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Abstract

We introduce the language and give the classical results from the theory of de-
formations : deformations and framed deformations, representability, tangent spaces
computation via Galois cohomology, formal smoothness...
Then we give a technic, due to Mark Kisin, which allows us to study the general fiber
of the deformation spaces.
As an application we describe, after Kisin, the generic fiber of the deformation scheme
of a representation ρ : G → GL2(F), where F is a finite extension of Fp and G the
absolute Galois group of a local field of residual characteristic ` 6= p.

1 Introduction

These notes are divided in 3 parts.

The first part is a survey of the deformation theory of Galois representations. Our main
source is Barry Mazur’s original article [5]. Given a continuous Galois representation ρ
into a finite F-vector space (F a topological field) and O a complete local noetherian ring
having residue field F, we define the notions of lifting and deformation of ρ to certain
artinian O-algebras. This leads, under mild restrictions on ρ, to the construction of uni-
versal O-schemes parameterizing the deformations of ρ. Fundamental geometric properties
of these spaces are encoded in the Galois cohomology of the adjoint representation of ρ.

The aim of the second part is to explain a technique, due to Mark Kisin ([2] and [3]),
which allows us to study the general fiber of the deformation spaces : let ρ be a Galois
representation in GLN (F) with F a finite field and let OE be an integer ring of a local
field E, whose residue field is finite over F. Let ρE be a lifting of ρ to GLN (OE). One can
build the deformation theory for ρE ⊗ E out of the deformation theory of ρ.
This has the following interesting consequence : let R be the universal deformation ring of
ρ. The deformation ρE defines an E-point ξ, lying on the generic fiber of R. A corollary
of the preceding result is that Spec R[1/p] is locally isomorphic at ξ to the universal defor-
mation space of ρE . As a result the local geometry of Spec R[1/p] at ξ can be computed
via the Galois cohomology of ρE .

The last and main part of these notes is dedicated to the generic fiber of the framed
deformation scheme of a representation ρ : G → GL2(F), where F is a finite extension of
Fp and G the absolute Galois group of a local field of residual characteristic ` 6= p. We
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continue the analysis initiated by Mark Kisin in [3] and [4]. We list here the main results
and give an idea of proof:

• We show that the generic fiber is a union of smooth components. Since this is a local
statement, it is essentially proven by using the results explained in the second part
of these notes and reduces to Galois Cohomology computations. We also describe
the eventual intersections.

• We classify these components according to the Galois representation family lying
over. This is understood by exploiting the rigidity of the situation (` 6= p) and
identifying the parameters that may vary on the components.

• We give multiplicity statements : We discuss the number of occurrence of a compo-
nent of a given type in the generic fiber and prove that it is almost always less or
equal to one. These are the most delicate results since they are of global nature on
the generic fiber and since this one does not have an easy modular interpretation.
To prove this kind of properties, following an original idea of Kisin, we construct
certain resolutions of the deformation space whose geometry is very simple.

2 Deformations

2.1 Basic definitions

Let G be a group. We assume that G arises from one of the following situations :

• Local non−archimedean situation: Let ` be a prime and let L be a finite extension
of Q` , let L̄ be an algebraic closure of L, and then G = Gal(L̄/L).

• Local archimedean situation : G = Gal(C/R).

• Global situation: Let L be a number field, S a finite set of places of L and LS ⊂ Q̄
the maximal extension of L unramified outside S. Then G = Gal(LS/L).

Let F be a topological field. In all applications F will be either a finite extension of Fp
(with the discrete topology) or a finite extension of Qp (with the p-adic topology).
Let O be a local noetherian complete algebra, whith maximal ideal mO and with residue
field F. We fix an isomorphism O/mO w F. In all applications O will be either F itself
(char F = 0) or the ring of integers of a p-adic field (char F = p).
Let ARO be the category of artinian local O-algebras, A with maximal ideal mA such that
the structural map O → A induces an isomorphism O/mO w A/mA. Maps are local ring
homomorphisms compatible with the identification of residue fields with F.
Consider also the category ÂRO of complete noetherian local O-algebras. One can view
ARO as a full subcategory of ÂRO and any object A in ÂRO can be written as the
projective limit of its quotients A/mn

A which lie in ARO.
Any object A in ÂRO is given the coursest topology which is finer than the mA-adic
topology and which makes the map A→ F continuous.

Let N > 0 be an integer and let ρ : G → GLN (F) be a continuous representation of
G.
All the representations we consider in the sequel are continuous.
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Definition 2.1.1. Let A be an object in ÂRO.

1. A representation ρA : G → GLN (A) is a lifting or a framed deformation of the rep-
resentation ρ if ρA composed with the map GLN (A) → GLN (F) induced by reduction
modulo mA is equal to ρ.

2. Two liftings are said to be equivalent if they differ by a conjugation by an element of
GLN (A) reducing to the identity modulo mA.

3. A deformation of ρ to A is an equivalence class of liftings of ρ to a representation
ρA : G → GLN (A).

The group PGLN/O acts by conjugation on GLN/O. We set P̂GLN for its completion
along the unit section of the special fiber. The group P̂GLN acts on the set of liftings and
a deformation is an orbit under this action.

We can define the deformation functor :

D : ÂRO −→ SET

A  {deformations of ρ to A}

In the same fashion we define the framed deformation functor :

D� : ÂRO −→ SET

A  {framed deformations of ρ to A}

There is a natural transformation :

Θ : D� −→ D

defined by sending a framed deformation to its deformation class.

We say that the functor D is representable if there exist a pair (R, ρuniv) with R an
object in ÂRO and ρuniv an element of D(R) such that the canonical map of functors :

ρuniv : Hom(R, ·) −→ D

is an equivalence of category. The pair (R, ρuniv) is unique up to a unique isomorphism.
Sometimes we drop the ρuniv and simply say D is represented by R or Spec R.
We say that the functor D� is representable if there exist a pair (R�, ρuniv) satisfying
similar properties.

2.2 Determinant condition and change of group

2.2.1 The determinant

Let ρ : G → GLN (F) a representation of G and D the deformation functor of ρ. Consider
the determinant det : GLN → GL1, and let ∆ be the deformation functor of the represen-
tation detρ.
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If A is in ÂRO and ρA is a lifting of ρ then detρA is a lifting of detρ.
Hence there is a natural transformation

det : D −→ ∆.

If both functors are representable, say respectively by rings R and Λ, then R becomes
naturally a Λ-algebra.

2.2.2 Deformations with fixed determinant

Let χ : G → O× be a lifting of detρ. One can consider a sub-deformation functor Dχ of D
by letting Dχ(A) ⊂ D(A) consist of deformations of ρ to A having determinant equal to

G
χ→ O× → A×

Assume again the representability of D and ∆ by R and Λ. The character χ corresponds
to a morphism Λ → O and the functor Dχ is represented by the scheme Spec R ⊗Λ O
which is a closed subscheme of Spec R.

2.2.3 Twisting

Let ∆ be the deformation functor for the trivial character. For any A in ÂRO the tensor
operation on characters gives ∆(A) a natural group structure. Hence ∆ is a group functor.
Let ρ : G → GLN (F) a representation and D its deformation functor. Then we have a
natural group action ∆× D → D sending a pair (η, ρA) ∈ ∆(A)× D(A) to η ⊗A ρA.

