Faster Algorithms for List-Decoding Reed-Solomon Codes via Simultaneous Polynomial Approximations

Vincent Neiger§;†

Claude-Pierre Jeannerod§ Éric Schost† Gilles Villard§

§AriC, LIP, École Normale Supérieure de Lyon, France
†ORCCA, Computer Science Department, Western University, London, ON, Canada

Aric Tuesday Work Session
July 1st, 2014
Outline

1. Unique decoding via approximation
 - Encoding and transmission
 - Unique decoding
 - Berlekamp-Welch(-like) algorithm

2. List-decoding Reed-Solomon codes
 - List-decoding
 - The interpolation step (previous work)

3. List-decoding via approximation
 - From interpolation to approximation
 - Solving the approximation problem using structured matrices
 - Extension to the multivariate case (folded Reed-Solomon codes)
Outline

1. Unique decoding via approximation
 - Encoding and transmission
 - Unique decoding
 - Berlekamp-Welch(-like) algorithm

2. List-decoding Reed-Solomon codes
 - List-decoding
 - The interpolation step (previous work)

3. List-decoding via approximation
 - From interpolation to approximation
 - Solving the approximation problem using structured matrices
 - Extension to the multivariate case (folded Reed-Solomon codes)
Error-correcting codes

Goal:
Enable **reliable** delivery of data over **unreliable** communication channels

Strategy:
add **redundancy** to the message
add **redundancy** to the message
add **redundancy** to the message

(courtesy of J.S.R. Nielsen)
Encoding: adding redundancy

All intended words
\((w_0, \ldots, w_k)\) \(\rightarrow\) All code words
\((c_1, \ldots, c_n)\)

\(w = w_0 + w_1 X + \cdots + w_k X^k\) \(\rightarrow\) their evaluation at \(x_1, \ldots, x_n\)
\((w(x_1), \ldots, w(x_n))\)
Transmission over an unreliable channel

Assumption: there are at most e errors during transmission of a code word

$$c = (c_1, \ldots, c_n) \xrightarrow{\text{noise}} y = (y_1, \ldots, y_n)$$

with $\#\{i \mid c_i \neq y_i\} \leq e$ (metric called Hamming distance)

- \bullet = code word
- \bullet = received word
Transmission over an unreliable channel

Assumption: there are at most e errors during transmission of a code word

$$c = (c_1, \ldots, c_n) \xrightarrow{\text{noise}} y = (y_1, \ldots, y_n)$$

with $\#\{i \mid c_i \neq y_i\} \leq e$ (metric called Hamming distance)

Reed-Solomon code:

$$(w(x_1), \ldots, w(x_n)) \xrightarrow{\text{noise}} (y_1, \ldots, y_n)$$

with $\#\{i \mid w(x_i) \neq y_i\} \leq e$

(y_1, \ldots, y_n) is the received word

All possible received words $=$ words in the balls of radius e centered on the code words
Transmission over an unreliable channel

Assumption: there are at most e errors during transmission of a code word

\[c = (w(x_1), \ldots, w(x_n)) \xrightarrow{\text{noise}} y = (y_1, \ldots, y_n) \]

with \(\# \{ i \mid w(x_i) \neq y_i \} \leq e \) (metric called Hamming distance)
Unique decoding

Received word \((y_1, \ldots, y_n)\)

Decoding
find a polynomial \(w\) of degree \(\leq k\) such that \(#\{i \mid w(x_i) \neq y_i\} \leq e\)

Well-defined?
Exactly one such polynomial \(w\) as long as no overlap between the balls of radius \(e\) centered on the codewords
Unique decoding

Received word \((y_1, \ldots, y_n)\)

Decoding
find a polynomial \(w\) of degree \(\leq k\)
such that \(\#\{i \mid w(x_i) \neq y_i\} \leq e\)

Well-defined?
Exactly one such polynomial \(w\) as long
as no overlap between the balls of radius \(e\) centered on the codewords

Unique decoding
when
\[2e < d_{\text{min}}\]
Unique decoding

Received word \((y_1, \ldots, y_n)\)

Decoding

find a polynomial \(w\) of degree \(\leq k\) such that \(#\{i \mid w(x_i) \neq y_i\} \leq e\)

Well-defined?

