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p-ADIC VARIATION OF AUTOMORPHIC SHEAVES
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Abstract

We review the construction of analytic families of Siegel modular cuspforms
based on the notion of overconvergent modular forms of p-adic weight. We then
present recent developments on the following subjects: the halo conjecture, the
construction of p-adic L-functions, and the modularity of irregular motives.

1 Introduction

We start by fixing a number field F , a prime integer p > 0 and an integer n � 1 and by
denotingGF and respectivelyAF the absolute Galois group and the ring of adeles ofF .
We fix an isomorphism C ' Qp . One of the most mysterious conjectures in number
theory, known as the Langlands, Clozel, Fontaine-Mazur Conjecture is the statement
of the existence of a bijection respectingL-functions between the following families of
isomorphic classes of representations:

Repgeomp;F := fIrreducible representations � : GF ! GLn(Q̄p) which are continuous,
ramified only at a finite number of places and de Rham at the places dividing pg

and

AutalgF := fCuspidal algebraic automorphic representations� of the groupGLn(AF )g.

The algebraicity condition of an automorphic form � is the condition that the infinites-
imal character (also called the weight) of the �v is algebraic for all infinite places v of
F (Clozel [1990], Buzzard and Gee [2011]). It is known that there are only countably
many isomorphism classes of algebraic automorphic representations (Harish-Chandra
[1968], Thm. 1). On the other hand the objects in Repgeomp;F should arise from the coho-
mology of proper smooth varieties over F (Fontaine and Mazur [1995], Conj. 1). The
bijection we are seeking should therefore be a bijection of (conjecturally) countable
sets.

Having written this let us remark that in fact each of these countable sets can be
embedded in certain analytic varieties over Qp . To be more precise, for Repgeomp;F , one
can relax the condition of the representations being de Rham at places dividing p and
obtain a moduli space of more general, non-geometric p-adic Galois representations
enjoying reasonable finiteness properties (Mazur [1989]).
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Concerning AutalgF , one would also like to see them as a subset of a larger set of p-
adic automorphic forms. For the moment there are several good definitions of a p-adic
automorphic form depending on the way one endows the space AutalgF with a p-adic
topology.

The general method to study elements of AutalgF is to realize them (when this is pos-
sible!) in the Betti cohomology of a locally symmetric space or in the coherent co-
homology of a Shimura variety (Harris [1990]). These cohomology groups naturally
carry structures of finite dimensional Q-vector spaces and these structures can be used
to equip the automorphic forms with a p-adic topology. Once a cohomological realiza-
tion has been chosen, one can start to vary the levels and the weights of the algebraic
automorphic representations. Miraculously, we find in many cases that the countable
set of systems of eigenvalues associated to the cuspidal algebraic automorphic forms is
not isolated in the space of p-adic automorphic forms and that its closure acquires the
structure of an analytic space.

The point of view ofp-adically deforming the elements of Repgeomp;F and AutalgF proves
to be very fruitful as it is sometimes easier to study and work with these analytic vari-
eties than to work with the geometric Galois representations and algebraic automorphic
forms individually.

In this note we begin by explaining one possible approach for the construction of the
p-adic analytic spaces (also called eigenvarieties) attached top-adic automorphic forms
based on the coherent cohomology realization in a Shimura variety of PEL type1. We
shall actually limit ourselves to the Siegel moduli spaces of polarized abelian varieties
with level structure. We explain how to vary p-adically the weight of the automorphic
forms. One has as a guiding principle that in order to be able to deform automorphic
forms one needs to allow them, seen as global sections of certain automorphic sheaves,
to have essential singularities at non-ordinary points. Restricting the automorphic vec-
tor bundles to the complement of these non-ordinary points has the advantage that they
(the automorphic vector bundles) acquire extra structures arising from the universal
p-divisible group via the Hodge-Tate period map. Our main task is to define overcon-
vergent modular forms of any p-adic weight. This is a refinement of the definition of
p-adic modular forms of Serre, Katz [1973] and Hida [1986] and an interpolation of
the notion of overconvergent modular forms of integral weight considered by Dwork,
Coleman and Mazur [1998]... This material has already appeared in print (for example
in Andreatta, Iovita, and Pilloni [2015]). Next we present three recent developments in
this area: the halo conjecture, the construction of triple product p-adic L functions in
the finite slope case, and the modularity of certain irregular motives.

1This choice is made to the expense of ignoring interesting automorphic forms because the condition of
admitting a cohomological realization in the coherent cohomology of a Shimura variety is restrictive. There
are other approaches based on the Betti realization but for the sake of brevity we will not discuss them here.
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2 Vector bundles with marked sections

In this section we review some constructions which applied to various contexts provide
examples of interpolation of automorphic sheaves in the subsequent sections. We have
tried to isolate the key representation theoretic ideas outlining a general method to get
interpolations that might be useful in other situations.

2.1 Some classical representation theory. We start by recalling the construction of
the irreducible representations of the group GLg . Let B � GLg be the upper triangu-
lar Borel and let T be the usual diagonal torus. Let X(T) be the character group of
T. This group is isomorphic to Zg via the map sending (k1; � � � ; kg) to the character
diag(t1; � � � ; tg) 7!

Qg
i=1 t

ki

i . We let X(T)+ be the cone of dominant weights given
by the condition k1 � k2 � � � � kg .

If k 2 X(T)+, we define the algebraic induction V k = ff : GLg ! A1; f (gb) =

k(b)f (g); 8(g; b) 2 GLg �Bg where k has been extended to a character of B via the
projection B ! T. The group GLg acts on this space via f 7! f (g � �).

2.2 p-Adic representation theoretic variations. Next we explain how to interpo-
late the weights k and the spaces V k , for k 2 X(T)+. We let Λ = Zp[[T (Zp)]] be
the Iwasawa algebra of the torus. The universal continuous character of T(Zp) is the
tautological character:

kun : T(Zp) �! Λ�:

We can consider the formal spectrum W = Spf Λ and denote by W its rigid analytic
fiber over Spa(Qp;Zp). This is a finite union of open unit polydiscs of dimension g.
Given a complete Huber pair (B;B+) over (Qp;Zp), the morphisms Spa(B;B+) !

W correspond to Homcont(T(Zp); B�). In particular W(Qp) contains the algebraic
weights X(T). Observe that X(T) is totally disconnected in W but Zariski dense and
that W has only a finite number of connected components.