2.2.4 Global and local deformations

Suppose now that G = Gal(LS/L), with L a number field, S a finite set of places and
LS ⊂ Q the maximal extension of L unramified outside S. Choose, for some prime ideal
P ∈ OL a decomposition group DP ⊂ G. Then ρ induces, by restriction, a representation
ρP : DP → GLN (F).
Now let DP be the deformation functor for ρP. The restriction to DP induces a natural
transformation

D −→ DP.

All this section can be immediately generalized by replacing D by D�.

2.3 Representability

2.3.1 The main theorem

The following proposition follows easily from Schlessinger’s representability criterion ([8]):

Proposition 2.3.1. The framed deformation functor D� is representable.

The representability of the deformation functor is more delicate :
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Theorem 2.3.2. If the natural map F → EndF[G](ρ) is an isomorphism the deformation
functor is representable.

Proof. See [6], p 264.

Corrolary 2.3.3. If ρ is absolutely irreducible the deformation functor is representable.

2.3.2 The case N = 1

Let ρ : G → F× be a one dimensional representation. Then by the above theorem the
deformation functor is represented by a pair (Λ, ρuniv). One can construct explicitly the
pair (following [5], section 1.4):
Let Gab,p be the abelianized p-completion of G and if g is in G let ḡ be its image in Gab,p.
Put Λ = O[[Gab,p]] which is an object of ÂRO (by Class Field theory). Let ρ̃ : G → O×
be a lifting of ρ and finally let

ρuniv : G → Λ×

g 7→ ρ̃(g) · ḡ

2.3.3 The case N = 2

Let ρ : G → GL2(F) be a 2-dimensional representation. If ρ is absolutely irreducible or
if ρ is a non-trivial extension of two distinct characters then the deformation functor D is
representable.

2.4 Tangent space calculations

Let A in ÂRO with maximal ideal mA, let mO be the maximal ideal of O and let F[ε] be
the ring of dual numbers.

Definition 2.4.1. The Zariski tangent space of A is the F vector space Hom(A,F[ε]) =
HomF−vect(mA/m

2
A + mO,F). Its dual we denote tA is the Zariski cotangent space.

If d is the dimension of tA and if {a1, ..., ad} is a collection of elements of mA mapping
to a base of tA, then the map O[[X1, ..., Xd]] → A which sends Xi to ai is a surjection and
induces an isomorphism on the tangent spaces.

Let ρ : G → GLN (F) be a representation and let D be the deformation functor of ρ,
we define in a similar fashion the tangent space of D and D� :

Definition 2.4.2. The set D(F[ε]) (respectively D�(F[ε])) as a natural F-vector space
structure and we call it the Zariski cotangent space of D (respectively D�).

Let Adρ be the adjoint representation of ρ.

Proposition 2.4.3. There is a natural isomorphism D(F[ε]) ' H1(G, Adρ).

Proof.([5], section 1.2) The construction of the natural isomorphism is as follow : choose a lifting
ρε of ρ to F[ε] and write ρε = ρ(1 + εC) where C is a map from G to MN (F). C is a 1-cocycle
for the adjoint representation. Changing ρε to some other representative of its deformation class
changes C by a 1-coboundary.
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Let χ : G → O× be a character lifting detρ and let Dχ be the deformation functor with
fixed determinant χ. Let Ad0ρ be the adjoint representation of ρ on trace zero matrices.
We have a natural map H1(G, Ad0ρ) → H1(G, Adρ). We denote by H1(G, Ad0ρ)′ the
image of H1(G, Ad0ρ) in H1(G, Adρ). Note that if N is invertible in F the above map is
injective.
Analogous to the previous proposition we have :

Proposition 2.4.4. There is a natural isomorphism Dχ(F[ε]) ' H1(G, Ad0ρ)′.

Recall that we have a morphism Θ : D� −→ D. The fibers of the induced map on
tangent spaces D�(F[ε]) → D(F[ε]) are principal homogeneous spaces under Adρ/AdρG

and hence:

Proposition 2.4.5. dimFD�(F[ε]) = dimFD(F[ε]) + dimFAdρ− dimFAdρ
G.

2.5 Smoothness and Dimension

2.5.1 Formal smoothness

Let F and F ′ be two functors on ÂRO with value in SET , and φ : F → F ′ a natural
transformation.

Definition 2.5.1. The map φ is formally smooth if for any surjective map A → B in
ARO, the morphism

F (A) → F (B)×F ′(B) F
′(A)

is surjective.

In general, if we say that a functor is formally smooth it means that it is smooth over
the base O. If A ∈ ÂRO is formally smooth then it is isomorphic to a power series ring
over O.
The following proposition follows immediately from the definitions :

Proposition 2.5.2. The map Θ : D� −→ D is formally smooth

2.5.2 Obstruction

Let A1 → A0 be a surjective mapping of artinian rings in ARO with kernel I such that
mA0 ·I = 0. We may view I as a finite dimensional F-vector space. Let ρ0 : G → GLN (A0),
then there is an obstruction class in H2(G, Adρ) ⊗ I depending only on the deformation
class of ρ0 and which vanishes if and only if there exists a lifting ρ1 : G → GLN (A1) of ρ0.
The construction is as follow : Let γ1 : G → GLN (A1) be a set theoretic mapping lifting
ρ0, we can form the obstruction 2-cocycle :

c(σ, τ) = γ1(στ)γ1(σ)−1γ1(τ)−1 ∈ 1 + I ⊗MN (F).

Hence we get the following :

Proposition 2.5.3. The deformation functor D is formally smooth if H2(G, Adρ) = 0.

Let di be the dimension of H i(G, Adρ). Assume that D is representable by a ring R.

Proposition 2.5.4. The ring R admits a presentation:

O[[X1, ..., Xd1 ]]
d2 → O[[X1, ..., Xd1 ]] → R→ 0

Proof. See [5], 1.6, proposition 2.

All the above results hold if one replaces D by Dχ and Adρ by Ad0ρ.
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3 Generic fibres

Let p be a prime, we now assume that F is a finite field extension of Fp and that O is a
discrete valuation ring, finite flat overW (F), having F as residue field. Let ρ : G → GLN (F)
a representation. The aim of this section is to explain a technic, due to Kisin ([2] and [3]),
for the study of the generic fibers of the (framed) deformation ring.

3.1 Preliminary

Let E be a totally ramified extension of O[1/p], with ring of integers OE . We denote ARE

the category of artinian E-algebras having residue field E.
Let B in ARE , we denote by IntB the category whose objects are finite OE-subalgebras
A ⊂ B such that A⊗OE

E = B. Morphisms are given by natural inclusions.
Let ÂRO,(OE) denote the category whose objects are O-algebras A in ÂRO equipped with
a map of O-algebras A→ OE . Hence IntB is a subcategory of ÂRO,(OE).
Let F be a functor on ÂRO with value in SET and let ξ ∈ F (OE). First we define a
functor F(ξ) on ÂRO,(OE). If (A,A α→ OE) is in ÂRO,(OE) we put

F(ξ)(A) = {η ∈ F (A) such that F (α)(η) = ξ}.

Then we define a functor we call again F(ξ) on ARE by setting :

F(ξ)(B) = lim
→A∈IntB

D(ξ)(A)

for B in ARE .

Proposition 3.1.1. If F is represented by a complete local O-algebra R, then F(ξ) is
(pro)represented by the complete local O[1/p]-algebra R̂ξ obtained by completing R⊗OE

E
along the kernel Iξ of the map R⊗OE

E → E induced by ξ.

