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We  propose  a novel  model  for  the
dynamics  of  flexible  fibres  within  a
flowing  foam.
As  in  a  Newtonian  fluid  fibres  experi-
ence a  tumbling  instability.
The  complex  motion  of  bubbles  does
not allow  fibres  to align  with  the  flow.
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a  b  s  t r  a  c  t

Recently  there  has been  a renewed  interest  in  using  foamy  suspensions  of  wood  fibres  as  a carrier  fluid
in  papermaking  but  there  is  a  lack  of  fundamental  understanding  of the  dynamics  of  such  a three-phase
system.  In  this  article  we  propose  a numerical  model  for  the dynamics  of an individual  flexible  fibre within
a  flowing  foam,  based  on  discrete-element  methods.  As  is  observed  in  a Newtonian  shear  flow,  we  observe
that the  fibre  systematically  experiences  a tumbling  instability:  the  disordered  motion  of  bubbles  cannot
prevent  the  pseudo-periodical  flip  of the  fibre.  Our simulations  show  that  the  tumbling  time  decreases
ibre-laden foams
apermaking
umbling instability
ubble model

almost  as  the inverse  of  the  strain  rate.  It also  decays  when  the fibre  length  is  increased,  asymptoting  to a
finite  constant.  The  tumbling  time  is  found  to be independent  of  the stiffness  of the  fibre.  Because  of  their
tumbling  motion,  long  and  flexible  fibres  spend  most  of  the time  in a coiled  geometry.  This would  imply
that  using  foam  as a carrier  fluid  is not  enough  to keep  fibres  aligned  with  the  flow.  However,  further
refinements  of the  model  will  need  to be considered  to arrive  at firm  conclusions  regarding  alignment.

©  2017  Elsevier  B.V.  All  rights  reserved.
. Introduction
The possibility of replacing water by a liquid foam as the carrier
uid for wood fibres in papermaking has led to a renewed inter-
st in the technique by the paper industry. Although this idea was
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initially proposed in the 1970s [22], quantitative investigations of
the behaviour of fibre-laden foams have only begun quite recently.
The use of a fibre-laden foam would considerably reduce the water
consumption and consequently the energy needed for the drying of
the paper. Furthermore, the technique might enable improvement

and better control of the properties of the final fibre network: the
same method could then be applied to the manufacturing of other
novel fibrous materials (e.g. for insulation, non-woven textiles, oil
absorption, etc.).
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Fig. 1. Foam produced by the bubble model, containing a fibre represented by 25 connected disks (appearing in blue), and close-up view of this fibre surrounded by bubbles.
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ixed  streamwise velocities (0 and U, respectively) are imposed on the bubbles com
ell  is much longer (� about 100 bubble diameters).

In the papermaking framework, several experimental studies
2,3,11,10] have recently investigated the influence of the fibres
depending on their physico-chemical characteristics) on the prop-
rties of the wet foam used as carrier fluid: incorporating fibres
hile mixing the foaming liquid produces a foam with smaller bub-

les and a higher liquid fraction than without fibres. Foam viscosity
as been found to increase with increased content of rough wood
bres, although the foam still remains shear-thinning. This viscos-

ty increase might not occur when using artificial smooth fibres
uch as viscose. Further work also addressed the alteration of local
oam geometry in the presence of fibres and the slow-down in foam
oarsening [27]. The influence of the foam on the properties of the
nal dry fibre network has been studied by Al-Qararah et al. [1],
ho showed that the pore size distribution in the paper sheet is
ore regular if the fibres are deposited from a foam suspension,

ather than from classical water-based pulp.
It is important to investigate theoretically and numerically the

ynamics of fibre-laden foams, in order to better understand the
ey parameters that control the interactions between fibres and
ubbles: how does the presence of fibres affect the properties of
he foam, and how can we use the foam carrier in order to tune the
roperties of the final fibre network?