The character kun interpolates the algebraic charactersX(T). We now explain how to
interpolate the representations fV kgk2X(T)+ overW (Stevens [2000]). We switch to the
analytic setting and let now GLg , T, B denote the analytifications over Spa(Qp;Zp) of
the respective group schemes. Let Iw � GLg(Zp) be the Iwahori subgroup of matrices
which are upper triangular modulo p. For any number w 2 Q>0 [ f1g, we denote by
Iww � GLg the adic analytic subgroup of GLg of integral matrices which are congruent
modulo pw to an element of Iw and we let Bw = B \ Iww and Tw = T \ Iww . Let
U ,! W be an open subspace. Let w be such that the universal character extends
to a pairing kunU : Tw � U ! Gm. In this case we say that kun is w-analytic over U.
Remark that if U is quasi-compact, then kunU is always w-analytic for some w 2 Q>0.
We may define a representation of the group Iww as the analytic induction

V
kunU
w = ff : Iww � U ! A1

� U; 8(i; b) 2 Iww � Bw f (ib) = kunU(b)f (i)g:

If U = Spa(Qp;Zp) and kunU = k 2 X(T)+ (k is algebraic and therefore w-analytic
for allw) we have an inclusion V k ,! V

kunU
w . Observe that unless g = 1, the space V k

un
U

w
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is an infinite dimensional Banach space and the inclusion is not an isomorphism. This
should not be a surprise as for g � 2 the dimensions of the spaces fV kgk2X(T)+ vary
and the only possibility to interpolate them is to embed them in larger spaces (infinite
dimensional) which can then be interpolated. It is moreover possible to characterize
V k inside V k

un
U

w by using some differential operators (analytic BGG resolution, Jones
[2011]).

2.3 Relative constructions. The classical case. We use the notation of Section 2.1.
Let X be a scheme, let E be a locally free sheaf of rank g over X and denote by E_ =

Hom(E;OX ) the dual sheaf. We associate to any dominant weight k 2 X(T)+ a locally
free sheaf Ek overX as follows. Consider the GLg -torsor f : T (E) ! X associated to
E, namely T (E) := Isom(Og

X ;E
_). Define Ek = f�OT (E)[k], the functions on T (E)

transforming via k under the action of B. One gets a finite, locally free OX -module
which locally on X is isomorphic to the space V k introduced in Section 2.1.

2.4 Relative constructions. p-Adic variations. We now assume that X is an an-
alytic adic space over Spa(Qp;Zp). Let E be a locally free sheaf of rank g over X
and let E+ be an integral structure, namely a subsheaf of finite and locally free O+

X-
modules of rank g such that E = E+ ˝O

+

X
OX. Let w 2 Q>0 [ f1g. We now provide

a formalism which leads to the construction of families of sheaves interpolating the
sheaves fEkgk2X(T)+ on X and which, locally on X, are isomorphic to the spaces V kw
of Section 2.2. The new essential ingrediants are the “marked sections” s1; : : : ; sg 2

H0(X;E+/pwE+)with the property that the inducedmap (O+
X/pwO+

X)g ! E+/pwE+

is bijective.
Define Tw(E+; fs1; : : : ; sgg) as the functor that associates to any adic space t : Z !

X the set of sections (�1; � � � ; �g) 2 H0
�
Z; t�(E+)_

�
such that (ht�(si ); �j i)1�i;j�g 2

Iw mod pw . Here t?(E+) is the sheaf t�1(E+) ˝t�1O
+

X
O+

Z and t?(E+)_ is its O+
Z-

dual. One proves easily that Tw(E+; fs1; : : : ; sgg) is representable by an adic space and
is a Iww -torsor. We now assume that there is a map X ! W and that the character kX

pulled back from the universal character on W is w-analytic. Under this assumption
we define the sheaf

Ekw := f�OTw(E+;fs1;:::;sgg)

�
kX

�
:

This sheaf is a relative version of the construction of V kX
w given in Section 2.2.

We now describe a slight variant of this construction where we only assume that
we have a partial set of sections. In this situation it is still possible to realize a partial
interpolation. Let 1 � r � g. We define the subgroup Iww;r of GLg of integral
matrices of the form �

A D

B C

�
;

where A 2 GLr and A mod pw is upper triangular with entries in Zp/pw , D 2

Mr;g�r , C 2 GLg�r , B 2 Mg�r;r and B = 0 mod pw . We denote by Tw;r =
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T \ Iww;r , Bw;r = B \ Iww;r and Tw;r = T \ Iww;r . We assume that we have
sections s1; � � � ; sr 2 H0(X;E+/pwE+) such that the induced map (O+

X/pwO+
X)r !

E+/pwE+ is injectivewith locally free cokernel of rankg�r . We define Tw(E+; fs1; : : : ; srg)

as the functor that associates to any adic space t : Z ! X the set of basis (�1; � � � ; �g) 2

H0
�
Z; t?(E+)_

�
such that:

• (ht?(si ); �j i)1�i;j�r 2 GLr(Zp) mod pw and is upper triangular modulo pw ,

• ht?(si ); �j i = 0 mod pw for all 1 � i � r and g � r + 1 � j � g.

It is clear that Tw(E+; fs1; : : : ; srg) is an Iww;r -torsor. We now assume that the char-
acter kX extends to a character of Tw;r andwe denote byEkw := f�OTw(E+;fs1;:::;sr g)[kX].

We remark that the relative constructions in Sections 2.2 and 2.4 could have been made
exactly in the sameway byworking with an invertible ideal I � O+

X such that I\Zp =

pwZp , instead of with pwO+
X.

3 Variations in the Siegel case.

Let GSp2g be the group of similitudes of (Z2g ; h; i) where h; i is the alternating form
given by hei ; e2g�i+1i = 1 if 1 � i � g and hei ; ej i = 0 if i + j ¤ 2g + 1. Let
K � GSp2g(Af ) be a neat compact open subgroup, where Af denotes the ring of
finite adels of the rationals. Let YK ! Spec Q be the Siegel moduli space of polarized
abelian varieties A of dimension g and level structure K. Its complex analytification
(YK � Spec C)an is the locally symmetric space GSp2g(Q)n

�
Hg � GSp2g(Af )/K

�
where Hg = fM 2 Mg(C);M t = M; Im(M ) is definite positive or negativeg is the
Siegel space i.e. the union of the Siegel upper and lower half-spaces.

3.1 The classical construction. To any g-uple k = (k1; : : : ; kg) 2 Zg satisfying
k1 � k2 � : : : � kg , one attaches an automorphic locally free sheaf !k on YK us-
ing the construction of Section 2.3 for the sheaf !A of invariant differentials of the
universal abelian scheme over YK . Let XK be a toroidal compactification of YK (Falt-
ings and Chai [1990]). The sheaf !k extends canonically to XK . The global sections
form the space of classical holomorphic Siegel modular forms of weight k and levelK.
This is a finite dimensional Q-vector space. It carries an action of the Hecke algebra
C1
c (GSp2g(Af )//K;Z) of locally constant and compactly supported functions which

are left and right K invariant on GSp2g(Af ).
After tensoring withC, these Siegel modular forms can be described as holomorphic

vector valued functions on Hg satisfying a transformation property with respect to a
congruence subgroup of GSp2g(Q). The cuspidal forms (those vanishing on D =

XK n YK) define (via a usual lifting process) special vectors in the space of algebraic
automorphic forms for the group GSp2g(A). Here and elsewhere A denotes the ring of
adels of Q.
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3.2 Interpolation. Let p > 0 be a prime integer. We now assume that K = KpKp

where Kp � GSp2g(A
(p)

f
) and Kp = GSp2g(Zp). In this setting, YK and XK admit

canonical models over Spec Z(p) and we denote by Y and respectively X the associ-
ated analytic spaces over Spa(Qp;Zp). Over Y there is a universal p-divisible group
A[p1], which comes with a quasi-polarisation: A[p1] ' (A[p1])D .