Proof. Let B in ARE . Any element in F(ξ)(B) comes from a map R → A for some A ∈ IntB
which fits in the following commutative triangle of OE-algebras :

R⊗O OE → A

↓ ↙
OE

Thus by extension of scalars to E we get a map R⊗O E → B whose kernel contains a power of Iξ.
On the other hand for any map R⊗OE → B which kills some power of Iξ we consider A the image
of R⊗O OE in B. Then A is in IntB and gives rise to an element of F(ξ)(B).

3.2 Application

Let D and D� be the deformation and framed deformation functors of ρ. Consider some
ξ ∈ D�(OE), whose image Θ(ξ) in D(E) we denote again by ξ.
Consider now Dξ and D�

ξ the deformation and framed deformation functor of ξ. Both are
functors on ARE . Consider also D(ξ) and D�

(ξ) as defined in the preceding section.

Proposition 3.2.1. There are natural isomorphisms of functors

D(ξ) −→ Dξ and D�
(ξ) −→ D�

ξ .
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Proof. Let B in ARE and A in IntB. An element in D(ξ)(A) is a ˆPGLN (A) orbit of some
ρA : G → GLN (A) which is equal to ξ after base change to OE . Hence there is a natural map

D(ξ)(B) = lim
→A∈IntBD(ξ)(A) → Dξ(B)

obtained by sending ρA to ρA ⊗OE
E.

This map is surjective : Let ν ∈ Dξ(B) and let A be an object of Int(B). Let mB be the maximal
ideal of B kernel of the projection map b : B → E and define an increasing family of algebras in
Int(B) by setting for any positive integer n:

An =
∞∑
j=1

(mB ∩A)jp−nj +A.

We have :
⋃
n≥0An = b−1(OE). As a result ν(G) ⊂ GLN (

⋃
n≥0An) and by compacity of G this

map must factor through some An.
This map is injective: Let A and A′ in IntB and ρA and ρA′ be two lifings which are conjugated
by an element in GLN (B) reducing to the identity modulo mB . An adaptation of the preceding
argument shows that we can find an A′′ in IntB containing A and A′ and such that ρA and ρA′

become conjugated over A′′.
Similarly there is a map

D�
(ξ)(B) −→ D�

ξ (B)

which is seen to be bijective by the same arguments.

4 The generic fibre of the deformation ring in the local ` 6= p

case

Let ` and p be two distinct primes and let L be a finite extension of Q` and L̄ an algebraic
closure of L. In this section G is the Galois group Gal(L̄/L). Let F be a finite extension
of Fp and ρ : G → GL2(F) be a two dimensional Galois representation. Our aim is to
analyze the generic fibre of the framed deformation ring of ρ. The important parts 4.6, 4.7
and 4.8 of the following are entirely taken from [3], section 2.6 and [4], section 2.5. They
contain the key ideas.

We give here the plan of our study:
In section 4.1 we state the results. Sections 4.2 to 4.10 are dedicated to proving them.
Sections 4.2, 4.3 and 4.4 are preliminary : we recall the needed results in Galois cohomol-
ogy, local class field theory and some generalities about 2-dimensional representations of
G in a p-adic field of characteristic zero.
In section 4.5 we prove a rigidity statement : The representation of inertia is (up to the
monodromy logarithm) constant on the connected components of the generic fibers of the
deformation space.
Section 4.6 is crucial : we construct a resolution of the deformation space in case ρ is an
extension of some character γ by γ(1) and are able to exhibit a unique irreducible com-
ponent of the generic fiber parameterizing such extensions. The kind of arguments of this
section will be used extensively in the rest of the work (see also [3]).
In section 4.7 we prove that if ρ̄ is unramified, there is a unique irreducible component
parameterizing unramified representations.
In section 4.8 we apply the results of sections 4.6 and 4.7 to prove that the deformation
space is the union of formally smooth components, and we explain when it happens that
two components intersect.
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In section 4.9 we study components that parameterize split representations.
Section 4.10 is dedicated to components parameterizing absolutely irreducible representa-
tions.
In section 4.11 we explain why, when p 6= 2, we also have a determinant condition-free
version of the results of 4.1.

4.1 Statement of the theorems

Let ρ : G → GL2(F) be a representation. Let R� be the universal framed deformation
ring of ρ. Let ψ be a lifting of detρ and let Rψ,� be the universal framed deformation
ring with fixed determinant equal to ψ. Let ρuniv : G → GL2(R�) be the universal
representation. Let also (ρ′univ, Nuniv) be the universal representation of the Weil-Deligne
group over Spec R�[1/p] (see section 4.5). Let K̄ be an algebraic closure of O[1/p]. For
any geometric point x : Spec K̄ → Spec R�, ρx : G → GL2(K̄) is the representation
deduced from ρuniv.

4.1.1 Local properties

Theorem 4.1.1. The generic fiber of Spec Rψ,�[1/p] is 3-dimensional, reduced, and the
union of formally smooth components.

4.1.2 Rigidity

Theorem 4.1.2. Let x, y : Spec K̄ → Spec R�[1/p] be two geometric points lying in
the same geometrically connected component. Set ρ′x and ρ′y for the representations G →
GL2(K̄) deduced from ρ′univ. Then the restriction to inertia of ρ′x and ρ′y are isomorphic.

Remark 4.1.1. The result holds in general, for N -dimensional representations.

4.1.3 Modular description of the irreducible components

Theorem 4.1.3. Any geometrically irreducible component C of Spec Rψ,�[1/p] admits
one of the following descriptions :

1. Unipotent monodromy case : There exists a character γ : G → K̄× such that for any
geometric point x : Spec K̄ → C the representation ρx is an extension of γ by γ(1).
We say that C is of unipotent type γ.

2. The unramified (up to twist by a character) case : There exists a character γ : G →
K̄× such that for any geometric point x : Spec K̄ → C the representation ρx becomes
unramified after a twist by γ−1. We say that C is of unramified type γ.

3. The absolutely irreducible case : There exists an irreducible representation ξ : G →
GL2(K̄) such that for any geometric point x : Spec K̄ → C the representation ρx is
isomorphic to ξ. We say that C is of absolutely irreducible type ξ.

4. The split ramified case : There are two characters η, λ : G → K̄× such that η.λ−1 is
ramified and such that for any geometric point x : Spec K̄ → C the representation
ρx is isomorphic to η.φ ⊕ λ.φ−1 where φ is some unramified lifting of the trivial
character. We say that C is of split ramified type {η|IG , λ|IG}.

The study of 2-dimensional p-adic Galois deformations in the ` 6= p case 9



If two distinct geometric components intersect then they are of unipotent type γ and un-
ramified type γ. If x is a geometric point lying on there intersection, the representation ρx
is isomorphic to γ ⊕ γ(1).

4.1.4 Multiplicity

Theorem 4.1.4. Let x, y : Spec K̄ → Spec Rψ,�[1/p] be two geometric points. Assume
that ρx and ρy are isomorphic representations. Then x and y lie on the same geometrically
irreducible component.

In the same spirit we also have :

Theorem 4.1.5. 1. There is at most one component of unipotent type γ, of unramifed
type γ or of absolutely irreducible type ξ in Spec Rψ,�[1/p].

