the preservation of the original oxygen isotope compo-
sition in Paleozoic apatitic fossils has been the matter of a long-
standing debate initiated by the study of Shemesh (1990). The δ18Op

value of bioapatite precipitated under isotopic equilibrium with sea-
water is typically around +20‰ (Longinelli and Nuti, 1973; Luz
et al., 1984). The diagenetic exchange of phosphate oxygen in biogenic
apatite with diagenetic solutions of meteoritic origin with low δ18O
values may result in lower δ18Op values. Taking the fact that the
δ18Op value varies inversely with temperature (Longinelli and Nuti,
1973; Kolodny et al., 1983), the δ18Op of diagenetic bioapatite will
give erroneously high seawater temperatures (Wheeley et al., 2012).
Several proxies, as for example the La/Smn vs La/Ybn distribution
(Reynard et al., 1999), were proposed as potential proxies to identify
diagenetically altered bioapatite. At Coumiac andM'rirt, the La/Ybn ra-
tios range from 0.15 to 0.77 (average 0.51 ± 0.16) and 0.26 to 1.22
(average 0.60 ± 0.32), respectively. The La/Smn ratios range from
0.12 to 0.23 (average 0.16 ± 0.03) and from 0.11 to 0.29 (average
0.19 ± 0.07), respectively (Table 1). The distribution of La/Ybn and
La/Smn is indicative of bell-shaped REE pattern, which are interpreted
as a proxy of recrystallization with partitioning REEs according to
Reynard et al. (1999). However, it has been shown that no systematic
relationship has been found between the La/Ybn and La/Smn ratios and
the value of δ18Op (Pucéat et al., 2004), questioning the efficiency and
hence the usefulness of these ratios for identifying diagenetic alter-
ation of δ18Op values. Another line of evidence for minimal diagenetic
effects on the δ18Op values of conodonts at Coumiac and M'rirt, is the
similarity of the δ18Op evolution across the F–F boundary at these loca-
tions with those recorded in five other locations (Fig. 1), such as La
Serre (France; Girard and Renaud, 2007; Balter et al., 2008),
Behringhäuser tunnel and Vogelsberg Quarry (Germany; Joachimski
and Buggisch, 2002; Joachimski et al., 2009), Kowala and Wolayer
See (Poland and Austria, respectively; Joachimski et al., 2009). Even
if all these localities are not very far away from each other, it is unlikely
that a diagenetic process would have affected all the stratigraphic sec-
tions in the same way. We take as a last line of evidence for minimal
diagenetic effects, the fact that the δ8Op and (Sr/Ca)p values are corre-
lated with the shape of the conodont elements. At Coumiac, the shape
of the conodonts, which is expressed by a set of Fourier coefficients
(Renaud and Girard, 1999), is correlated to the δ18Op values (Balter
et al., 2008). This excludes diagenesis as the driving process for the
measured δ18Op and rather suggests that a strong environmental in-
fluence on the morphology of the feeding apparatus of the conodont
animal. In addition to shape variations, the δ18Op value of conodonts
is also correlated to that of inorganic δ13C (Balter et al., 2008). Changes
in the structure of the primary productivity, which is seen in the var-
iations of the δ13C value,markedly altered that of higher trophic levels,
including conodonts. In the present study, the (Sr/Ca)p ratio is also
correlated to the morphology at Coumiac. Results of Kendall tests,
which are non-parametric tests used for testing association between
small numbers of paired samples, give significant k-value (b0.001)
when testing shape and (Sr/Ca)p (just as a reminder, the k-value
equals 0.007 when testing shape and δ18Op at Coumiac, Balter et al.,
2008). At M'rirt, the shape of conodonts and their (Sr/Ca)p ratios
are also correlated (Kendall test, k = 0.043), but not shape and the
δ18Op values (Kendall test, k = 0.429). Based on these three lines
of evidence, i.e. 1) no correlation between δ18Op and (Sr/Ca)p, and
La/Smn and La/Ybn, 2) widespread similar evolution of δ18Op and
(Sr/Ca)p, and 3) correlation between shape and δ18Op and (Sr/Ca)p,
we emphasize that diagenesis had a weak effect on the conodont geo-
chemistry and thus that their δ18Op and (Sr/Ca)p compositions are po-
tentially accurate for paleoenvironmental reconstructions. Finally, if
one cannot rule out that any diagenetic effects have altered the
original δ18Op and (Sr/Ca)p values, we can ascertain that this would
have occurred homogeneously at the scale of the stratigraphic section.
Therefore, as an ultimate precaution in the discussion, we will not use
the absolute values of δ18Op and (Sr/Ca)p, but we will focus on their
relative variations.