Exactly one such polynomial \(w\) as long as no overlap between the balls of radius \(e\) centered on the codewords

Unique decoding

when

\[2e < d_{\text{min}}\]
Minimum distance

For Reed-Solomon codes:

- for \(w_1 \neq w_2 \) polynomials of degree \(\leq k \) over the base field \(\mathbb{K} \), \((w_1(x_1), \ldots, w_1(x_n))\) and \((w_2(x_1), \ldots, w_2(x_n))\) agree at \(\leq k \) positions \(\Rightarrow \) distance at least \(n - k \) between two code words

- for \(w_1 = 0 \) and \(w_2 = (X - x_1) \cdots (X - x_k) \), the code words are \((0, \ldots, 0)\) and \((0, \ldots, 0, w_2(x_{k+1}), \ldots, w_2(x_n))\) \(\Rightarrow \) two code words at distance exactly \(n - k \)

\[\Rightarrow \text{minimum distance } d_{\min} = n - k \]

Hence the unique decoding condition: \(e < \frac{n - k}{2} \)
Unique decoding problem

Unique decoding of Reed-Solomon codes

Input:
- x_1, \ldots, x_n the n distinct evaluation points in \mathbb{K},
- k the degree bound, e the error-correction radius,
- (y_1, \ldots, y_n) the received word in \mathbb{K}^n

Unique decoding assumption: $e < \frac{n-k}{2}$

Output:
- The polynomial w in $\mathbb{K}[X]$ such that

$$\deg w \leq k \quad \text{and} \quad \# \{i \mid w(x_i) \neq y_i\} \leq e.$$
Key equations (unique decoding)

Define the interpolation polynomial

\[R(X) \text{ such that } R(x_i) = y_i, \]

and the error-locator polynomial

\[\Lambda(X) = \prod_{i \mid \text{error}} (X - x_i). \]

\(\Lambda(X) \) is an unknown polynomial with \(\deg \Lambda \leq e \)

Key equations

for every \(i, \quad \Lambda(x_i)R(x_i) = \Lambda(x_i)w(x_i) \)

Quadratic equations in the unknown coefficients of \(w \) and \(\Lambda \ldots \)
Modular key equation (unique decoding)

Interpolation polynomial and error-locator polynomial

\[R(x_i) = y_i, \quad \Lambda(X) = \prod_{i \mid \text{error}} (X - x_i) \]

Key equations

for every \(i \), \[\Lambda(x_i) R(x_i) = \Lambda(x_i) w(x_i) \]

i.e. for every \(i \), \[\Lambda(X) R(X) = \Lambda(X) w(X) \mod (X - x_i) \]
Modular key equation (unique decoding)

Interpolation polynomial and error-locator polynomial

\[R(x_i) = y_i, \quad \Lambda(X) = \prod_{i \mid \text{error}} (X - x_i) \]

Key equations

For every \(i \), \(\Lambda(x_i) R(x_i) = \Lambda(x_i) w(x_i) \)

i.e. for every \(i \), \(\Lambda(X) R(X) = \Lambda(X) w(X) \mod (X - x_i) \)

Define the master polynomial

\[G(X) = \prod_{1 \leq i \leq n} (X - x_i) \]

Modular key equation

\[\Lambda(X) R(X) = \Lambda(X) w(X) \mod G(X) \]
Unique decoding via rational reconstruction

Modular key equation:

\[\Lambda R \equiv \Lambda w \mod G \]

where \(R(x_i) = y_i \), \(G(X) = \prod_{1 \leq i \leq n}(X - x_i) \), \(\Lambda(X) = \prod_{i \mid \text{error}}(X - x_i) \).