2. There is at most one component of split reducible type {η|IG , λ|IG} in Spec Rψ,�[1/p]
except when ρ is a split representation isomorphic to η̄ ⊕ λ̄ with η̄.λ̄−1 a nontrivial
unramified character. Then there are exactly two components of split reducible type
{η|IG , λ|IG} in the generic fiber.

4.2 Galois cohomology

We recall here some results we need in Galois cohomology.
Let E be a field, either a finite extension of Qp or a finite extension of Fp. Let V be
a finite dimensional E-vector space equipped with a continuous action of G. Let V ∗ =
Hom(V,E(1)).

Theorem 4.2.1. The cohomology groups H i(G, V ) are finite dimensional for i ≥ 0 and
= 0 for i ≥ 3 and we have the following identities :

dimEH
0(G, V ) = dimEH

2(G, V ∗)

dimEH
0(G, V )− dimEH

1(G, V ) + dimEH
2(G, V ) = 0

Proof. For a proof, see [7].

Let ρ : G → GL2(E) be a reducible continuous representation, ρ '
(
η b
0 λ

)
for two

characters η and λ. Then λ−1 · b gives a class in H1(G, λ−1 · η). This class is trivial if and
only if the extension splits.

Corrolary 4.2.2. If E is characteristic 0, and if ρ is non split then η ·λ−1 is either trivial
or the cyclotomic character.
If E is characteristic p, and if ρ is non split then η ·λ−1 is either trivial or the cyclotomic
character modulo p.

Now let Lur ⊂ L̄ be the maximal unramified extension and set Gur = Gal(Lur/L).

Proposition 4.2.3. Let V be a 1-dimensional E vector space on which Gur acts through
a character λ. The cohomology groups H i(Gur, V ) are trivial for all i if λ 6= 1.

Proof. See [7].

Corrolary 4.2.4. An unramified 2-dimensional representation is either split or an exten-
sion of an unramified character by itself.
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4.3 Characters

Class Field Theory gives an injective map with dense image L× → Gab which induces an
isomorphism OL× ' IGab , where IGab is the inertia subgroup of Gab. Hence the pro-p
abelianization Gab,p is isomorphic to Ẑp×H with H a finite group. Hence the deformation
ring of a character is represented by the algebra Λ ' O[[T ]][H].

4.4 Representations in characteristic zero

4.4.1 The local monodromy theorem

The group G admits the following two step filtration :

1 → IG → G → Gur → 1

1 → Pp → IG → IG,p → 1.

The group IG is the inertia and the group IG,p is its maximal pro-p quotient. It is isomor-
phic to Zp(1) via the tame character tp : IG,p → Zp(1).
Let E be a finite field extension of Qp, V a finite dimensional E-vector space and ρ : G →
GL(V ) a continuous representation.

Theorem 4.4.1. There exists a unique N ∈ End(V )(−1) nilpotent called the logarithm
of monodromy and a finite index subgroup I1 of IG such that

∀σ ∈ I1, ρ(σ) = exp(tp(σ)N).

Proof. See [9].

Corrolary 4.4.2. We can associate to ρ a pair (ρ′, N), where N is the logarithm of
monodromy and ρ′ : G → GL(V ) is defined by the following rule :

ρ′(Fnσ) = ρ(Fnσ)exp(−tp(σ)N)

where F is a lift of the Frobenius to G and σ ∈ IG. The group ρ′(IG) is finite.

The pair (ρ′, N) is a representation of the Weil-Deligne group of L (See [1] for more
information).

4.4.2 2-dimensional representations

We now assume that V is a 2-dimensional representation and list the possibilities for ρ :

Non trivial monodromy If N 6= 0 then ρ is a non split extension of some character
γ : G → E× by γ(1).

Trivial monodromy, reducible case In this case ρ is an extension of a character γ
by a character λ. If λ 6= γ this extension splits, otherwise it may not split but ρ becomes
unramified after a twist by γ−1.
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Absolutely irreducible case We now assume ρ is irreducible.

Proposition 4.4.3. There exists a character γ such that the representation ρ ⊗ γ has
finite image.

Proof. This statement is valid in any dimension. For F a lift of the Frobenius, ρ(F ) acts by
conjugation on the finite group ρ(IG). Hence there is an integer n ≥ 1 such that ρ(F )n centralizes
ρ(IG) and hence ρ(G). By Schur’s lemma, ρ(F )n is a scalar matrix aI. We can take for γ an
unramified character which maps F to some nth-root of a−1.

We choose a basis of V and view ρ as a morphism G → GL2(E). We also let ρ0 :
G → PGL2(E) be the projectivization of ρ. It has finite image.
We know that a finite subgroup of PGL2(Q̄p) is either cyclic, dihedral, isomorphic to A4

(the alternating group over 4 symbols), to S4 (the symmetric group over 4 symbols), or to
A5.
The group A5 is simple of order 60, the group S4 has order 24, and it admits a filtration
Z/2× Z/2 ⊂ A4 ⊂ S4.
Considering the filtration by ramification subgroups in G we see that if `, the residual
characteristic of L, is different from 2 then ρ0(G) is dihedral, whereas in case ` = 2 the
image can be either dihedral, isomorphic to A4 or to S4. In the dihedral case one gets
easily the following proposition :

Proposition 4.4.4. If ρ0(G) is dihedral there exists a subgroup H ⊂ G of index 2, and
a character γ : H → E× such that ρ ' IndG

Hγ (remark that the assumption ρ being
irreducible forces γσ 6= γ, for σ ∈ G\H) .

4.5 Deformations in characteristic zero

Let ρ : G → GLN (F) a representation. Let R� be the universal framed deformation ring.
We start with a version of Grothendieck’s local monodromy theorem. The proof is the
same as in the usual case.

Proposition 4.5.1. Let ρuniv : G → GLN (R�[1/p]) be the universal representation.
There exists a unique Nuniv ∈ MN (R�[1/p])(−1) nilpotent and a finite index subgroup I1
of IG such that

∀σ ∈ I1, ρuniv(σ) = exp(tp(σ)Nuniv).

We can associate to ρuniv the pair (ρ′univ, Nuniv) where ρ′univ : G → GLN (R�[1/p]) is
defined by the following rule :

ρ′univ(F
nσ) = ρuniv(Fnσ)exp(−tp(σ)Nuniv)

where F is a lift of the Frobenius to G and σ ∈ IG. The group ρ′(IG) is finite. The pair
(ρ′univ, Nuniv) is a representation of the Weil-Deligne group.

Let x : Spec K̄ → Spec R�[1/p] be a geometric point. We denote by ρx the represen-
tation G → GLN (K̄) deduced from x and also by (ρ′x, Nx) the induced representation of
the Weil-Deligne group.

Proposition 4.5.2. Let x, y : Spec K̄ → Spec R�[1/p] be two geometric points lying in
the same geometrically connected component. Then the restrictions of ρ′x and ρ′y to the
inertia IG are isomorphic (i.e conjugate).
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Proof. Let K1 ⊂ K̄ be a finite extension of O[1/p] over which the isomorphism classes of
irreducible representations of IG/I1 are defined. Set R�

K1
= R� ⊗O K1, and let C = Spec C be a

closed, irreducible and reduced subscheme of SpecR�
K1

[1/p].
The representation ρ′univ induces a representation ρ′C : G → GL2(C). For any σ ∈ IG we let
P (ρ′C , σ) ∈ C[T ] be the characteristic polynomial of ρ′C(σ).

Lemma 4.5.3. The polynomial P (ρ′C , σ) has its coefficients in K1.