We review the method of Andreatta, Iovita, and Pilloni [2015] to construct a sheaf
interpolating the classical automorphic sheaves!k . We shall work overY for simplicity,
but everything extends to X. This construction relies on the Hodge-Tate period map

HT : Tp(A) ! !A

where Tp(A) is the Tate-module of the p-divisible group A[p1], a pro-étale sheaf lo-
cally isomorphic to Z2g

p . Over the ordinary locus Yord we have an étale-multiplicative
extension 0 ! Tp(A)

m ! Tp(A) ! Tp(A)
et ! 0 and the Hodge-Tate map factors

through a map Tp(A)et ! !A which induces an isomorphism of pro-étale sheaves
Tp(A)

et ˝ OYord ! !AjYord . Thus the GLg -torsor !A arises from a GLg(Zp)-torsor
over the ordinary locus and this allows the interpolation of the sheaves !k over Yord. It
is nevertheless important in order to have compact operators and for the construction
of eigenvarieties to go beyond the ordinary locus.

Given an integer r � 0 we let Yr � Y be the open defined by the valuations x
satisfying the inequality jfHapr+1

jx � jpjx where fHa is locally defined as a (any) lift of
the Hasse invariant on the special fiber of YK . EachYr should be thought of as a tubular
neighborhood of the ordinary locus Yord in Y, where Yord is defined by the condition
that jfHajx � 1. It follows from the theory of the canonical subgroup that the pr -torsion
of A over Yr contains a canonical subgroup Hr � A[pr ] (see Fargues [2011]). Over
Yord it coincides with the multiplicative part of A[pr ].

In order to apply the general machinery of Section 2.4 we need to exhibit a vector
bundle with marked sections. Consider the finite étale cover of adic spaces IGr ! Yr
classifying trivializations  : (Z/prZ)g Š HD

r . Then IGr carries several sheaves:
1) we have the sheafHr and its Cartier dualHD

r ;
2) we have a sheaf !+

A , resp. !A of O+
IGr

-modules, resp. of OIGr
-modules, which

are locally free and finite of rank g. Over affinoids Spa(B;B+) � IGr such that the
pull-back of A extends to an abelian scheme eA over B+, the value of !+

A and of !A are
the module of invariant differentials of eA, resp. of A;

3) we have a sheaf !+
Hr

of O+
IGr

-modules and a morphism HT : HD
r ! !+

Hr
. Over

affinoids Spa(B;B+) � IGr such that the pull-back of Hr extends to a finite and
flat group scheme eH r ,! eA over B+, the value of !+

Hr
is the module of invariant

differentials !eHr
and the map HT is the Hodge-Tate map.

Notice that we have a natural morphism !+
A ! !+

Hr
. With this we define a modi-

fication !]A � !+
A as the inverse image in !+

A of HT
�
HD
r ˝ O+

IGr

�
. One proves that

this is a finite and locally free sheaf of O+
IGr

-modules over IGr of rank g and that for
every rational number 0 < w � r �

1
p(p�1)

the morphism HT defines an isomorphism
of O+

IGr
/pw -modules
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HTw : HD
r ˝ O+

IGr
/pw Š !

]
A/p

w!
]
A:

which is a good substitute of the comparison map we had over the ordinary locus.
Consider E := !A, E+ := !

]
A and the sections s1; : : : ; sg of !]A/p

w!
]
A provided by

the images of the canonical basis of (Z/prZ)g via HTw ı  . Let U � W be an open
subset where the character kunU is w-analytic. Applying the construction explained in
Section 2.4 we get the sheaves we are looking for

!k
un

r;U := �?
�
O

Tw(!
]
A
;fs1;:::;sgg)�U

��
kun

�
;

where � : Tw(!
]
A; fs1; : : : ; sgg) ! IGr is the torsor of trivializations of !]A with

marked sections s1; : : : ; sg .
Actually, denote by YIw;r ! Yr be the covering parametrizing full flags of HD

1 .
Then the sheaf !kun

r;U descends canonically along the natural map IGr ! YIw;r . More-
over it extends without much difficulties to the toroidal compactification XIw;r of YIw;r .

3.2.1 A perfectoid digression. We’d like to explain the construction of the previous
section when g = 1 in more elementary terms. Let N be an integer, N � 3 and
(N;p) = 1. Recall (see Katz [1973]) that a modular form f of weight k 2 Z with level
Γ1(N ) over Z[1/N ] can be viewed as a functorial rule mapping a triple (E/R;P; !)

(consisting of an elliptic curveE ! SpecR for aZ[1/N ]-algebraR, a pointP 2 E[N ]

of order exactlyN , and a nowhere vanishing differential form!) to f (E/R;P; !) 2 R

satisfying the additional transformation property: f (E;P; �:!) = ��kf (E;P; !) for
any � 2 R� and some growth condition at infinity.

Over C, we can pull back f to a function on the Poincaré upper half plane by setting

F (�) = f (C/(Z+�Z); 1
N
; dz) for the coordinate z on C. For 
 =

�
a b

c d

�
2 Γ1(N ),

multiplication by (c� + d )�1 on C identifies the triples (C/(Z + �Z); 1
N
; dz) and

(C/(Z + 
:�Z); 1
N
; (c� + d )dz) and therefore F satisfies a descent condition with

respect to the action of Γ1(N ), namely F (
:�) = (c� + d )kF (�).
We now express our definition of overconvergent modular forms of someCp-valued

character k : Z�
p ! C�

p in similar terms. Assume that k is w-analytic and choose a
positive integer r such that r � 1 < w � r �

1
(p�1)p

(this can be achieved at the
expense of increasing w). Then an r-overconvergent modular form f of weight k is
a rule associating to every quadruple (E;P; ; !) an element f (E;P; ; !) 2 Cp ,
where E is an elliptic curve over Cp such that jH̃ap

r+1

(E)j � jpj , P is a point
of order N ,  is point of order pr of the dual canonical subgroup HD

r , ! is an in-
tegral differential form on E such that ! mod pw = HTw(Ψ). Moreover we de-
mand that f is “analytic”, extends to the cusps, and satisfies the functional equation
f (E;P; � ; �!) = k�1(�)f (E;P; ; !) for all � 2 Z�

p(1 + p
wCp).2

2In order to make sense of the functional equation it is necessary to restrict to differential forms which
“arise” from the dual canonical subgroup
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Following Chojecki, Hansen, and Johansson [2017], one can describe an analogue
of the passage from f to F in the p-adic world. Let X(1) ! X be the prefectoid
modular curve of level Γ(p1) \ Γ1(N ) constructed by Scholze [2015] and Y(1) the
complement of the boundary. OverY(1)we have a universal trivialization 1 : Z2

p Š

Tp(E) and the Hodge-Tate map HT : Tp(E) ! !E induces a period map:

�HT : X(1) �! P 1

which, over Y(1), is characterized by the fact that �?HT
�
OP1(1)

�
= !E and the pull-

back of the two canonical sections s0 and s1 of OP1(1) are the images via HT ı  1

of the canonical basis e0, e1 of Zp ˚ Zp . For any v 2 Q>0, let P 1
v be the open of P 1

defined by the condition js1j � jpvs0j.
Let X(1)v = ��1

HT (P
1
v ) and Y(1)v = Y(1) \ X(1)v . For v large enough,

(E;P; 1) 2 Y(1)v has a canonical subgroup of level r which is generated by
the image of  1(e1) in E[pr ], and  1(e0) maps to a generator  1(e0) of HD

r .
We can therefore pullback f to a function on Y(1)v by setting F (E;P; 1) =

f (E;P; 1(e0); s0 = HT( 1(e0))).
This identifies the space of overconvergent modular forms of weight k with a space

of functions on the open X(1)v of X(1). These functions satisfy a descent condition
which reminds us of the descent condition on the upper half plane. Namely, let n be
the smallest integer greater than v. We consider the subgroup K0(p

n) � GL2(Zp) of

elements
�
a b

c d

�
such that c 2 pnZp . For any 
 2 K0(p

n) as above, we find that

F (E;P; 1 ı 
) = k�1(a + b s1
s0
)F (E;P; 1): 3

3.3 Eigenvarieties. The sheaves !kun
r;U produce variations of Hecke eigensystems as

follows. The global sections of!kun
r;U overXIw;r , vanishing at the boundary, form the Ba-

nach module of r-overconvergent, w-analytic cuspidal Siegel modular forms of weight
parametrized by U. Passing to the limit over r and w we obtain the space of over-
convergent, locally analytic cuspidal Siegel modular forms of weight parametrized by
U. Let N be the product of primes different from p for which K` ¤ GSp2g(Z`).
This space carries an action of the commutative spherical Hecke algebra TNp :=

C1
c (GSp2g(A

(Np)

f
)//KNp;Z). Let Iwp � GSp2g(Zp) be the Iwahori parahoric of

upper triangular matrices modulo p. At p, there is an action of the dilating Hecke
algebra Up := Z[Up;1; � � � ; Up;g ]

4 � C1
c (GSp2g(Qp)//Iwp;Z), and the operator

U =
Q
i Up;i is compact.

Let f be a classical cuspidal eigenform of weight k and level KpIwp . We denote
by Θf : TNp ˝ Up ! Q̄ the associated character.5 We have the following:

3 F (E;P; 1 ı 
) = f (E;P; 1(ae0);HT ı  1(ae0 + be1)) = f (E;P; 1(ae0); (a +
b s1

s0
)HT ı 1(e0)) = k

�1(a+ b s1
s0

)F (E;P; 1):
4If i 2 f1; � � � ; g � 1g, Up;i is the characteristic function of the double class

Iwpdiag(p2Idi ; pId2g�2i ; Idi )Iwp , Up;g is the characteristic function of the double class
Iwpdiag(pIdg; Idg)Iwp

5 Since f has Iwahori level at p, then Θf (Up;i ) ¤ 0 and f is of finite slope.
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Theorem 3.1. There is a rigid analytic space E, called the eigenvariety of tame level
Kp , equipped with a weight map w : E ! W which is locally on the source and the
target finite and torsion free and there is a universal Hecke characterΘ : TNp˝Up !

OE with dense image such that:

• Any classical cuspidal eigenform f of weight k and level KpIwp provides a
unique point xf on E such that Θjxf

= Θf and w(xf ) = k,

• Conversely, any point x 2 E satisfyingw(x) = (k1; : : : ; kg) 2 X(T)+ satisfying
v(Θjx(Up;i )) < kg�i � kg�i+1 + 1 for 1 � i � g � 1 and v(Θjx(Up;g)) <

kg �
g(g+1)

2
arises from a cuspidal eigenform f of weight k and level KpIwp .

Remark 3.3.1. 1) The case g = 1 of Theorem 3.1 was first proved by Coleman and
Mazur in Coleman and Mazur [1998]. They used a different construction of the p-adic
families of modular forms in which the Eisenstein family plays a crucial role and which
could not be generalized for g > 1.

2) The cuspidality condition is crucial for the theorem for g � 2. We prove an
acyclicity result for the cuspidal sheaves !kun

r;U(�D) using that XIw;r has affine image
in the minimal compactification and showing that the relative cohomology of cuspidal
sheaves between the toroidal and the minimal compactifications vanishes in degrees
greater than 1. In particular the acyclicity allows us to prove that the degree zero coho-
mology of !kun

r;U(�D) commutes with specializations in the weight space U � W.

3) We outlined the construction for Siegel modular varieties but the same method
applies more generally for PEL type Shimura varieties having dense ordinary locus,
see Andreatta, Iovita, and Pilloni [2016a] for the Hilbert case and Brasca [2016] for the
general case.

4) Even for Shimura varieties with empty ordinary locus, one can proceed in a sim-
ilar way. The ordinary locus is replaced by the so called �-ordinary locus, introduced
by T. Wedhorn, and the Hasse invariant is replaced by the �-Hasse invariant, defined
at various levels of generality by G. Boxer, W. Goldring-M.H. Nicole, V. Hernandez,
J.S. Koskivirta-T. Wedhorn. The last ingredient one needs is a replacement for the
canonical subgroup and the Hodge-Tate map. We refer to Kassaei [2013] and Brasca
[2013] for the case of Shimura curves and to Hernandez [2016] for the more general
case of PEL type Shimura varieties and for a thorough account of the problem.

5) The last point of the Theorem 3.1 is proven in Bijakowski, Pilloni, and Stroh
[2016] (and already by Coleman and Kassaei for g = 1). It is a classicity criterion
which roughly asserts that small slope overconvergent modular forms are classical. It
is a crucial result in order to study eigenvarieties as it provides a dense set of points,
the classical ones. In a certain sense, these classical points characterize uniquely the
eigenvariety. In particular, it often happens that a given property known at the classical
points can be inferred by continuity for the whole eigenvariety.
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4 Variations at infinity.

We now restrict to the case g = 1. In this case we have an eigencurve E ! Z ! W
whereZ ,! W�Gm, the so called spectral curve, is the zero locus of the characteristic
series P (X) of the U -operator acting on the space of overconvergent modular forms.
The map E ! Z is finite and both E and Z are equidimensional of dimension 1. There-
fore the geometry of E can be understood, to some extent, by studying the apparently
simpler space Z.