\[\implies \lambda = \Lambda, \omega = \Lambda w \] form a solution of the rational reconstruction problem

\[\begin{cases} \lambda R = \omega \mod G, \\ \deg(\lambda) \leq e, \quad \deg(\omega) < n - e, \quad \lambda \text{ monic}. \end{cases} \]

(since \(\deg \Lambda w \leq e + k < n - e \) by the unique decoding assumption)

[Modern Computer Algebra, von zur Gathen - Gerhard, 2003]
Berlekamp-Welch(-like) algorithm for unique decoding

\[\lambda = \Lambda, \omega = \Lambda w \] form a solution of the rational reconstruction problem

\[
\begin{cases}
 \lambda R = \omega \mod G, \\
 \deg(\lambda) \leq e, \quad \deg(\omega) < n - e, \quad \lambda \text{ monic.}
\end{cases}
\]

\[\implies \text{unique rational solution } \omega/\lambda, \text{ which has to be } \frac{\Lambda w}{\Lambda} = w! \]

This solution is computed using the extended Euclidean algorithm in \(\mathcal{O}^\sim(n) \) operations in \(\mathbb{K} \)

Conclusion:
unique decoding in quasi-linear time via an approximation problem
Outline

1. Unique decoding via approximation
 - Encoding and transmission
 - Unique decoding
 - Berlekamp-Welch(-like) algorithm

2. List-decoding Reed-Solomon codes
 - List-decoding
 - The interpolation step (previous work)

3. List-decoding via approximation
 - From interpolation to approximation
 - Solving the approximation problem using structured matrices
 - Extension to the multivariate case (folded Reed-Solomon codes)
Non-unique decoding

How to “decode” when more errors?

transmission with \(\leq e \) errors

where \(e \geq d_{\text{min}}/2 \)
Non-unique decoding

How to “decode” when more errors?

transmission with $\leq e$ errors

where $e \geq \frac{d_{\text{min}}}{2}$

possibly two (or more) code words at the same distance...

the closest code word is not necessarily the one which was sent...
Non-unique decoding

How to “decode” when more errors?

transmission with \(\leq e \) errors
where \(e \geq \frac{d_{\text{min}}}{2} \)

possibly two (or more) code words at the same distance.

the closest code word is not necessarily the one which was sent.

⇒ Return a list of all code words at distance \(\leq e \) (called list-decoding)
List-decoding problem

For convenience, we use the agreement parameter \(t = n - e \)

List-decoding Reed-Solomon codes

Input:
- \(n \) points \(\{(x_i, y_i)\}_{1 \leq i \leq n} \) in \(\mathbb{K}^2 \), with the \(x_i \)'s distinct
- \(k \) the degree constraint, \(t \) the agreement

List-decoding assumption: \(t^2 > kn \) \cite{GuruswamiS99}

Output:
- all polynomials \(w \) in \(\mathbb{K}[X] \) such that

\[
\deg w \leq k \quad \text{and} \quad \#\{i \mid w(x_i) = y_i\} \geq t.
\]

Problem also called \textit{Polynomial Reconstruction}
Polynomial Reconstruction

Figure: Polynomial reconstruction (Lagrange interpolation)

degree \leq 4
agreement \geq 5
Polynomial Reconstruction

Figure: Polynomial reconstruction

\[w(x) \]

\[y_1, y_2, y_3, y_4, y_5 \]

degree \(\leq 3 \)
agreement \(\geq 4 \)
Polynomial Reconstruction

Figure: Polynomial reconstruction (all solutions)
Why the interpolation step (1/3)

Consider one solution \(w_1 \). We still have the modular key equation

\[
\Lambda_1 R = \Lambda_1 w_1 \mod G
\]

where

\[
R(x_i) = y_i, \quad G(X) = \prod_{1 \leq i \leq n} (X - x_i), \quad \Lambda_1(X) = \prod_{i \mid \text{error}_1} (X - x_i).
\]

But possibly,

\[
\text{deg}(\Lambda_1) + \text{deg}(\Lambda_1 w_1) \geq n = \text{deg G}
\]