Let m be the number of isomorphism classes of N -dimensional representations of IG/I1 in
K1, let {η1, ..., ηm} be representatives of these isomorphism classes and let P (ηj , σ) ∈ K1[T ] be
the characteristic polynomial of ηj(σ). For any j = 1, ...,m we define the set Maxj ⊂ Spec C of
all maximal ideals m such that P (ρC , σ) − P (ηj , σ) = 0 modulo m. We claim that there exist j0
such that Maxj0 is dense in Spec C. Indeed C is a Jacobson ring, so closed points are dense and
on the other hand Spec C is not the union of finitely many strict closed subschemes because C is
a domain. As a result P (ρ′C , σ) = P (ηj0 , σ).

We go back to the proof of the proposition. If x, y : C → K̄ are as in the proposition, the
lemma shows that

x(P (ρ′C , σ)) = y(P (ρ′C , σ))

for any σ ∈ IG. As a result ρ′x|IG and ρ′y|IG have the same character and are isomorphic. Since
this is true for any subdomain C we get the proposition.

This proposition implies theorem 4.1.2.

4.6 Unipotent monodromy

We let χ : G → Z×p be the cyclotomic character and we assume that ρ is an extension of

1 by χ mod p, that is ρ '
(
χ mod p ?

0 1

)
. Let us consider D� the framed deformation

functor and Dχ,� the framed deformation functor with fixed determinant χ. These functors
are respectively represented by O-algebras R� and Rχ,�. We now define a new functor :

Lχ,� : ÂRO −→ SET

by setting Lχ,�(A) = {ρA, LA} with ρA : G → GL2(A) a framed deformation of ρ and LA
a rank 1 direct factor A-submodule of ρA acted on by χ.
We have a natural morphism Lχ,� → Dχ,� defined on A-points by sending {ρA, LA} to
ρA.

Proposition 4.6.1. The morphism Lχ,� → Dχ,� is represented by a projective morphism
Π : Lχ,� → SpecRχ,�.

Proof. Over Spec Rχ,� is the universal rank 2 free Rχ,�-module. Let P be the projectivization
of this bundle and P̂ its completion along the closed point of Spec Rχ,�. Then Lχ,� is represented
by the closed subscheme of P̂ with equation ”σ.[v]−χ(σ).[v]” where [v] is the universal line over P̂.
By formal GAGA this subspace comes from a unique projective Rχ,�-scheme Lχ,�.

Proposition 4.6.2. The scheme Lχ,� is formally smooth over Spec O. Its generic fibre
is connected.

Proof. Let A′ → A be a surjective map in ARO. An element η in Lχ,�(A) gives a class
c(η) ∈ Ext1A[G](A,A(1)) and to lift η to an element η′ in Lχ,�(A′) it is enough to lift the class c(η)
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to a class in Ext1A′[G](A
′, A′(1)). Hence we are done if we can prove that for any p-order, finite

Zp-module M the canonical map :

H1(G,Zp(1))⊗Zp
M → H1(G,M ⊗Zp

Zp(1))

is an isomorphism. By dévissage it is enough to prove it when M = Z/pn, in this case this map is
seen to be injective with cokernel equal to H2(G,Zp(1))[pn]. This last group is trivial because by
local duality H2(G,Zp(1)) is isomorphic to Zp.

Let us prove that Lχ,�[1/p] is connected. Set Π?OLχ,� = L. This is a finite Rχ,�-algebra and
hence is equal to a finite product of local rings because Rχ,� is henselian. First notice that L is
already local. Indeed the fiber of Π above the closed point of Spec Rχ,� is either a single point or a
P1 in case F ' F(1) and ρ is split - that is in case ρ is trivial. In both cases this fiber is connected.
Now let e ∈ L[1/p] be an idempotent, and let π be a uniformizing element in O. Then choose the
smallest n ∈ Z such that πne is in L. Then we get π2ne2 = π2ne. But recall that Lχ,� → Spec O
is formally smooth and as a result the special fiber is reduced. The only possibility is n = 0 and e
is a global idempotent and is equal to 1.

Let E be a finite extension of O[1/p] and ξ ∈ Lχ,�(E) whose image Π(ξ) in Rχ,� is a
representation we denote again by ξ : G → GL2(E).

Proposition 4.6.3. The map Π : Lχ,�(ξ) → Dχ,�
(ξ) makes Lχ,�(ξ) a subfunctor of Dχ,�

(ξ) . In case
ξ is indecomposable, Π is an isomorphism.

Proof.. Let B ∈ ARE and let ξB be a framed deformation of ξ and let LB be a χ-variant line in
ξB . We have to show that LB is unique. Indeed Hom(B(1), ξB/LB) = 0 because detξB = χ and
ξB/LB is a trivial, free of rank 1 B-module.
Suppose now ξ undecomposable. In this case Dχ(ξ) is representable by E itself because

dimEH
1(G, Adρ0) = dimEH

0(G, Adρ0) + dimEH
2(G, Adρ0(1)) = 0.

As a result any deformation is trivial, meaning that ξB is obtained from ξ by extension of scalars
(up to some conjugation).

We can now compute that the relative dimension of Lχ,�[1/p] over O is 3, indeed we
do the calculation at a point ξ undecomposable as above and we have :

dimEDχ,�
(ξ) (E[ε]) = dimEDχ

(ξ)(E[ε]) + dimEAdξ − dimEH
0(G, Adξ) = 3

Let Spec Rχ,1,� denote the scheme-theoretic image of Lχ,� in Spec Rχ,� via the morphism
Π.

Proposition 4.6.4. The closed subscheme Spec Rχ,1,� is a domain, its generic fibre is
smooth and has dimension 3.
Let E be a finite extension of O[1/p], then a morphism ξ : Rχ,� → E factors through
Rχ,1,� if and only if the corresponding 2-dimensional representation is an extension of E
by E(1).

Proof. Put as before L = Π∗OLχ,� . Proposition 4.6.2 shows that L is a domain, since Rχ,1,� is
a subring of L it is also a domain.
Since Lχ,� is projective, the induced map Π : Lχ,� → SpecRχ,1,� is surjective. By the preceding
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proposition it is an isomorphism at the level of the generic fibers. As a result Spec Rχ,1,�[1/p] is
formally smooth over O[1/p] of dimension 3 and the last assertion follows easily.

By twisting by a character we can amplify the last proposition. Let γ : G → O× a
continuous character, whose reduction modulo mO we denote γ̄. Suppose now that ρ is an
extension of γ̄ by γ̄(1).

Proposition 4.6.5. There exists a closed subscheme Spec Rχγ,γ,� of Spec R�. It is a
domain, its generic fibre is smooth and it has dimension 3.
Let E be a finite extension of O[1/p], then a morphism ξ : R� → E factors through Rχ,1,�

if and only if the corresponding 2-dimensional representation is an extension of γ by γ(1).

This proposition implies the parts of theorems 4.1.3, 4.1.4, 4.1.5 concerning unipotent
type representations.

4.7 Unramified liftings

Assume that ρ : G → GL2(F) is unramified, and let ψ : G → O× an unramified lifting of
detρ.

Proposition 4.7.1. There is a closed subscheme Spec Rur,ψ,� of Spec R� which corre-
sponds to unramified framed deformations of ρ with determinant ψ. It is formally smooth
over O of relative dimension 3.