In the past 20 years, the physics of liquid foams has known flour-
shing progress [26,5], whether it deals with the physico-chemical
roperties of the thin liquid films, the quasi-static properties of

 foam (bubble coarsening and ripening, drainage) or its dynam-
cal behaviour (influence of flow on topology, rheology). Also,
ince the pioneering theoretical works of Jeffery [12] on the
ynamics of ellipsoidal particles, the study of fibres in Newto-
ian fluid flows has been the subject of many experimental and
umerical studies, with motivations as diverse as papermaking,
ater purification, dynamics of DNA molecules or microswimmers

8,29,18,24,23,9,16,25,15,7]. In particular, fibre suspensions have
ften been modelled by studying the interactions between a lam-
nar simple shear or Poiseuille flow and flexible rods modelled as
trings of spherical (or circular) beads.

Here we propose to combine such a model for fibres with a
odel that describes a foam itself as a packing of soft spheres or

isks (in 2D). This so-called bubble model, or soft-sphere model was
ntroduced by Durian [6] in order to simulate mechanical proper-

ies of wet foams. As shown by Langlois et al. [14], this simplistic
ut computationally efficient approach is sufficient to reproduce
he basic features of the rheology of foams: existence of a yield
tress, Herschel–Bulkley shear-thinning rheology, occurrence of
ng both side-walls (full grey). Note that in the actual simulations the length of the

shear-bands in a Hele-Shaw cell, and it can also be appropriate for
more complex geometries [13].

In this article we  will consider the behaviour of a single fibre
in a two-dimensional (2D) foam under shear, as a preliminary
study in order for further investigations of the rheology of three-
dimensional fibre-laden foams. The article is organized as follows:
in Section 2 we describe the implementation of the bubble model
and the modelling of the fibres; in Section 3 we analyze the motion
of the fibre as a function of its length and stiffness, strain rate and
channel width. Finally we draw conclusions regarding the use of
foam as a carrier fluid for fibres.

2. Numerical model

2.1. Bubble model

The 2D foam, as described by the bubble model [6,14], is a dense
packing of circular bubbles. A small polydispersity in bubble size is
introduced to prevent crystallization of the bubbles, with each bub-
ble radius Ri being chosen within a uniform distribution bounded by
R0 × (1 ± 0.2), R0 being the average radius. The foam is produced by
compressing a sample of 2000–10,000 bubbles between two  side-
walls, of length �=200 R0 and made of fixed bubbles. The final state is
obtained for a gap W between these walls (see Fig. 1), defined by the
packing fraction

∑
�Ri

2/(W �) =0.90 (the overlaps between bubbles
being neglected). This corresponds to an effective liquid fraction
� = 0.10. One of the side-walls is then moved tangentially at a con-
stant speed U, which defines the average strain rate as �̇ = U/W .
The other side-wall is kept stationary. The dynamics of the foam are
computed by solving Newton’s second law for each individual bub-
ble, using classical numerical techniques originally developed for
Molecular Dynamics [17]. Periodic boundary conditions are applied
in the streamwise direction.

Bubbles interact with one another through elastic and viscous
forces. When overlapping, two bubbles i and j, located respectively
at ri and rj and of radii Ri and Rj, repel each other via a linear elastic
force. A bubble j then exerts on bubble i the force
Fr
ij = −�

2R0

Ri + Rj
�ij nij. (1)
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Fig. 2. Overlap �ij between two contacting bubbles of radii Ri and Rj , located at ri

and rj , respectively.

Fig. 3. Elastic (Fe) and bending (Fb) forces experienced by the disks representing the
fibre, whose shape is characterized by its end-to-end vector. Elastic forces tend to
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timestep �t  is chosen 100 times smaller than the characteristic
ring the fibre length back to equilibrium and bending forces tend to keep the fibre
traightened.

here � is the coefficient of elasticity (related to surface tension),
ij is the unit normal vector between bubbles i and j, defined by

ij = rj − ri

|rj − ri|
, (2)

nd the overlap �ij (see Fig. 2) is given by �ij = (Ri + Rj) − |rj − ri|. The
atio 2R0/(Ri + Rj) in Eq. (1) takes into account that larger bubbles are
asier to deform than smaller ones. In a real flowing foam, energy
s dissipated by the viscosity of the liquid within the films between
ubbles. This is accounted for in the bubble model by introducing

 viscous force Fv acting on a bubble i in contact with a bubble j:

v
ij = cb(vj − vi) (3)

here cb is a dissipation constant and vi and vj are the respective
ubble velocities.