4.2. Changes of seawater δ18O and Sr/Ca at the F–F boundary

The δ18Op ofM'rirt record reported in this study compares well with
previous results (Fig. 4) obtained for two F–F sections in Germany
(Joachimski and Buggisch, 2002) and with those obtained in the
Coumiac and La Serre F–F sections (Girard and Renaud, 2007; Balter
et al., 2008), and five other locations (Fig. 1), such as La Serre (France;
Girard and Renaud, 2007; Balter et al., 2008), Behringhäuser tunnel
and Vogelsberg Quarry (Germany; Joachimski and Buggisch, 2002;
Joachimski et al., 2009), and Kowala andWolayer See (Poland and Aus-
tria, respectively; Joachimski et al., 2009). However, the average δ18Op

at M'rirt (16.9‰) is lower by about 1.4‰ in comparison to Coumiac
(18.3‰). Such a difference, but of lesser intensity (~0.75‰), is also ob-
served between the two German sections, Vogelsberg Quarry and
Behringhäuser (Joachimski and Buggisch, 2002). Although no definitive
explanation can be put forward, we suggest that the δ18Op differences
observed in all the sections (Fig. 4) are the result of local fluctuating
conditions that prevail in the epicontinental platform environments.

Using the equation of Kolodny et al. (1983), the positive δ18Op ex-
cursions translate into a cooling of about 4 to 7 °C through the LKW
and of about 3 to 4 °C through the UKW. The recent reassessment of
the phosphate–water fractionation equation by Pucéat et al. (2010)
yields water temperatures at least 5 °C higher than with the equation
of Kolodny et al. (1983), resulting in unrealistic temperature varia-
tions, and in terms of absolute temperatures, in lethal conditions for
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marine invertebrates. This revives the debate concerning possible
variations of the δ18Ow value through time (Veizer et al., 1999). The
oxygen isotopic composition of the global ocean is thought to be buff-
ered by weathering and hydrothermal processes (e.g. Muehlenbachs,
1998; Jaffrès et al., 2007), such that the secular variations of the sea-
water δ18Ow values would be of low amplitude over time. However,
this does not hold if the δ18Ow variations result to changes in salinity
due to global ice-volume modifications (e.g. Schrag et al., 2002).
Concerning the Devonian, the sea level and temperature records
through the F–F crisis favor the hypothesis of a large climatic cooling
accompanied by a change of the δ18Ow value (Johnson et al., 1985;
Buggisch, 1991; Joachimski and Buggisch, 2002; Stephens and
Sumner, 2003).

The plot of (Sr/Ca)p vs δ18Op shows two groups of data (Fig. 5A, B),
thefirst one composed of conodonts of the pre-UKW levels, and the sec-
ond one composed of conodonts of the UKW and post-UKW levels. The
pre-UKW and UKW/post-UKW groups will be referred hereafter as to
“pre-crisis” and “crisis” groups, respectively. At the Coumiac section,
the correlation between conodonts δ18Op and (Sr/Ca)p ratios is statisti-
cally significant for the “crisis” data group (r = 0.92, k = 0.046) and for
the “pre-crisis” data group (r = 0.76, k = 0.001). The δ18Op vs. (Sr/Ca)p
relation atM'rirt section is characterized by low, but still significant, cor-
relations for both data groups (r = 0.54, k = 0.014 for the “pre-crisis”
group and r = 0.62, k = 0.014 for the “crisis” group). The transition
y=-1.69(
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Fig. 5. Correlations between δ18Op and (Sr/Ca)p. A. Results for Coumiac; B. Results
values of δ18Op and Sr/Cap between the “crisis” and the “pre-crisis”
groups are noted Δ18Op andΔSrp and can be calculated using the differ-
ence between the δ18Op and Sr/Cap values at the onset of the “crisis”
groups (average of the first two measurements) and at the termination
of the “pre-crisis” group (average of the last two measurements). In
these conditions, the calculated Δ18Op values are −0.3‰ and −0.4‰
at Coumiac and M'rirt, respectively, and the calculated ΔSrp values are
similar at Coumiac and M'rirt, i.e. −0.8 mmol/mol. Considering that at
Coumiac and M'rirt the δ18Op and Sr/Cap are linearly correlated for the
“pre-crisis” and “crisis” groups of conodonts which implies that the
temperature can be set constant for both groups. The values of δ18Ow

and (Sr/Ca)w corresponding to the “pre-crisis” and “crisis” groups are
given by the equations:

δ18Op
pre−δ18Op

cri ¼ δ18Ow
pre−δ18Ow

cri ð2Þ

and

Sr=Cað Þpcri= Sr=Cað Þppre ¼ Sr=Cað Þwcri
= Sr=Cað Þwpre

: ð3Þ

The Δ18Op value of ~−0.4‰ observed at M'rirt and Coumiac be-
tween the “crisis” and “pre-crisis” groups can be translated from phos-
phate to seawater. This holds for the ΔSrp value of ~−0.8 mmol/mol.
±0.51)x + 33.9(±9.0)
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for M'rirt; in both panels, the errors are expressed in 1σ standard deviation.
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4.3. The paleo-environmental context at the F–F boundary