Proof. Let Lur be the maximal unramified extension of L. Set Gur = Gal(Lur/L), and recall
the Galois cohomology : dimH2(Gur, Adρ0) = 0, dimH1(Gur, Adρ0) = 1 if Frobenius has distinct
eigenvalues and dimH1(Gur, Adρ0) = 3 if Frobenius has only one eigenvalue.

Of course one can amplify the result by twisting by a character and in this way get the
parts of theorems 4.1.3, 4.1.4, 4.1.5 concerning unramified (up to a twist) representations.

4.8 Local property

Let ρ : G → GL2(F) be a representation. Let ψ be a lifting of detρ and let Rψ,� be the
framed deformation universal ring with fixed determinant equal to ψ.

Proposition 4.8.1. The generic fiber of Spec Rψ,�[1/p] is 3-dimensional, reduced and
the union of formally smooth components.
If two distinct geometric components intersect, there is a character γ such that one com-
ponent is parameterizing representations becoming unramifed after a twist by γ−1 and the
other is parameterizing extensions of γ by γ(1).
For any geometric point x : Spec
barK → Spec Rψ,� lying on the intersection, ρx ' γ ⊕ γ(1).

Proof. Let E be a finite field extension of O[1/p] and ξ : Rψ,� → E an E-point. First of all
Spec Rψ,�[1/p] is formally smooth at ξ provided H2(G, Adξ0) = 0 and in this case the tangent
space dimension is

dimEH
1(G, Adξ0) + dimEAdξ − dimEH

0(G, Adξ) = 3.

Suppose now that H2(G, Adξ0) 6= 0 and recall that by local duality

dimEH
2(G, Adξ0) = dimEH

0(G, Adξ0(1)).
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The calculation shows that this last group is not trivial if and only if ξ is isomorphic to a sum
of characters γ ⊕ γ(1) (here we use the fact that H1(G, E(−1)) = 0). Moreover in this case
dimEH

2(G, Adξ0) = 1 and the tangent space has dimension 4.
Let us suppose that ξ is isomorphic to γ⊕γ(1), because otherwise there is nothing to do. After an
extension of the scalars we can assume that γ is rational (actually γ is already rational if p 6= 2),
and after a twist by γ−1 we can assume that γ is trivial.
Consider the schemes Spec Rur,ψ,�[1/p] (which parameterizes unramified representations) and
Spec Rχ,1,�[1/p] (which parameterizes the extensions of 1 by χ). We claim that these are two
distinct irreducible, 3-dimensional, formally smooth, subschemes of Spec Rψ,�[1/p] passing through
ξ. To prove that they are distinct we prove that there tangent spaces at ξ are distinct. We construct
two infinitesimal deformations : Let c ∈ H1(G, E(1)) a non zero class which has to be ramified and
let also µ : G → E[ε]× be a non trivial unramified deformation of the trivial character. Consider

over E[ε] the framed deformations
(
χ c
0 1

)
and

(
χ · µ 0

0 1 · µ−1

)
.

The complete local ring of Spec Rψ,�[1/p] is isomorphic to the quotient of O[1/p][[X1, ..., X4]]
by a monogenous ideal J . If the ideal J were zero then Spec Rψ,�[1/p] would be formally smooth
everywhere. In this case we get a contradiction if we take any closed point of Spec Rψ,�[1/p] lying
on Spec Rχ,1,�[1/p] inducing a non-split representation (it exists !). The dimension at this point
is only 3, but it is on the same irreducible component as ξ so it should have dimension 4. As a
result J is not zero and Spec Rψ,�[1/p] has dimension 3.
Let C be a geometric irreducible component passing by ξ. Let x be a geometric point lying on this
component. The representation ρ′x is unramified by theorem 4.1.2. Either Nx = 0 and x lies in
SpecRur,ψ,�[1/p] or Nx 6= 0 and x lies in Spec Rχ,1,�[1/p]. As a result the union of Spec Rχ,1,�[1/p]
and Spec Rur,ψ,�[1/p] is dense and closed in C, so C must be equal to one of these two.

This proposition completes the proof of theorem 4.1.1 and of the last part of theorem
4.1.3.

4.9 The split ramified case

Let η : G → O? be a ramified character. We denote by η̄ its reduction modulo mO. Let

ρ : G → GL2(F) be an extension of 1 by η̄, that is ρ '
(
η̄ ?
0 1

)
. We let as usual Rη,� be

the universal ring representing the functor Dη,�.

4.9.1 Preliminary

We define a functor:
Lη,� : ÂRO −→ SET

by setting Lη,�(A) = {ρA, LA} where ρA is a framed deformation of ρ to A with deter-
minant η and LA is a line in the space of ρA on which G acts via η.ψ(LA) where ψ(LA) is
some unramified character depending on LA.
We have a natural morphism Lη,� → Dη,� defined by forgetting the line.

Proposition 4.9.1. The morphism Lη,� → Dη,� is represented by a projective morphism
of schemes Θ : Lη,� → SpecRη,�.

Proposition 4.9.2. The scheme Lη,� is formally smooth.

Proof. Let A′ → A be a surjective morphism in ARO. Let {ρA, LA} be a point in Lη,�(A). We
want to lift it to an A′-point. We first lift the character ψ(LA) to a character ψ′ : G → A′×. Then
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we need only to show the surjectivity of the map : H1(G, A′(η.ψ′2)) → H1(G, A(η.ψ(LA)2)).
We identify O[[T ]] with the universal unramified deformation ring of the trivial character. Hence
any topological O[[T ]]-module M is naturally a G-module, G acting through Gur and the Frobenius
acting by multiplication by 1 + T . Moreover we let M(η) be the module M with twisted Galois
action by η.
The above surjectivity will follow from the lemma :

Lemma 4.9.3. Let M be any O[[T ]]-module of finite length. Then the map

H1(G,O[[T ]](η))⊗O[[T ]] M → H1(G,M(η))

is surjective.

By Nakayama’s lemma we can assume that M is of π-torsion (π is the uniformizer of O).
Then we reduce to the case where M = F[T ]/Tn. We take the following resolution of M(η)

0 → O[[T ]](η)

0@ π
Tn

1A
−→ O[[T ]](η)⊕O[[T ]](η)

“
π Tn

”
−→ O[[T ]](η) → 0.

Taking the associated spectral sequence we see that the obstruction to the surjectivity is in the H1

of the following complex concentrated in degree 0, 1 and 2

H2(G,O[[T ]](η))

0@ π
Tn

1A
−→ H2(G,O[[T ]](η))⊕H2(G,O[[T ]](η))

“
π Tn

”
−→ H2(G,O[[T ]](η))

But we can check that H2(G,O[[T ]](η)) = 0 because we have the classical isomorphism

H2(G,O[[T ]](η)) ' lim
← corH

2(Gn,O(η))

where Gn is the Galois group of the unramified extension of L of degree pn and because all the
H2(Gn,O(η)) are zero by local duality.

Proposition 4.9.4. The generic fiber of Lη,� is connected except when ρ is split and η̄ is
non trivial and unramified in which case there are two connected components.

Proof. The connected components of the generic fiber are in bijection with those of the fiber of
Lη,� over the closed point of Spec Rη,� (see proposition 4.6.2).