The two forces Fr
ij and Fv

ij allow us to define the dimension-
ess Deborah number De = �̇cb/�,  that relates the timescale of
ubble dynamics �b = cb/� to the shear timescale 1/ �̇ .

.2. Particle model of the fibre

Following the seminal works of Yamamoto and Matsuoka [28],
e model a deformable fibre as a string of N disks of radius

f = 0.6R0. This model is particularly appropriate within the bubble
odel, since the dynamics of these fibre particles can be computed
ogether with the dynamics of the bubbles. Within the fibre, each
article exerts both an elastic and a bending force on its neighbours
see Fig. 3). Elasticity is modelled by adding linear springs between
ysicochem. Eng. Aspects 534 (2017) 105–111 107

each pair of adjacent fibre particles. The elastic force experienced
by a fibre particle i is then

Fe
i = −�(li − l0) ni−1,i + �(li+1 − l0) ni,i+1 (4)

with li = |ri − ri−1| and l0 = 1.8 Rf the distance between two fibre par-
ticles at equilibrium. This force tends to bring the fibre back to
its equilibrium length L0 = (N − 1)l0. Discretizing the bending free
energy of a continuous elastic rod gives the following expression
for the bending force acting on the particle i [9,20]:

Fi
b = S × � R0 ×

{
	i−1

li
ni−2,i−1 −

[
	i−1

li
ni−2,i−1 · ni−1,i + 	i

li+1

+	i

li
ni−1,i · ni,i+1

]
ni−1,i +

[
	i

li+1
ni−1,i · ni,i+1 + 	i

li

+	i+1

li+1
ni,i+1 · ni+1,i+2

]
ni,i+1 − 	i+1

li+1
ni+1,i+2

}
(5)

with 	i = l0 if 2 ≤ i ≤ N − 1 and 	i = 0 for i = 1 or N. This force tends
to restore alignment of each triplet of adjacent fibre particles, and
therefore straightens the fibre. The parameter S represents the
dimensionless stiffness of the fibre. Finally, the interaction between
a fibre particle and a bubble, or between two  non-adjacent fibre
particles, is treated as if it were a bubble-bubble interaction (with
repulsive and dissipative forces, see Eqs. (1) and (3)). We  will return
to this treatment in Section 4 where we discuss the modelling of
fibre roughness.

In order to describe the shape of the fibre during the dynamics,
we define its end-to-end vector L1N (as illustrated in Fig. 3), whose
normalized components are noted as

�x(t) = xN(t) − x1(t)
L0

and �y(t) = yN(t) − y1(t)
L0

(6)

where the indices 1 and N correspond to both ends of the fibre.
For instance, when the fibre is perfectly aligned in the streamwise
x-direction, we have �y  = 0, and if it is neither stretched nor com-
pressed, �x = 1. Following Słowicka et al. [21], we also define the
fractional compression of the fibre as

˛(t) = 1 − L(t)
(N − 1)l0

(7)

with L(t) = |L1N| the absolute distance between the two ends of the
fibre.  ̨ can be seen as a measurement of the state of the coiling
of the fibre. When the fibre is coiled, we have  ̨ > 0, whereas at
equilibrium  ̨ = 0 and when the fibre is stretched  ̨ < 0.