4.1 The spectral halo. Recall that the weight space W is the rigid analytic fiber
of Spf Zp[[Z�

p]]. One can consider a slightly bigger space Wan defined by the analytic
points of the adic space Spa(Zp[[Z�

p]];Zp[[Z
�
p]]). Recall thatZp[[Z�

p]] Š Zp
��

Z/pZ
���

[[T ]],
where T is defined by imposing that the grouplike element exp(p) is equal to T + 1.
The complement ofW inWan consists of finitely many points in characteristic p, corre-
sponding to the T -adic valuations on Fp[

�
Z/pZ

��
]((T )) and Wan is a compactification

of W, obtained by adding a point at the boundary of each rigid analytic open unit disc.
Coleman observed that the characteristic series P (X) of theU -operator on the eigen-

curve has coefficients in Λ and, hence one can consider the extended spectral curve
Zan ,! Wan�Gm = V (P ). The fiber ofZan over a boundary point k : Spa

�
Fp((T ));Fp[[T ]]

�
!

Wan is the zero set of the specialization Pk(X) at k, over the non-archimedean field
Fp((T )).

In Andreatta, Iovita, and Pilloni [2018] we prove a conjecture of Coleman in which
he stated the existence of a Banach space over Fp((T )) and of a compact operator whose
characteristic series is Pk(X). More precisely, we prove the following result. LetXWan

be the analytic adic space defined by the pull back of the modular curve to Wan. Given
v 2 Q�

�0 we define XWan(v) to be the open consisting of the points x satisfying the
condition jfHajx � sup

˚
jT vjx ; jp

vjx

	
.

Theorem 4.1. For v > 0 small enough we have an invertible sheaf !kun over XWan(v),
endowed with an action of the Hecke operators, that coincides with the construction in
Section 3.2 over Spa(Qp;Zp).

Moreover, given a boundary point k ofWan, the sections of the fiber of!kun at k form
a Banach module over Fp((T )) such that the characteristic series of the U -operator is
Coleman’s series Pk(X).

The sections of the characteristic p fiber of !kun are called T -adic overconvergent
modular forms (of radius of convergence v). They are actually functions on certain
overconvergent Igusa tower in characteristic p. Using the sheaf !kun over XWan(v)

one manages to extend the Coleman-Mazur eigencurve to an eigencurve Ean over the
whole Zan.

Each finite slope eigenform f in characteristic p defines a point on Ean and we can
associate to it a semi-simple two dimensional Galois representation

�f : Gal(Q/Q) ! GL2

�
Fp[[T ]]

�



p-ADIC VARIATION OF AUTOMORPHIC SHEAVES 301

unramified at the primes different form p and not dividing the tame level. Here Fp[[T ]]
denotes an algebraic closure of Fp[[T ]]. If f is ordinary, �f has already been con-
structed by Hida. For finite slopes we get new, mysterious objects in the realm of
Galois representations that deserve further study and understanding. Here are some
questions that we find interesting.

Given �f as above, one can construct an equicharacteristic p, étale (';Γ)-module
D(�) over the Robba ring for the discretely valued field F̄p((t)) (as in Berger and
Colmez [2008]). IsD(�) trianguline (i.e., extension of one dimensional (';Γ)-modules)?

Does this characterize the two dimensional representations of Gal(Q/Q) with val-
ues in finite extensions of F̄p((T )) which arise from T -adic overconvergent modular
eigenforms of finite slope?

4.2 The halo conjecture. We would now like to discuss the halo conjecture and
some questions related to the global geometry of Ean. Let x : Spa(K;OK) ! Wan

be a rank one point. The choice of a pseudo uniformizer $ allows to normalize the
associated valuation v : K ! R [ f1g by v($) = 1. In that case we write v$
for v. There are in general two natural choices of pseudo-uniformizer in OK , namely
p and T , except at the boundary when p = 0 and at the very center T = 0. One
can attach to the characteristic series Pk(X) =

P
n�0 anX

n and a choice of pseudo
uniformizer $ a Newton polygon NP$ (Pk) which is the convex enveloppe of the
points (n; v$ (an)) � R2. This is the graph of a piecewise linear function and the
sequence of slopes of NP$ (Pk) is giving the sequence of $ -adic valuations of finite
slope eigenvalues of U .

Conjecture 1 (Coleman-Mazur-Buzzard-Kilford). Let k 2 Wan be a boundary point.
Then there exists a positive rational number r such that for all rank one points

k0 : Spa
�
K;OK

�
! Wan

in a neighbourhood U = fx; jpr jx � jT jxg of k we have NPT (Pk0) = NPT (Pk):
Moreover, the slopes in NPT (Pk) form a finite union of arithmetic progressions.

Before discussing what is known about this conjecture, let us describe some of the
consequences. The first implication is that ZanjU =

`
s Zan(s) splits as a disjoint

union of components according to the slopes s occurring inNPT (Pk). Each component
Zan(s) is finite flat over U. In certain numerical examples it actually maps isomorphi-
cally onto U. In this case the complement of the points at infinity can be visualized as
halos, explaining the name of the conjecture.

A second implication is that the p-adic slopes tend to zero as one approaches the
boundary. In particular, T -adic overconvergent modular eigenforms of finite slope (for
theU -operator) are limits of classical modular forms of arbitrary fixed weight k � 2 (of
course of increasing level at p) by Coleman’s classicity theorem. It is known that each
irreducible component of Zan has image in the weight space equal to the complement
of a finite number of points. Therefore, any irreducible component of Zan contains at
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least one irreducible component of some Zan(s). Thus each irreducible component of
Zan contains infinitely many classical points of a given weight k � 2.

Another consequence of the fact that the p-adic slopes tend to zero approaching
infinity is that an irreducible component of Zan is finite over the weight space if and
only if it is ordinary (i.e., the slope is 0) (Liu, Wan, and Xiao [2017], prop. 3.24).

The conjecture has not yet been proved for the whole eigencurve Ean but it is known
for all the irreducible components that arise from the p-adic Jaquet-Langlands corre-
spondence thanks to Liu, Wan, and Xiao [ibid.]. Independently, in Bergdall and Pol-
lack [2016] it is proved that the constancy of the Newton Polygon implies the second
part of the halo conjecture, namely that the slopes form a finite union of arithmetic
progressions.

Motivated by the boundary behavior provided by the conjecture and by a conjecture
of Buzzard’s for classical weights, Bergdall and Pollack have elaborated a unifying
conjecture in Bergdall and Pollack [2017], called ghost conjecture, predicting (under
some extra assumptions) the slopes of overconvergent cuspforms over the whole weight
space.