Proposition 4.9.5. Let E be a finite extension of K and let ξ : Spec E → Lη,� be a
point. We call again ξ its image in Spec Rη,�. Then the following maps of functors from
ARE to SET is an isomorphism :

Lη,�(ξ) → Dη,�
(ξ)

Proof.. The point ξ induces a diagonal E-representation which is isomorphic to η.ψξ ⊕ ψ−1
ξ . We

define a subfunctor
Ddiag,�ξ : ARE → SET

by setting Ddiag,�x (B) = {reducible and split liftings of x to B}. The proof of the following lemma
is left to the reader.

Lemma 4.9.6. The functor Ddiag,�x is representable by a formally smooth scheme of dimension 3.

We deduce that we have a natural isomorphism Ddiag,�ξ → Dη,�(ξ) . Let B in ARE and ξB be a
framed deformation of ξ. The above result implies that ξB is isomorphic to η.ψB ⊕ ψ−1

B for some
unramified character ψB . Furthermore there is a unique stable line in the space of ξB on which
the inertia acts via η|IG and the proposition follows.
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Corrolary 4.9.7. The map Lη,� → Spec Rη,� induces an open and closed immersion at
the level of the generic fiber.

We define a subfunctor Lη,1,� of Lη,� by setting Lη,�(A) = {ρA, LA} where ρA is a
framed deformation of ρ to A with determinant η and LA is a line in the space of ρA on
which G acts via η. This functor is represented by a closed subscheme Lη,1,� of Lη,�.

Proposition 4.9.8. The scheme Lη,1,� is formally smooth.

Proof. As in proposition 4.6.2. it is enough to prove that for any Zp-module M , the map:

H1(G,Zp(η))⊗M → H1(G,M(η))

is an isomorphism. By dévissage it is enough to prove it for M = Z/pn, and it follows from
H2(G,Zp(η)) = 0.

Proposition 4.9.9. The generic fiber of the scheme Lη,1,� is connected.

Proof. The fiber of Lη,1,� over the closed point of Spec Rη,� consists either of one point or of a
P1 if ρ is trivial.

Corrolary 4.9.10. Assume that x, y : Spec K̄ → Spec Rη,�[1/p] are two geometric points,
whose associated representations are both isomorphic to η ⊕ 1. Then x and y lie on the
same geometrically irreducible component.

4.9.2 Generalization

We go back to a general situation : let ρ : G → GL2(F) be a representation, ψ : G → O×
a lifting of detρ and Rψ,� be the universal framed deformation ring with determinant ψ.

Proposition 4.9.11. Let x : Spec K̄ → Spec Rψ,� be a geometric point. Suppose that
ρx : G → GL2(K̄) is isomorphic to a diagonal representation η⊕ λ and that the character
η.λ−1 is ramified. Let C be the geometrically connected component in Spec Rψ,�[1/p] which
contains the image of x. Then for any geometric point y : Spec K̄ → C the representation
ρy is isomorphic to a diagonal representation η.φ ⊕ λ.φ−1 for some unramified character
φ.

Proof. After twisting we can assume that λ = 1, ρ is an extension of 1 by η. We need only show
that x factorizes through Lη,�. The representation ρx is defined on a finite extension O′ of O and
we remark that there is a stable O′-line in the space of ρx on which G acts via η and the result
follows from corollary 4.9.7.

Definition 4.9.12. We say that a component C as above is of split ramified type {η|IG , λ|IG}.

Proposition 4.9.13. 1. There is at most one component of split ramified type {η|IG , λ|IG}
in Spec Rη,�, except if ρ is split diagonal, isomorphic to η̄⊕ λ̄ with η̄.λ̄−1 non trivial
and unramified, in which case there are exactly two components of split ramified type
{η|IG , λ|IG}.

2. Assume that x, y : Spec K̄ → Rη,�[1/p] are two geometric points, whose associated
representations are both isomorphic to η ⊕ λ, with η.λ−1 ramified. Then x and y lie
on the same geometrically irreducible component.

Proof.. This is corollary 4.9.10 and proposition 4.9.4.

These two propositions implies the parts of theorems 4.1.3, 4.1.4, 4.1.5 concerning split
ramified representations.
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4.10 The absolutely irreducible case

Let ρ : G → GL2(F) be a representation, let ψ : G → O× be a lift of the determinant and
let Rψ,� be the universal framed deformation ring of ρ.
Set X[1/p] equal the generic fiber of the space Spec Rψ,�. We make the assumption that
there is a geometric point x : Spec K̄ → X[1/p], such that the representation ρx : G →
GL2(K̄) deduced by pull back is absolutely irreducible. Note that, in general, this does
not imply that ρ itself is irreducible.

4.10.1 Exceptional case

We assume that the residual characteristic ` of L is 2, and that the image ρ0
x(G) in

PGL2(K̄) is either isomorphic to A4 or S4.

Lemma 4.10.1. The residual representation ρ is irreducible.

Proof.. We claim that there is a subgroup H ⊂ G of finite index such that ρ0(H) is a dihedral
group of order 4. Indeed recall that we have a filtration Z/2× Z/2 ⊂ A4 ⊂ S4.
In particular it means that ρx|H ' IndHH′γ, where H ′ ⊂ H has index 2 and γ is a character of H ′.
Moreover if σ ∈ H ′\H, then γσ.γ−1 is a character of order 2.
This proves that ρ|H is residually irreducible, because γ̄σ.γ̄−1 is again non trivial since p 6= `.

Proposition 4.10.2. The deformation functor of ρ with determinant ψ is isomorphic to
O and Rψ,� is a formal power series ring in 3 variables.
The generic fiber X[1/p] is irreducible and for any geometric point y : Spec K̄ → X[1/p]
the representation ρy is isomorphic to ρx.

Proof.The proof follows from the computation of the cohomology groups Hi(G, Ad0ρ).

4.10.2 Rigidity

Proposition 4.10.3. Let y : Spec K̄ → X[1/p] be another geometric point lying in the
same geometrically irreducible component as x. Then ρy is isomorphic to ρx.

Proof. We already gave a proof in the exceptional case and can restrict our attention to the case
where ρx is induced from a character. We start with a lemma :

Lemma 4.10.4. There is a closed subscheme X[1/p]ab ↪→ X[1/p], such that a geometric point
z : Spec K̄ → X[1/p] factorizes through X[1/p]ab if and only if ρz has an abelian image.

Over X[1/p] we have the Weil-Deligne representation (ρ′univ, Nuniv). Let F be a lift of the
Frobenius in G, and σ1, ..., σt be element of IG generating the finite group ρ′univ(IG). We define
X[1/p]ab by the relations

Nuniv = 0,

ρ′univ(σi)ρ
′
univ(σj) = ρ′univ(σj)ρ

′
univ(σi) for 1 ≤ i, j ≤ t,

ρ′univ(σi)ρ
′
univ(F ) = ρ′univ(F )ρ′univ(σi) for i = 1...t.