2.3. Time integration

At a given iteration, all forces acting on each bubble/particle are
computed. Overlaps between bubbles are found by using the linked
cell algorithm [17]. As in previous implementations of the model
[14,19,13], an effective mass is assigned to each bubble/particle and
we use the Verlet algorithm (of fourth order of precision) [17] to
compute the position of each bubble/particle at the next iteration
from Newton’s second law. The mass is chosen so that the motion of
each bubble remains overdamped and inertia is therefore negligible
in the dynamics: we set the ratio �mb/cb

2 = 1.5 × 10−2. In order to
compute accurately each collision between bubbles, the iterative
viscous timescale:

�t  = �b

100
with �b = mb

cb
(8)
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Fig. 4. Normalized streamwise component �x/l0 of the end-to-end vector and
fractional compression of the fibre as a function of strain, for N = 50, S = 1.0 and
De  = 1.0 × 10−3. Most of the time the fibre is undeformed and oriented along the
streamwise direction. Each peak in  ̨ corresponds to the fibre flipping (which results
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Fig. 5. Successive snapshots of a fibre of length N = 50 undergoing a ‘flip’. The x-
position of the middle particle of the fibre is kept fixed in this representation. Images
are separated by �� = 2.

Fig. 6. Tumbling time as a function of the dimensionless strain rate De, for a fibre

and Matsuoka [28] for rigid fibers in the viscous shear flow of a
Newtonian fluid (in accordance with predictions by Jeffery [12])
n  reversing its direction).

. Dynamics of a fibre in a shear flow

.1. Tumbling instability

Let us first remark that the presence of a single fibre does not
ffect the average linear velocity profile in the gap. We  plot in
ig. 4 the streamwise extension �x  of the fibre as a function of
train � = �̇ × t, for a length N = 50, a strain rate De = 1.0 × 10−3

nd a stiffness S = 1.0. In this example, we can observe that the fibre
pends most of the time in a straight configuration (

∣∣�x
∣∣ � 1 and

 � 0), during which it is roughly aligned with the direction of the
ow. However, it also experiences successive flips, during which

t rapidly coils (  ̨ > 0.5) before straightening again in the opposite
irection. This tumbling motion, which is also observed for an indi-
idual fibre within a viscous Newtonian flow [20,21], appears to
e roughly periodic. Hence, the presence of the bubbles is not suf-
cient to channel the motion of fibre and prevent this instability.
he snapshots in Fig. 5 illustrates the successive shapes taken by
he fibre during one of these flips.

.2. Dependence on strain rate

A fibre flip is identified by the rapid change in sign of �x  and
e mark its occurrence in time when �x  = 0. The duration between

wo consecutive flips defines the tumbling time Tt. The average
umbling time for a given strain rate is computed over at least 50
ip events. Different from the case of a viscous shear flow in a New-
onian fluid, it is possible in a foam to define an internal timescale,
ndependently of the strain rate. We  therefore rescale the tumbling
ime with the internal timescale �b, while varying the strain rate
˙  between De = 5 ×10−5 and De = 1 ×10−2. It has been shown that
he bubble model represents accurately the Herschel–Bulkley rhe-
logy: � = �y + A × �̇1/2 over this range [14]. If we keep the length
nd stiffness of the fibre fixed, respectively N = 50 and S = 1, we
bserve the variation shown in Fig. 6. As theoretically predicted
y Jeffery [12] for rigid ellipsoids and numerically observed by Jef-
ery [28] for rigid particulate rods in a Newtonian shear flow, we

bserve that the tumbling time decreases when �̇ or De increase.
owever, the above studies predict that the tumbling time scales
of length N = 50 and stiffness S = 1. The solid line represents the best fit by a power
law (see Eq. (9)). The dashed line represents the best fit by an inverse function:
Tt/�b = 12.4 × De−1.

linearly with the inverse strain rate �̇−1. In the case of a foam flow,
the best fit to our data to a power law results in

Tt

�b
= 60.4 × De−0.85±0.03 (9)

which departs only slightly from the prediction (exponent −1) for
slender objects.