\(\implies \) no uniqueness of a rational solution \(\omega_1/\lambda_1 \) to the problem

\[
\lambda_1 R = \omega_1 \mod G \text{ with } \text{deg} \omega_1 \leq e + k
\]

(more unknowns than equations in the linearized problem)
Why the interpolation step (2/3)

Note that

\[\Lambda_1(R - w_1) = 0 \mod G \]

Now consider two solutions \(w_1, w_2 \). We have the modular key equation

\[\Lambda(R - w_1)(R - w_2) = 0 \mod G \]

where \(\Lambda = \prod_{i \mid \text{error}1 \wedge 2} (X - x_i) = \gcd(\Lambda_1, \Lambda_2) \).

\[\implies w_1, w_2 \text{ are } Y\text{-roots of the bivariate polynomial} \]

\[Q(X, Y) = \Lambda(Y - w_1)(Y - w_2) \]
Why the interpolation step (3/3)

Consider two solutions \(w_1, w_2 \), then \(\Lambda(R - w_1)(R - w_2) = 0 \mod G \) and \(w_1, w_2 \) are \(Y \)-roots of

\[
Q(X, Y) = \Lambda(Y - w_1)(Y - w_2)
= \Lambda w_1 w_2 - \Lambda(w_1 + w_2)Y + \Lambda Y^2
\]

Similar remark when considering all \(\ell \) solutions \(w_1, \ldots, w_\ell \)

Properties of \(Q(X, Y) \):

- the unknown degree in \(Y \) of \(Q(X, Y) \) is the number of solutions \(\ell \)
- the unknown coefficients in \(X \) of \(Q(X, Y) \) have small degree
- we have the modular identity \(Q(X, R) = 0 \mod G \)
 or equivalently, for every \(i \), \(Q(x_i, y_i) = 0 \)
Guruswami-Sudan algorithm

It consists of two main steps,

- **Interpolation step**

 compute \(Q(X, Y) \) such that: \(w(X) \) solution \(\Rightarrow Q(X, w(X)) = 0 \)

- **Root-finding step**

 find all \(Y \)-roots of \(Q(X, Y) \), keep those that are solutions

Here we are interested in the **interpolation step**

\(\Rightarrow \) leads to a problem of **Interpolation with Multiplicities**.
A problem of Interpolation with multiplicities

Interpolation With Multiplicities

Input:

\(n \) points \(\{(x_i, y_i)\}_{1 \leq i \leq n} \) in \(K^2 \), with the \(x_i \)'s distinct
\(k \) the degree constraint, \(t \) the agreement
\(\ell \) the list-size, \(m \) the multiplicity \((m \leq \ell) \)

Output:

a polynomial \(Q \) in \(K[X, Y] \) such that

\((i)\) \(Q \) is nonzero,
\((ii)\) \(\deg_Y Q(X, Y) \leq \ell \), \hspace{2cm} \text{(list-size condition)}
\((iii)\) \(\deg_X Q(X, X^k Y) < mt \), \hspace{2cm} \text{(weighted-degree condition)}
\((iv)\) \(\forall i, \ Q(x_i, y_i) = 0 \) with multiplicity \(m \). \hspace{2cm} \text{(vanishing condition)}
Algorithms based on structured linear systems

[Roth - Ruckenstein, 2000] [Zeh - Gentner - Augot, 2011]

Write

\[Q(X, Y) = \sum_{0 \leq j \leq \ell} Q_j(X) Y^j \] \hspace{1cm} \text{(list-size condition)}

where \(\deg Q_j(X) < mt - jk \). \hspace{1cm} \text{(weighted-degree condition)}

Then, rewrite the vanishing condition so that a solution \(Q(X, Y) \) can be retrieved as a nontrivial solution of a homogeneous mosaic-Hankel linear system (the unknown being the coefficient vector of \(Q(X, Y) \)).