Now we base change X[1/p] to a finite extension K1 ⊂ K̄ of O[1/p], such that all irreducible
components of X[1/p]K1 are geometrically irreducible and such that the isomorphism classes of
irreducible representations of G in GL2(K̄) with determinant ψ are defined over K1.
We need a second lemma :

Lemma 4.10.5. Let C be the geometrically irreducible component where x lies. The subset of
closed points in C with irreducible associated representation is dense in C.
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We can assume that ρx ' IndGHγ for a character γ, and a subgroup H of index 2 in G. Let
σ ∈ G\H , we recall that γσ 6= γ.
First we consider the case where H corresponds to the unramified extension of L. Then σ is a lift
of the frobenius. We easily see that

ρy|IG '
(
γ 0
0 γσ

)
where γσ|IG 6= γ|IG . The relation ρy(σ)ρy(τ)ρy(σ)−1 = ρy(στσ−1) for any τ ∈ IG forces ρy(σ) =(

0 b
c 0

)
and ρy to be absolutely irreducible. Now we consider the case where H corresponds to a

ramified extension, and we let IH be the inertia subgroup of H, which is of index 2 in IG. We have
ρx|IG ' IndIGIH

γ. Then there are two possibilities, either γσ|IH
6= γ|IH

and ρx|IG is irreducible or
γσ|IH

= γ|IH
and

ρy|IG '
(
γ 0
0 γ.χH

)
where χH is the order 2 character G → G/H. But there are no reducible and non-split 2-
dimensional representation with such a restriction to inertia, this proves that ρy is either abelian
or absolutely irreducible.

We conclude the proof of the proposition with a third lemma whose proof, left to the reader,
is similar to that of lemma 4.5.3. We set C = Spec C and we let ρC : G → GL2(C) be the universal
representation above C.

Lemma 4.10.6. For any g ∈ G, the characteristic polynomial P (ρC , g) ∈ C[T ] lies in K1[T ].

We deduce the equality of the characteristic polynomials P (ρy, g) = P (ρx, g) for any g ∈ G
and conclude that ρx and ρy are isomorphic.

This proposition completes the proof of theorem 4.1.3.

4.10.3 Number of components

We say that a geometrically irreducible component C is of absolutely irreducible type if
there is a geometric point ξ : SpecK̄ → C such that the associated representation still
denoted by ξ is absolutely irreducible. The last proposition shows that the isomorphism
class of ξ is an invariant of the component.

Definition 4.10.7. We say that a geometrically irreducible component C as above is of
absolutely irreducible type ξ.

We use the notation of the last part : X is the universal deformation space of ρ and
x : Spec K̄ → X[1/p] is a geometric point whose associated representation ρx is absolutely
irreducible. We can suppose that x maps to a rational point.

Proposition 4.10.8. There is exactly one geometrically irreducible component in X[1/p]
of irreducible type ρx.

Proof. We already proved the proposition in the exceptional case and we restrict our attention
to the case where ρx ' IndG

Hγ, for a subgroup H ⊂ G of index 2 and a character γ : H → O×
K̄

. We
choose σ ∈ G\H, and we recall that γσ 6= γ. We set γ̄ for the residual character of γ

If we assume that γ̄σ 6= γ̄ then ρ is residually irreducible and Rψ,� is a formal power series
ring. The proposition follows.
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Assume now that γ̄σ = γ̄. We shall construct a scheme X̃ → X, whose generic fiber is con-
nected and maps onto the irreducible components of type ρx of X[1/p].

First we remark that ρ|H is a reducible representation, as a result we can assume ρ|H =
(
γ̄ α
0 γ̄

)
.

We consider the following functor :

DH : ÂRO −→ SET

by setting DH(A) = {ρA, LA} where ρA : H → GL2(A) is a framed deformations of ρ|H with
determinant ψ and LA is a stable line acted on via γ. We claim that this functor is representable

by a formally smooth scheme Y . We have a universal representation over OY , ρH =
(
γ αuniv
0 γσ

)
.

To any point ξ = (ρA, LA) ∈ Y (A), we attach the set M(ξ) of matrices Mσ ∈ GL2(A) such that

• M2
σ = ρA(σ2).

• detMσ = ψ(σ).

• M−1
σ ρAMσ = ρA(σ−1.σ).

• Mσ = ρ(σ) modulo mA.

We define a functor D̃ : ÂRO −→ SET by setting D̃(A) = {ξ ∈ Y (A),Mσ ∈ M(ξ)}. This functor
is represented by a scheme X̃, affine over Y .

Lemma 4.10.9. The scheme X̃[1/p] is connected.

We describe X̃[1/p]. Let ρ(σ) =
(
ā b̄
c̄ d̄

)
. Let Â4/O be the completion of the affine space (of

2× 2 matrices) A4 at the point (ā, b̄, c̄, d̄) of the special fiber. Let Mσ =
(
a b
c d

)
be the universal

matrix over X̃. We embed X̃ in Â4/Y and compute the equations defining X̃ at the level of the
generic fiber. We remark that, on the generic fiber, αuniv is proportional to γ − γσ (because the
extension class vanishes), and hence that conjugating by Mσ sends αuniv to −αuniv. We easily
deduce that X̃[1/p] is defined by the equations :

• a = −d.

• a2 + bc = γ(σ2).

• a2.(γσ − γ) = αunivac.

• ac.(γσ − γ) = αunivc
2.

• ab.(γσ − γ) = αunivbc.

Since Y [1/p] is a domain c needs to be invertible and hence the two coordinates (a, c) are param-
eters of X̃[1/p] over Y [1/p]. We define a structure of ĜL1-torsor on X̃[1/p] over Y [1/p] by setting
λ.(a, c) = (λa, λc) for λ ∈ ĜL1 which proves the lemma.

We have a map Π : X̃ → X defined as follow : to (ξ = (ρA, LA),Mσ) ∈ X̃(A) we associate
the framed deformation ρ′A defined by ρ′A|H = ρA and ρ′A(σ) = Mσ.

Lemma 4.10.10. Let y : Spec K̄ → X a geometric point such that ρy ' ρx. Then y factorizes
through Π.
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Since ρy ' IndG
Hγ, ρy|H comes from some K̄-point y0 of Y . And the pair (y0,Mσ = ρy(σ))

defines a point on X̃.

To conclude the proof of the proposition it is enough to prove that all geometric points induc-
ing representations isomorphic to ρx are in the same connected component as x and this follows
from the two lemmas.

This proposition completes the proof of theorem 4.1.4 and 4.1.5.

4.11 The determinant

As usual let ρ : G → GL2(F) be any representation and R� its universal framed deforma-
tion ring.

Most of the analysis of the preceding sections has been done for the closed subscheme
Spec Rψ,� of Spec R� of deformations with determinant ψ. Nevertheless, in the case
p 6= 2, it is easy to extend all the results to Spec R�. We shall explain this.

Let Y be the universal deformation space for the trivial character and let Y ′ = Y which
we see as the universal deformation space of the character detρ.
There is an action Y × Spec R� → Spec R� : If ρA : G → GL2(A) is a lifting of ρ to A
and if η : G → A× is a lifting of the trivial character, we can construct the representation
ρA ⊗A η which is still a lifting of ρ to A.
Similarly there is an action Y × Y ′ → Y ′ defined by sending a pair (η, µ) to η2 · µ where
η and µ are characters G → A× lifting respectively the trivial character and detρ .
These two actions are compatible with the determinant map Spec R� → Y ′.

Lemma 4.11.1. Assume that p = char F is odd. Then the action Y ×Y ′ → Y ′ is transitive
and free.

Proof. A p-group is uniquely 2-divisible if p 6= 2.

Theorem 4.11.2. We make the assumption that p 6= 2.
Let ψ be a lifting of detρ and let Rψ,� be the universal framed deformation ring with
determinant ψ.
The map Y × Spec Rψ,� → Spec R� is an isomorphism.
In particular the generic fiber Spec R�[1/p] is a union of 4-dimensional formally smooth
irreducible components.
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