3.3. Influence of fibre length

Since the scaling of the tumbling time with the strain rate is
close to an inverse relationship, we now define the dimensionless
tumbling time as �t = �̇ × Tt . In Fig. 7, we  plot this rescaled tum-
bling time as a function of the fibre length, all other parameters
being kept constant. As can be observed, the longer the fibre, the
faster it tumbles, which differs from results obtained by Yamamoto
and by Słowicka et al. [20] for a single (but generally shorter) fibre
in a Newtonian Poiseuille flow. However, let us first note that the
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Fig. 7. Dimensionless tumbling time �t = �̇Tt as a function of the length N of the
fibre, for De = 1.0 × 10−3 and stiffness S = 1.0. Vertical bars represent standard devi-
ation of successive tumbling times. The straight line is the period �0 = 20.
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Fig. 9. Transverse component versus streamwise component of the fibre end-to-
end  vector for different lengths of the fibre, each component being normalized by
the  fibre length N. The longer the fibre, the flatter is the orbit.
ig. 8. Fraction of the time, 
, that the fibre spends in a relatively straight configu-
ation (  ̨ < 0.2), as a function of its length N (S = 1.0 and De = 1.0 × 10−3 as in Fig. 7).
onger fibres tend to spend more time in a coiled configuration while flipping.

umbling time quickly reaches a steady value �0 � 20 when the
bre length exceeds 50 particles. Furthermore, very short fibres
end to exhibit chaotic dynamics with scarce random flips, which
esults in a very large dispersion in measured tumbling times (see
rror bars in Fig. 7).

Let us insist on the fact that even if the tumbling time becomes
ndependent of the fibre length, the detailed dynamics of the fibre
an still differ. This can be evidenced by plotting the fraction of time

 that the fibre spends in a roughly straight geometry, defined as
 < 0.2 (i.e., a configuration is considered as straight if L/L0 > 0.8).
s illustrated in Fig. 8, 
 is equal to 1 for very short fibres (which
ehave like rigid elongated particles) and continuously decreases
ith increasing fibre length. If, for short fibres, the flipping transi-

ion is almost instantaneous compared to the tumbling time, these
wo times become of the same order as the fibre gets longer, until
he latter spends most of the time in a relatively coiled geometry.

In Fig. 9, we plot the orbits described by the two ends of the
bre in time, normalized by their distance at equilibrium. The orbit

s close to a circle for the shortest fibre, which behaves like a rigid
bject. It is then quickly flattened in the transverse direction when
he fibre gets longer. Let us remark, however, that in this case the
treamwise distance between the two ends of the fibre does not
epresent the maximum streamwise extension of the fibre.

.4. Influence of fibre stiffness

In Fig. 10 we plot the variation of tumbling time as a function of

he dimensionless stiffness of a fibre made of N = 50 particles, for

 = 0.02 to S = 35. Considering the dispersion in observed tumbling
imes, we can conclude that in the range that we  consider here,
he stiffness of the fibre does not affect the tumbling time. This is
Fig. 10. Tumbling time as a function of the dimensionless stiffness of the fibre, for
a  length N = 50 and Deborah number De = 10−3. Within the considered range, the
tumbling time can be considered as independent of the fibre stiffness.

partially consistent with the results of Yamamoto and Matsuoka
[28] which show that the tumbling time in a Newtonian fluid
becomes constant if the fibre is rigid enough. As in the case of the
influence of the fibre length, it is striking that the tumbling time
remains almost invariant although the detailed dynamics of the
flipping motion is different, as illustrated by Fig. 11 where we  plot
the standard deviation of the normalized transverse span of the
fibre �y/L0. As can be seen, the average transverse extension of
the fibre during the tumbling motion increases with its stiffness:
flexible fibres are able to flip by taking sinuous shapes (which was
called ‘snake turn’ by Forgacs and Mason [8]), while stiffer fibres
can only flip like rigid rods. In all cases, natural transverse velocity
fluctuations of the bubbles constantly disturb the fibre from its
straightened position aligned with the flow, which results in some
parts of the fibre being accelerated. In the flexible case, as shown
in Fig. 11, the typical transverse span is of the order of �y  ∼ L0/10.
This implies that the relative velocity of both ends of the fibre is
of the order of �v∼ �̇ × L0/10. In order to flip, the fastest end of
the fibre needs to be displaced by a distance 2L0, which leads to a

