On the Structure of Changes in Dynamic Contact Networks

Vincent Neiger Christophe Crespelle Éric Fleury

Laboratoire de l'Informatique du Parallélisme, École Normale Supérieure de Lyon, France

SITIS 2012, Workshop on Complex Networks and their Applications
November 27, 2012
Outline

Context and problem

Our approach

Results
Outline

Context and problem

Our approach

Results
Dynamic Contact Networks

Participants carry sensor devices
- send periodically
- listen at any time
- log received signals
Dynamic Contact Networks

Participants carry sensor devices
- send periodically
- listen at any time
- log received signals

Aggregation of contacts: series of contacts \rightarrow series of graphs
Our goal

Correlation between consecutive graphs

Structure of changes: concentrated or spread?

Suitable object: difference graph
Difference graphs
Generality of our approach

Approach purely graph-based

- proximity contacts
- communications
- online social networks

No use of mobility data

- not always available
- not always relevant
- we study contacts
Outline

Context and problem

Our approach

Results
Structure of changes

→ Concentration of edges in the difference graphs

Two parameters:

- non-isolated nodes
 ⇒ nodes involved in changes
- minimum vertex cover
 ⇒ nodes that concentrate changes
Our approach

Minimum Vertex Cover

Vincent Neiger (ENS de Lyon—LIP)
Minimum Vertex Cover
Minimum Vertex Cover
Minimum Vertex Cover

Our approach
Our approach

Structure of changes (continued)

→ Concentration of edges in the difference graphs

Two parameters:

• non-isolated nodes
 ⇒ nodes involved in changes

• minimum vertex cover
 ⇒ nodes that concentrate changes

Comparison: actual values / expected values

Random graph of given density: Erdös-Rényi model.
Outline

Context and problem

Our approach

Results

Vincent Neiger (ENS de Lyon—LIP)
Example dataset: Infocom’06

Proximity contacts

Sampling period: 120 seconds
Chosen aggregation period: 900 seconds

Other datasets: Infocom’05, RollerNet, Cambridge, MOSAR
Results

Parameters
Non-isolated nodes

![Graph showing changes in the number of nodes over time. The x-axis represents time in units of 900 seconds, and the y-axis represents the number of nodes. The graph compares the changes in non-isolated nodes in the Infocom'06 dataset with real-world data, showing fluctuations and the number of nodes varying between 0 and 80. The value at the end of the graph is 54.8 nodes.]
Non-isolated nodes

Conclusion: few nodes involved in changes
Results

Minimum Vertex Cover

Conclusion: few nodes concentrate change
Conclusion: MVC actually smaller than expected
Results

Parameters

Aggregation
Influence of the aggregation period

Conclusion: wide range of aggregation periods
Non-isolated nodes (several datasets)

Three groups of experiments
Same conclusion: MVC smaller than expected
Minimum Vertex Cover (MOSAR)

Same conclusion: MVC smaller than expected
Results

Parameters

Aggregation

Datasets

Conclusion
Conclusion

Results

- few nodes involved in changes
- few nodes concentrate the changes

Generality

- limited influence of the aggregation
- “independent” of the contact network

⇒ special structure of changes
Results

Models

On the Structure of Changes in Dynamic Contact Networks

Vincent Neiger (ENS de Lyon—LIP)
Minimum Vertex Cover

Not concerned about complexity issues:
- NP-complete problem
- preprocessing called leaf removal very efficient on sparse graphs
- practical observation: it performs even better on our graphs