Complexity bound for this method:

\[\mathcal{O}(\ell m^4 n^2) \]

using a modified Feng-Tzeng’s linear system solver [Feng - Tzeng, 1991].
Algorithms based on polynomial lattices

[Alekhnovich, 2002] [Reinhard, 2003] [Beelen - Brander, 2010]
[Bernstein, 2011] [Cohn - Heninger, 2011]

Build a polynomial lattice \mathcal{L} such that

$$Q(X, Y) \in \mathcal{L} \iff \text{(list-size condition) + (vanishing condition)}.$$

Then, a solution to Interpolation With Multiplicities can be retrieved as a short vector in \mathcal{L} (weighted-degree condition).

Complexity bound for this method:

$$\mathcal{O}^\sim(\ell^\omega mn)$$

using an efficient polynomial lattice basis reduction algorithm:

or [Gupta - Sarkar - Storjohann - Valeriote, 2012]
Contributions

[Chowdhury - Jeannerod - Neiger - Schost - Villard, 2014]

1. New approach for the interpolation step
 - Based on a approximation problem
 - Solved using structured linear systems
 - Improved complexity bound
 \[O^\sim(\ell^{\omega - 1} m^2 n) \]

2. Extension to the multivariate case (folded Reed-Solomon codes)
 - Based on the same approximation problem
 - Improved complexity bound
 \[O^\sim \left(\left(\frac{s + \ell}{s} \right)^{\omega - 1} mn \left(\frac{s + m - 1}{s} \right) \right) \]
Outline

1. Unique decoding via approximation
 - Encoding and transmission
 - Unique decoding
 - Berlekamp-Welch(-like) algorithm

2. List-decoding Reed-Solomon codes
 - List-decoding
 - The interpolation step (previous work)

3. List-decoding via approximation
 - From interpolation to approximation
 - Solving the approximation problem using structured matrices
 - Extension to the multivariate case (folded Reed-Solomon codes)
Contributions

[Chowdhury - Jeannerod - Neiger - Schost - Villard, 2014]

1. **New approach for the interpolation step**
 - Based on a **approximation problem**
 - Solved using **structured linear systems**
 - Improved complexity bound
 \[\mathcal{O}^\sim(\ell^{\omega-1} m^2 n) \]

2. **Extension to the multivariate case (folded Reed-Solomon codes)**
 - Based on the same **approximation problem**
 - Improved complexity bound
 \[\mathcal{O}^\sim \left((\frac{s + \ell}{s})^{\omega-1} mn \left(\frac{s + m - 1}{s} \right) \right) \]
Assume that Q satisfies the **list-size condition**:

$$Q = \sum_{j \leq \ell} Q_j(X) Y^j$$

for some unknown polynomials Q_0, \ldots, Q_ℓ.

The **vanishing condition** can be rewritten as a set of modular equations:

$$\forall i \in \{1, \ldots, n\}, \quad Q(x_i, y_i) = 0 \text{ with multiplicity } m$$

$$\iff \forall i < m, \quad \sum_{i \leq j \leq \ell} Q_j(X) \binom{j}{i} R(X)^{j-i} = 0 \mod G(X)^{m-i}$$

where $G(X) = \prod_{1 \leq i \leq n} (X - x_i)$ and $R(X)$ such that $\forall i, R(x_i) = y_i$.
Reduction to an approximation problem (2/2)

Vanishing condition + list-size condition

$$\forall i < m, \quad \sum_{i < j \leq \ell} Q_j(X) \binom{j}{i} R(X)^{j-i} = 0 \pmod{P_i(X)}$$

Cost for computing $F_{i,j}$ and P_i:

- computing $n(m - i)$ coefficients of $F_{i,j}$ for every i, j
 \approx computing nm coefficients of $R(X)^j$ for $0 \leq j \leq \ell$
 $\leadsto \tilde{O}(\ell m^2 n)$ operations $\in O(\ell^{\omega-1} m^2 n)$

- computing P_i for every i
 $=\text{computing the } m \text{ polynomials } G(X), G(X)^2, \ldots, G(X)^m$
 $\leadsto \tilde{O}(m^2 n)$ operations $\in O(\ell^{\omega-1} m^2 n)$
Reduction to an approximation problem (2/2)