The calculated average variation of about −0.4‰ of the δ18Ow

value at the F–F boundary is not consistent with ice cap development,
as it has been suggested by Copper (1986) on the basis of the
Famennian survival of cold and deep water orders of brachiopods,
and the loss of tropical orders and reef biota. A glaciation process
would have resulted in a positive variation of the δ18Ow value because
ice is 16O-enriched relative towater.We could not however assert that
the δ18Ow value did not change during the F–F, as it is postulated by
several groups of authors (e. g. Muehlenbachs et al., 2003;
Joachimski et al., 2009). The change of the (Sr/Ca)w value between
the Frasnian and the Famennian corresponds to a decrease of 20% of
the initial value. This short-term variation is not compatible with var-
iations of mid-ocean ridge hydrothermal alteration since this process
is only capable to influence the chemistry of seawater on longer time
scales (>10 My; Steuber and Veizer, 2002). However, during periods
of falling sea level, reefs are exposed to freshwater diagenesis
resulting in the dissolution of calcium carbonate. During the Devonian,
an important (~100 m) short-term sea level fall occurred at the F–F
boundary (Johnson et al., 1985; Haq and Schutter, 2008), leading in
many areas to a disconformity and erosional gap (Geldsetzer et al.,
1993). This sea level fall may have exposed the equatorial reef and
inter-reef carbonate platforms, which were expanded at that time on
a surface almost ten times wider than today (Copper, 2002). In this
context, the partial dissolution of emerged reef platforms is likely to
have resulted in a net export of Ca into the oceans, and hence to a de-
crease of the (Sr/Ca)w value. However, Stoll and Schrag (1998) have
demonstrated that the dissolution of shelf aragonite during low sea
level quaternary glacial periods did not change the value of the
(Sr/Ca)w ratio because the distribution coefficient of Sr (DSr) between
aragonite and seawater is close to unity. The hypothesis of emerged
reef dissolution nevertheless holds because the proportion of arago-
nitic relative to calcitic reef builders was low in the late Frasnian.
Based on the reef building taxa database (PARED), Kiessling et al.
(2008) report that less than 10% of reef organisms had an aragonitic
skeleton before the F–F boundary. The time frame of the hypothesis
of emerged reef dissolution is compatible with the results of the
modeling of the Sr and Ca budgets in the oceans by Stoll and Schrag
(1998), which shows that the (Sr/Ca)w value varied by about 4–7%
during a glacial/interglacial cycle. Keeping in mind that the Devonian
reefs were much more widespread than recently, the observed varia-
tion of 20% of the (Sr/Ca)w value at the F–F seems realistic. Another
mechanism that could explain the (Sr/Ca)w decrease across the F–F
boundary is that the proportion of the aragonitic reef builders became
predominant at the onset of the Famennian, despite a narrower global
reef expansion (Copper, 2002). Using the PARED database, Kiessling
et al. (2008) report that almost 60% of reefal builder genera were
aragonitic and that the proportional contribution of aragonite to
non-microbial reefs was close to 100% after the F–F boundary. The for-
mation of predominantly aragonitic reefs must have constituted an
effective sink of Sr, which may have resulted in a significant depletion
of (Sr/Ca)w. However, a closer look around the F–F reveals that, as the
diversity of the calcitic reef builders declined during the Frasnian,
reefal environments were progressively dominated by calcimicrobes
(Whalen et al., 2002; Shen et al., 2010), aragonitic reef builders
flourishing only during the Carboniferous (Kiessling et al., 2008).
Therefore, our preferred scenario is that the (Sr/Ca)w decrease during
the Frasnian was linked to a net export of Ca into the oceans due the
partial dissolution of emerged reef platforms.

5. Conclusions

We found in this study that the shape, the isotopic (δ18Op) and
the elemental composition (Sr/Ca)p of Devonian conodonts are cross-
correlated. First, this does not suggest that diagenesis has altered the
original δ18Op and (Sr/Ca)p values, but rather argues that conodonts
had a plastic response to environmental changes at the F–F boundary.
Second, we use the correlations between the δ18Op and (Sr/Ca)p values
to estimate the changes of seawater δ18Ow and (Sr/Ca)w compositions
at the F–F boundary. While we could not ascertain whether the value
of δ18Ow has changed or not at the F–F boundary, we estimate that
the value of the (Sr/Ca)w ratio dropped by about 20% during this period.
This variation fits with two scenarios, which are not incompatible, the
erosion of calcitic Frasnian reefs and the expansion of aragonitc
Famennian reefs.
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