normalized tumbling time

�t =
˙

�Tt =
˙

� × 2L0

�v
∼20 , (10)
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Fig. 11. Standard deviation of the transverse span �y(t) of the fibre, normalized by
the  equilibrium length L0, as a function of the stiffness S. Snapshots show the typical
shape of the fibre during a flip in the limits S ∼ 0.1 and S ∼ 20.

Fig. 12. Dimensionless tumbling time �t = �̇Tt as a function of the width of the gap,
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ormalized by the equilibrium length of the fibre l0. Vertical bars represent standard
eviation of successive tumbling times. We cannot conclude any particular influence
f  the gap width on the tumbling time.

onsistent with our observations (Figs. 6 and 10). In the rigid
imit, the ends of the fibre undergo roughly circular orbits. In a
ewtonian fluid, the tumbling time should be equal to half the
eriod predicted by Jeffery [12] for rigid ellipsoids of aspect ratio
: �J = � ×

(
r + 1/r

)
. Extrapolating the effective aspect ratio r* of

 cylindrical rods that behaves like an ellipsoidal rod of aspect
atio r [4,28], we find r* = 35 for a fibre of length N = 50, which
orresponds to �J = 110 � �0. Hence the actual tumbling time that
e observe in our simulations is much shorter than predicted in a
ewtonian fluid by Jeffery.

.5. Influence of gap width

Finally, we varied the width of the gap between the two side-
alls, and plotted the average tumbling time in Fig. 12. Let us note

hat the very large dispersion for the widest gap is in fact due to a
mall number of abnormally long times without any flip. However,
onsidering the dispersion, it is difficult to assess that the width of
he gap has any major influence on the tumbling time. Interestingly,
t is also observed that the tumbling motion still occurs even when
he width of the gap is smaller than the length of the fibre (if the
atter is sufficiently flexible).
. Conclusion

In this article we have presented the first model of a fibre-laden
oam. By combining the bubble model used in foam physics with a
ysicochem. Eng. Aspects 534 (2017) 105–111

particulate model of a fibre classically used in simulations of fibre
suspensions, we have investigated the dynamics of an individual
flexible fibre within the shear flow of a 2D foam. Our simulations
show that the tumbling time decreases as a power law of the strain
rate, close to the inverse relationship already observed for fibres
in a Newtonian shear flow. We  also observe that the tumbling
motion gets faster when the fibre gets longer, but becomes constant
when the fibre length exceeds 50 bubble diameters. Interestingly,
the tumbling time is also observed to be constant (with �̇Tt � 20)
when fibre stiffness is increased over 3 decades, though the detailed
dynamics of the flipping motion is qualitatively different: short and
rigid fibres describe roughly circular orbits and remain straight-
ened, while long and flexible fibres spend most of the time in a
coiled geometry and become sinuous when flipping. These results
imply that using foam as a carrier fluid is not enough to keep fibres
aligned in the direction of the flow. With this same issue in mind,
we shall address the dynamics and interactions of multiple fibres in
suspension within a foam, and the rheology of such a three-phase
fluid, in a further article.

Recent experimental studies [3] suggest that the rheology of a
fibre-laden foam can be affected by the surface properties of the
fibres (which can be either smooth or rough). This effect could
readily be incorporated in our model by adding a tunable attrac-
tive force between the fibre particles and adjacent bubbles, and
between different fibres. Performing 2D experiments with model
fibres in well-controlled flows would be useful to help tuning these
numerical ingredients. Finally, let us note that the model can also
conveniently be extended to non-homogeneous strain rates (e.g.
for a pipe flow) and, by adding twisting forces, to a suspension of
fibres in a 3D foam.
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