Vanishing condition + list-size condition + weighted-degree condition

\[\forall i < m, \quad \sum_{i < j \leq \ell} Q_j(X) \binom{j}{i} R(X)^{j-i} \equiv 0 \pmod{G(X)^{m-i}} \]

with the degree constraints \(\deg Q_j(X) < mt - jk \) for \(j \leq \ell \)

Cost for computing \(F_{i,j} \) and \(P_i \):

- computing \(n(m - i) \) coefficients of \(F_{i,j} \) for every \(i, j \)
 \(\approx \) computing \(nm \) coefficients of \(R(X)^j \) for \(0 \leq j \leq \ell \)
 \(\leadsto \mathcal{O}^{\sim}(\ell m^2 n) \) operations \(\in \mathcal{O}(\ell^{\omega - 1} m^2 n) \)

- computing \(P_i \) for every \(i \)
 \(= \) computing the \(m \) polynomials \(G(X), G(X)^2, \ldots, G(X)^m \)
 \(\leadsto \mathcal{O}^{\sim}(m^2 n) \) operations \(\in \mathcal{O}(\ell^{\omega - 1} m^2 n) \)
The approximation problem

\[\forall i < m, \quad \sum_{i \leq j \leq \ell} Q_j(X) \binom{j}{i} R(X)^{j-i} = 0 \quad (\text{mod } G(X)^{m-i}) \]

with the degree constraints \(\text{deg } Q_j(X) < mt - jk \) for \(j \leq \ell \)

Simultaneous Polynomial Approximations

Input:
- **Parameters:** \(\ell \) the list-size, \(m \) the number of equations
- **Moduli:** \(P_i \in \mathbb{K}[X] \) monic of degree \(M_i \), for every \(i < m \)
- **Polynomials:** \(F_{i,j} \in \mathbb{K}[X] \) of degree less than \(M_i \), for \(i < m \) and \(j \leq \ell \)
- **Degree bounds:** \(N_j \) a positive integer, for every \(j \leq \ell \)

Output: \(Q_0, \ldots, Q_\ell \in \mathbb{K}[X] \) satisfying
 1. \((i') \) \(Q_j \) are not all zero,
 2. \((ii') \) \(\forall j \leq \ell, \text{deg } Q_j < N_j \),
 3. \((iii') \) \(\forall i < m, \sum_{j \leq \ell} Q_j F_{i,j} = 0 \quad (\text{mod } P_i) \).
Simultaneous approximations via a structured system (1/3)

Write $Q_j(X) = \sum_{r<N_j} Q_j^{(r)} X^r$, then the equations are

$$\forall i < m, \quad \sum_{i\leq j \leq \ell} \sum_{r<N_j} Q_j^{(r)} X^r F_{i,j}(X) = 0 \pmod{P_i(X)}$$

Define the companion matrix

$$C(P_i) = \begin{bmatrix} 0 & 0 & \cdots & 0 & -P_i^{(0)} \\ 1 & 0 & \cdots & 0 & -P_i^{(1)} \\ 0 & 1 & \cdots & 0 & -P_i^{(2)} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -P_i^{(M_i-1)} \end{bmatrix} \in \mathbb{K}^{M_i \times M_i}$$

Key property: multiplication by $C(P_i)$ on the left is multiplication by X modulo $P_i(X)$
Simultaneous approximations via a structured system (2/3)

Solution \iff nonzero vector in the nullspace of the matrix A

where the block $A_{i,j} \in \mathbb{K}^{M_i \times N_j}$ is defined by its first column

$$c^{(0)} = \begin{bmatrix} F_{i,j}^{(0)} \\ \vdots \\ F_{i,j}^{(M_i-1)} \end{bmatrix}$$

and the subsequent columns $c^{(r+1)} = C(P_i) \cdot c^{(r)}$
Let $M = M_0 + \cdots + M_{m-1}$ (number of linear equations), and $N = N_0 + \cdots + N_\ell$ (number of linear unknowns).