Finally let us remark that, even though we discussed only the elliptic case, eigen-
varieties might be defined over the whole analytic adic weight space for more general
Shimura varieties. We refer to Andreatta, Iovita, and Pilloni [2016b] for the Hilbert
case and to Johansson and Newton [2016] for a Betti cohomology approach. In con-
trast with the elliptic case, where at infinity the weight space consists of a finite set of
points, in the Hilbert case, for a totally real field of degree g, at infinity the weight space
has components of dimension g � 1.

5 p-Adic variation of de Rham automorphic sheaves.

In this section we use the notations and results of Section 2 and Section 3 for G =

GL2/Q, i.e., for g = 1. Here we briefly present the constructions and results of An-
dreatta and Iovita [2017], using adic analytic spaces instead of formal schemes. The
interested reader should consult Andreatta and Iovita [ibid.] for more details.

Before getting into technicalities let us briefly explain the problem we are faced with
and explain how we chose to solve it. Let p > 2 be a prime integer, N � 3 an integer
relatively prime to p, X the adic analytic projective modular curve of level Γ1(N ) over
Spa(Qp;Zp) and ˛ : E �! X the generalized, universal elliptic curve. We denote by�
HE ;Fil�;r

�
the data consisting of:

i) the relative de Rham cohomology sheaf of E over X, i.e.

HE := R1˛�

�
Ω�
E/X(log(˛�1(cusps))

�
;

ii) the Hodge filtration Fil� of HE , i.e., Fil0 := !E = ˛�

�
Ω1
E/X(log(˛�1(cusps))

�
,

Fili = 0 for i < 0 and Fili = HE for i � 1.
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iii) r : HE �! HE ˝OX
Ω1

X/Qp

�
log(cusps)

�
, the Gauss-Manin connection, an

integrable connection satisfying Griffith’s transversality property.
We now consider the following family of data indexed by the integers:

(�)
��
Symn(HE );Filn;�;rn

��
n2Z

;

where Filn;� and rn are the natural increasing filtrations and connections on the n-th
symmetric powers of HE .

Over the complex numbers one can use the Hodge decomposition of HE in order
to describe the global sections of !k�r

E ˝ Symr(HE ) as suitable C1-functions on the
upper half plane, called nearly holomorphic modular forms of weight k and order �

r � 1. Using this interpretation, the Gauss-Manin connection takes the form of the so
calledMaass-Shimura differential operator ık(f ) = 1

2�i

�
@f
@�

+ k
2iy
f

�
where � is the

standard coordinate on the upper half plane and y = Im(�). For k > 2r one also has a
holomorphic projection Hhol to weight k modular forms and, hence, a q-expansion of
nearly holomorphic forms. See Urban [2014, §2] for details. This is used, for example,
to study special values of triple product L-functions as follows.

Let f , g, h be a triple of normalized primitive cuspidal classical eigenforms of
weights k, `, m, characters �f , �g , �h and tame levels Nf , Ng , Nh respectively.
We write f 2 Sk(Nf ; �f ), g 2 S`(Ng ; �g), h 2 Sm(Nh; �h). We assume that
(k; `;m) is unbalanced, i.e., there is an integer t � 0 such that k � `�m = 2t . We set
N := `:c:m:(Nf ; Ng ; Nh) and Qf;g;h := Qf � Qg � Qh the number field generated
over Q by the Hecke eigenvalues of f; g; h. We assume that �f � �g � �h = 1.

A result of Harris and Kudla [1991], previously conjectured by H. Jacquet and re-
cently refined by Ichino [2008] and Watson [2002] implies that there are choices of
Hecke-equivariant embeddings of Sk(Nf ; �f ), S`(Ng ; �g), (Sm(Nh; �h) into Sk(N ),
S`(N ), Sm(N ) respectively such that the images f o, go, ho of f , g, h respectively
satisfy Ichino’s formula, i.e.,

L

�
f; g; h;

k + `+m � 2

2

�
= (non-zero algebraic constant) � jI (f o; go; ho)j2;

where

I (f o; go; ho) :=
h(f o)�;Hhol�ıt (go)[p] � ho

�
i

h(f o)�; (f o)�i
:

Here L(f; g; h; s) is the complex Garrett-Rankin triple product L-function attached
to f , g, h. We have denoted by h ; i the Peterson inner product on the space of
weight k-modular forms, (f o)� = f o ˝ ��1

f
, (go)[p] is defined on q-expansions by:

(go)[p](q) :=
P1

n=1;(n;p)=1 anq
n if go(q) =

P1

n=1 anq
n and finally ı, Hhol are the

operators on nearly holomorphic forms introduced above.

5.1 p-Adic variations of (HE ;Fil�). The task before us is to p-adically interpolate
the constructions over the complex numbers previously described. We fix I := [0; b] a
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closed interval, with b 2 Z>0 and let WI be the open adic subspace of W defined by

WI := fx 2 W j jT bjx � jpjx ¤ 0g:

Let r � 0 be an integer and denote byXr;I the open adic subspace ofX�WI defined
as in Section 3 by the valuations x such that jfHapr+1

jx � jpjx . If Er;I is the inverse
image of the universal generalized elliptic curve over X. We remark that the universal
character kun of WI is r-analytic and there is a canonical subgroup Hr � Er;I [p

r ] of
order pr over Xr;I . LetHD

r denote the Cartier dual ofHr .
We denote by IGr;I := IsomXr;I

�
Z/prZ;HD

r

�
the adic space over Xr;I of trivial-

izations of HD
r . Then IGr;I �! Xr;I is a finite, étale and Galois cover with Galois

group
�
Z/prZ

��. We introduce the ideals:
i) Hdg, the ideal of O+

Xr;I
locally generated by any lift of the Hasse invariant Ha

modulo p.
ii) ˇ

r
, the ideal of O+

Xr;I
locally generated by

p

Hdg
pr �1
p�1

.

iii) ı, the ideal of O+
IGr;I

locally generated by a precisely defined (p � 1)-st root of
Hdg. For p � 5 one considers the overconvergent modular formD of weight 1 which
is a certain precisely defined (p � 1)-st root of the Eisenstein series Ep�1. Then D
locally generates ı.

In Section 3 we have exhibited the pair of sheaves (!E ; !+
E ) over IGr;I which are

invertible OIGr;I
and respectively O+

IGr;I
-modules and the modification !#

E of !+
E , an

O+
IGr;I

submodule of !+
E which is itself invertible. In fact in the g = 1 case, the

situation is very simple and we happen to have !#
E = ı � !+

E , which implies that over
IGr;I for p � 5 we have !#

E = D � O+
IGr;I

, i.e., it is globally free.
Moreover if  : Z/prZ Š HD

r denotes the universal trivialization of HD
r over

IGr;I then P :=  (1) is a universal generator of HD
r over IGr;I and s := HT(P ) is

a O+
IGr;I

/ˇ
r
-basis of !#

E/ˇn!
#
E . In other words the pair (!