Define

$$Z_M = \begin{bmatrix} 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{bmatrix} \in \mathbb{K}^{M \times M}$$

Fact: $A - Z_M A Z_N^T$ has rank $\leq m + \ell + 1$

the displacement operator $A \mapsto A - Z_M A Z_N^T$ corresponds to a Toeplitz structure

Conclusion:
the matrix of the system is Toeplitz-like with displacement rank $\leq 2\ell$
Complexity bound for this approach

Solving the structured linear system [Bitmead - Anderson, 1980] [Morf, 1980] [Kaltofen, 1994] [Pan, 2001] [Bostan - Jeannerod - Schost, 2007]

Two main operations:

- computing generators
 - \(\approx \) computing the first and last column of each block \(\leadsto \mathcal{O}(\ell m^2 n) \)
 - + computing the first row of each block \(\leadsto \mathcal{O}(\ell m^2 n) \)
 - \(\leadsto \mathcal{O}(\ell m^2 n) \) operations

- solving the system
 - at most \(\ell + 1 \) blocks on each row or column,
 - the number of equations is \(\sum_{i} n(m - i) = \mathcal{O}(m^2 n) \)
 - \(\leadsto \mathcal{O}(\ell \omega^{-1} m^2 n) \) operations

Complexity bound:

\[\mathcal{O}(\ell \omega^{-1} m^2 n) \]
Contributions

[Chowdhury - Jeannerod - Neiger - Schost - Villard, 2014]

1. New approach for the interpolation step
 - Based on an approximation problem
 - Solved using structured linear systems
 - Improved complexity bound
 \[O^\sim(\ell^{\omega-1}m^2n) \]

2. Extension to the multivariate case (folded Reed-Solomon codes)
 - Based on the same approximation problem
 - Improved complexity bound
 \[O^\sim \left(\left(\frac{s + \ell}{s} \right)^{\omega-1} mn \left(\frac{s + m - 1}{s} \right) \right) \]
Contributions

[Chowdhury - Jeannerod - Neiger - Schost - Villard, 2014]

1. New approach for the interpolation step
 - Based on a approximation problem
 - Solved using structured linear systems
 - Improved complexity bound
 \[\mathcal{O}^\sim(\ell^{\omega-1}m^2n) \]

2. Extension to the multivariate case (folded Reed-Solomon codes)
 - Based on the same approximation problem
 - Improved complexity bound
 \[\mathcal{O}^\sim\left(\left(\frac{s + \ell}{s}\right)^{\omega-1} mn\left(\frac{s + m - 1}{s}\right)\right) \]
Multivariate Interpolation with Multiplicities

Input:
- s the number of variables
- n points $\{(x_i, y_{i1}, \ldots, y_{is})\}_{1 \leq i \leq n}$ in \mathbb{K}^{s+1}, with the x_i’s distinct
- k the degree constraint, t the agreement
- ℓ the list-size, m the multiplicity

Output: a polynomial Q in $\mathbb{K}[X, Y_1, \ldots, Y_s]$ such that
- (i) Q is nonzero,
- (ii) $\deg_Y Q(X, Y_1, \ldots, Y_s) \leq \ell$, (list-size condition)
- (iii) $\deg_X Q(X, X^k Y_1, \ldots, X^k Y_s) < mt$, (weighted-degree condition)
- (iv) $\forall i, Q(x_i, y_{i1}, \ldots, y_{is}) = 0$ with multiplicity m. (vanishing condition)

Application: list-decoding of folded Reed-Solomon codes
Reduction to an approximation problem (1/2)

Assume that Q satisfies the list-size condition:

$$Q = \sum_{|j| \leq \ell} Q_j(X) Y^j$$

for some unknown polynomials $\{Q_j, |j| \leq \ell\}$

The vanishing condition can be rewritten as a set of modular equations.