#
E ; s) is a locally free sheaf

with a marked section as in Section 2.
Let us now denote by H+

E the locally free O+
Xr;I

-module of rank 2 characterized by
the following property. ForU = Spa(B;B+) � Xr;I an open such that the generalized
elliptic curve E/B is in fact defined over B+ we let � : E �! Spf(B+) be the
structural morphism. Then

H+
E jU = R1��

�
Ω�
E/B+(log(��1(cusps)))

�
:

WehaveH+
E˝O

+

Xr;I

OXr;I
= HE andH+

E has a natural Hodge filtration Fil+� , expressed
by the exact sequence:

0 �! !+
E �! HE

+
�! (!+

E )
�1

�! 0:

We also have a connection on H+
E but we will discuss it later.
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It is natural to consider: H#
E := ı � H+

E and Fil#� := ı � Fil+� as
�
H#
E ; s = HT(P )

�
is

a pair consisting of a locally free sheaf of rank 2 with a marked section and (!#
E ; s) �

(H#
E ; s) is a compatible filtration. Let us then consider the sequence of adic spaces and

morphisms
Tˇ

n
(H#
E ; s)

u
�! IGr;I

v
�! Xr;I

and denote by � := v ı u. Here Tˇ
r
(H#
E ; s) denotes the VBMS of Section 2 asso-

ciated to the pair (H#
E ; s) and ideal sheaf ˇ

n
. This VBMS was denoted V0(H#

E ; s)

in Andreatta and Iovita [2017]. Then we have a natural action of Z�
p on the sheaf

W + := ��

�
O+

V0(H#
E
;s)

�
.

Definition 5.1.1. We denote by k : Z�
p �! Λ�

I a weight in WI (it could be the univer-
sal weight or not), denote by W +

k
the O+

Xr;I
-module W +[k], i.e. W +

k
is the sub-O+

Xr;I

module of sections of W + on which Z�
p acts by multiplication with the values of k. The

formalism of vector bundles with marked sections implies that W +
k

has a filtration by
locally free, coherent O+

Xr;I
-submodules Fil+

k;�
.

We let Wk := W +
k

˝O
+

Xr;I

OXr;I
. It is a sheaf of Banach modules on Xr;I with a

filtration Filk;� and Filk;0 coincides with the sheaf !kr;I of Section 3.2.

5.2 p-Adic variations of the connection. In order to obtain a connection on Wk we
need to first choose a formal model of the morphism � : E �! Xr;I , say � : E �! X.
Our favorite such formal model is obtained by taking for X the partial blow-up of the
base change of the formal completion of the modular curve X1(N ) over Zp to the
formal weight space Spf(ΛI ), with respect to the ideal (p;Hdgp

r+1

) and taking E to
be the inverse image of the generalized elliptic curve over X1(N ). We also obtain a
natural formal model IG of IGr;I given by the normalization of X in IGr;I . Having
fixed these formal models we obtain: a canonical O+

IGr;I
-submodule Ω1;+

IGr;I /WI
(log)

of Ω1
IGr;I /WI

(log) and a natural connection

r
+ : H+

E �! H+
E ˝O

+

IGr;I

Ω1;+
IGr;I /WI

(log);

whose generic fiber is the connection r described at the beginning of this section.
The connectionr+, the weight k : Z�

p �! Λ�
I and the formalism of VBMSproduce

a connection
rk : Wk �! Wk ˝OXr;I

Ω1
Xr;I /WI

(log(cusps))

whose properties are described in the next theorem.

Theorem 5.2.1. a) The connection rk satisfies Griffith’s transversality property with
respect to the filtration i.e. rk(Filk;i ) � Filk;i+1 ˝OXr;I

Ω1
Xr;I /WI

(log), for all i � 0.
b) If ˛ 2 Z>0\WI (Qp;Zp) then the specialization at ˛ of

�
Wk ;Filk;�;rk

�
;which

we denote by
�
W˛;Fil˛;�;r˛

�
, has

�
Sym˛(HE );Fil˛;�;r˛

�
as canonical submodule

with filtration and connection. Moreover their global sections with slopes h < ˛ � 1

are equal (classicity).
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For every ΛI -valued weight k of WI the elements H0(Xr;I ;Wk) have natural q-
expansions (for details see Andreatta and Iovita [2017].)

Another very interesting occurrence is the fact that given a ΛI -valued weight k of
WI satisfying certain conditions (see below) the integral powers (rk)n of the connec-
tionrk , for all n 2 Z>0 (when we write (rk)n we really meanrk+2(n�1)ırk+2(n�2)ı

: : : ı rk) can be interpolated p-adically on H0(Xr;I ;Wk)
Up=0 to the expense of pos-

sibly increasing r . More precisely we have (see Andreatta and Iovita [ibid.] for more
details).

Theorem 5.2.2. For every pair of weights 
; k in WI satisfying the assumptions An-
dreatta and Iovita [ibid.] Assumption 4.1 there is b � r such that for every w 2

H0
�
Xr;I ;Wk

�Up=0 we have a unique section r



k
(w) 2 H0(Xb;I ;Wk+2
 ) satisfying

the property: if the q-expansion of w is w(q) :=
P1

n=0 anq
n then the q-expansion of

r



k
(w) is r




k
(w)(q) :=

P1

n=1;(p;n)=1 
(n)anq
n.

5.3 The overconvergent projection. Finally, in view of the applications to the triple
product p-adic L-functions which we have in mind, we define the “overconvergent
projection” which is seen as a p-adic analogue of Shimura’s “holomorphic projection”.

Let us fix a ΛI -valued weight k of WI and denote by W �
k
the complex of sheaves

Wk

rk
�! Wk ˝OXr;I

Ω1
Xr;I /WI

on Xr;I . We denote by HidR(Xr;I ;W �
k
) for i � 0, the

i -th hypercohomology group with values in the complex W �
k
.

We have natural actions of all the Hecke operators on these cohomology groups and
remark that if h � 0 is a finite slope, we have natural slope decompositions for the action
of the operator Up of the groups HidR(Xr;I ;W �

k
) and we denote by HidR(Xr;I ;W �

k
)�h

the subgroup of slope less then or equal to h classes for the action of Up (see Andreatta
and Iovita [ibid.] section §3.8). If we denote by K the total ring of fractions of ΛI , we
can describe the base change of H1

dR(Xr;I ;W �
k
)�h to K as follows:

H1
dR(Xr;I ;W

�
k )

�h
˝ΛI [1/p] K Š H0(Xr;I ; !

k+2
r;I )�h

˝ΛI [1/p] K:

Therefore the “overconvergent projection” denoted H � is the natural map obtained as
the composition:

H0(Xr;I ;Wk)
�h

�! H1
dR(Xr;I ;W

�
k )

�h
˝ΛI [1/p]K Š H0(Xr;I ; !

k+2
r;I )�h

˝Λ[1/p]K:

5.4 Application: the triple productp-adicL-function in the finite slope case. Let
f , g, h be a triple of normalized primitive cuspidal classical eigenforms of weights k,
`,m, characters �f , �g , �h and tame levelsNf ,Ng ,Nh respectively. Write f o, go, ho
for their images in Sk(N ), S`(N ), Sm(N ) respectively as explained at the beginning of
this section. We assume that f has finite slope a and that (k; `;m) is unbalanced, i.e.,
there is an integer t � 0 such that k�`�m = 2t . We denote byK a finite extension of
Qp which contains all the values of �f , �g , �h. Let ˛f , ˛g , ˛h denote overconvergent
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families of modular forms interpolating f o, go, ho in weights k, `, m respectively.
More precisely there are: a non-negative integer r , closed intervals If , Ig and Ih such
that the weights of these families, denoted respectively kf : Z�

p ! Λ�
If ;K

, kg : Z�
p !