For $i \in \{1, \ldots, n\}$: $Q(x_i, y_{i1}, \ldots, y_{is}) = 0$ with multiplicity m

\iff For $i = (i_1, \ldots, i_s), \ |i| < m$:

$$\sum_{i \leq j, |j| \leq \ell} Q_j(X) \binom{j_1}{i_1} R_1(X)^{j_1-i_1} \cdots \binom{j_s}{i_s} R_s(X)^{j_s-i_s} = 0 \mod G(X)^{m-|i|}$$

where $G(X) = \prod_{1 \leq i \leq n} (X - x_i)$ and

$R_1(X), \ldots, R_s(X)$ such that $R_1(x_i) = y_{i1}, \ldots, R_s(x_i) = y_{is}$
Reduction to an approximation problem (2/2)

Vanishing condition + list-size condition

\[
\sum_{i \leq j, |j| \leq \ell} Q_j(X) \binom{j_1}{i_1} R_1(X)^{j_1-i_1} \cdots \binom{j_s}{i_s} R_s(X)^{j_s-i_s} = 0 \mod G(X)^{m-|i|} \text{ mod } P_i(X)
\]

for \(i = (i_1, \ldots, i_m) \) such that \(|i| < m\),

Instance of Simultaneous Polynomial Approximations

- list-size \(\binom{s+\ell}{s} \)
- number of linear equations \(mn \binom{s+m-1}{s} \)
Reduction to an approximation problem (2/2)

Vanishing condition + list-size condition + weighted-degree condition

$$\sum_{i \leq j, |j| \leq \ell} Q_j(X) \binom{j_1}{i_1} R_1(X)^{j_1-i_1} \cdots \binom{j_s}{i_s} R_s(X)^{j_s-i_s} = 0 \mod \frac{G(X)^{m-|i|}}{P_i(X)}$$

for $i = (i_1, \ldots, i_m)$ such that $|i| < m$,

with the degree constraints $\deg Q_j(X) < mt - |j| k$ for $|j| \leq \ell$

Instance of Simultaneous Polynomial Approximations

- list-size $\binom{s+\ell}{s}$
- number of linear equations $mn\binom{s+m-1}{s}$
Complexity bound in the multivariate case

\[\mathcal{O}^\sim \left(\left(\frac{s + \ell}{s} \right)^{\omega - 1} \right. \left. mn \left(\frac{s + m - 1}{s} \right) \right) \]

Improves on [Busse, 2008], [Brander, 2010] and [Nielsen, 2014]

Further extends to

- **weight specific to each variable**
 \[\deg_X Q(X, X^{k_1} Y_1, \ldots, X^{k_s} Y_s) < mt \]

- **multiplicity specific to each point**
 \[Q(x_i, y_{i1}, \ldots, y_{is}) = 0 \text{ with multiplicity } m_i \]
Contributions

[Chowdhury - Jeannerod - Neiger - Schost - Villard, 2014]

1. New approach for the interpolation step
 - Based on a approximation problem
 - Solved using structured linear systems
 - Improved complexity bound

\[\mathcal{O}\sim(\ell^{\omega-1} m^2 n) \]

2. Extension to the multivariate case (folded Reed-Solomon codes)
 - Based on the same approximation problem
 - Improved complexity bound

\[\mathcal{O}\sim \left(\left(\frac{s + \ell}{s} \right)^{\omega - 1} \frac{mn}{s} \left(s + m - 1 \right) \right) \]
Contributions

[Chowdhury - Jeannerod - Neiger - Schost - Villard, 2014]

1. New approach for the interpolation step
 - Based on a **approximation problem**
 - Solved using **structured linear systems**
 - **Improved** complexity bound
 \[\mathcal{O}^*(\ell^{\omega-1}m^2n) \]

2. Extension to the multivariate case (folded Reed-Solomon codes)
 - Based on **the same approximation problem**
 - **Improved** complexity bound
 \[\mathcal{O}^* \left(\left(\frac{s + \ell}{s} \right)^{\omega-1} mn \left(\frac{s + m - 1}{s} \right) \right) \]