Λ�
Ig ;K

, kh : Z�
p ! Λ�

Ih;K
are all adapted to a certain integer n � 0. This data gives an

adic space Xr;I �! X, where I is a closed interval containing If � Ig � Ih.
We denote by!kf ; !kg ; !kh the respective modular sheaves (overXr;I ), then ˛f 2

H0(Xr;If
; !kf ), ˛g 2 H0(Xr;Ig

; !kg ), ˛h 2 H0(Xr;Ih
; !kh). Wemake the following

assumption on the weights of ˛f , ˛g , ˛h:
1) Suppose that the weights kf , kg , kh are such that kf �kg �kh is even, i.e., there

is a weight u : Z�
p �! (ΛI;K)

� with 2u = kf � kg � kh:

2) the weights kg , u are each of the form: a finite order character multiplied a
strongly analytic weight (see Andreatta and Iovita [ibid.]).

We see ˛f , ˛g , ˛h as global sections of Fil0(W an
kf

), Fil0(W an
kg
) and Fil0(W an

kh
) re-

spectively. In particular we have that (rkg
)u(˛

[p]
g ) makes sense and

(rkg
)u(˛

[p]
g ) 2 H0(Xr 0;I ;W

an
kg+2u);

for some positive integer r 0 � r . Therefore we have a section

(rkg
)u

�
˛
[p]
g

�
� ˛h 2 H0(Xr 0;Iu

;W an
kf

):

Consider its class in H1
�
Xr 0;Iu

; !kf �2
�

˝ Kf via the natural projection and its over-
convergent projection

H �
�
(rkg

)u
�
˛
[p]
g

�
� ˛h

�
2 H0

�
Xr 0;Iu

; !kf
�

˝ΛIf
Kf ;

to which we can apply the slope smaller or equal to a projector, e�a:

e�a
�
H �

�
(rkg

)u
�
˛
[p]
g

�
� ˛h

��
2 H0

�
Xr 0;Iu

; !kf
��a

˝ΛIf
Kf :

We are finally able to define the Garrett-Rankin triple product p-adic L-function at-
tached to the triple (˛f ; ˛g ; ˛h) of p-adic families of modular forms, of which ˛f has
finite slope � a, to be:

Lfp
�
˛f ; ˛g ; ˛h

�
:=

D
˛�
f
; e�a

�
H �

�
(rkg

)u
�
˛
[p]
g

�
� ˛h

��E
h˛�
f
; ˛�
f

i
2 Kf b̋Λkg ;K

b̋Λkh;K :

By the definition of the overconvergent projection thep-adicL-functionLfp (˛f ; ˛g ; ˛h)
has only finitely many poles, i.e., it is meromorphic.
Remark 5.4.1. The triple product p-adic L-function attached to a triple of ordinary
families of modular forms has been defined in Darmon and Rotger [2014], using q-
expansions.
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Let now x 2 WIf
, y 2 WIg

, z 2 WIg
be a triple of unbalanced classical weights,

i.e., such that x, y, z 2 Z�2 and such that there is t 2 Z�0 with x�y� z = 2t . Let us
denote by fx , gy , hz the specializations of ˛f , ˛g , ˛h at x, y, z respectively, seen as sec-
tions over Xr 0;Iu

of !x � Filx�2(W an
x�2) = Symmx�2(HE ), !y � Fily�2(W an

y�2) =

Symmy�2(HE ), !z � Filz�2(W an
z�2) = Symmz�2(HE ) respectively.

If we fix embeddings of Q in C and Cp respectively, using the identifications be-
tween the p-adic overconvergent projection and the complex holomorphic one and be-
tween the Gauss-Manin connection and the Shimura-Maass differential operator on the
one hand and the classical expressions of the special values of the complex triple prod-
uct L-functions on the other, we obtain:

jLfp (˛f ; ˛g ; ˛h)(x; y; z)jp = (explicit constant)�
�
Lalg(fx ; gy ; hz ;

x + y + z � 2

2
)
� 1

2

:

In particular for x = k; y = `; z = m we have Lfp (˛f ; ˛g ; ˛h)(k; `;m) ¤ 0 which
implies that Lfp (˛f ; ˛g ; ˛h) ¤ 0.

6 Higher coherent cohomology.

The purpose of this last section is to explain how the higher coherent cohomology of
automorphic bundles enters the picture and how this is related to irregular motives. Let
K � GSp2g(Af ) be a compact open subgroup. Let XK ! Spec C be a toroidal com-
pactification of the Siegel variety of genus g and levelK. For any classical weight k =

(k1; � � � ; kg), we can consider the cuspidal cohomology Hi (XK ; !k(�D)), as well as
the usual cohomology Hi (XK ; !k). They don’t depend on the choice of the toroidal
compactification. Let us define the interior coherent cohomologyHi (XK ; !k) = Im(Hi (XK ; !k(�D)) !

Hi (XK ; !k)). Recall that limK Hi (XK ; !k) is an admissibleGSp2g(Af )-representation.
We first recall the following result, saying that a generic weight has only cohomology
in one degree.

Theorem 6.0.1 (Harris [1990], Li and Schwermer [2004], Lan [2016]). There is an
(explicit) constant C 6 which only depends on g such that if (k = (k1; � � � ; kg)) and:

1. jki � ki+1j � C for all 1 � i � g � 1,

2. jki + kj j � C for all 1 � i � j � g

then H?(XK ; !k) is concentrated in one degree.

Let us explain how one should think about this theorem. Identify Zg with the space
of characters of the maximal diagonal torus of the group Sp2g . We make a choice of

6One can be more precise. For example, if g = 1, H?
(XK ; !

k) is concentrated in degree 0 if k � 2

and in degree 1 if k � 0. If g = 2, Hi
(XK ; !

k) is concentrated in degree 0 if k2 � 4; degree 1 if k2 � 0
and k1 + k2 � 5; degree 2 if k2 + k1 � 1 and k1 � 3; degree 3 if k1 � �1.
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positive rootsR+ to be the union of the compact positive rootsR+
c = fei�ej g1�i<j�g

and non-compact positive roots R+
nc = fei + ej g1�i�j�g .

We can associate to k the g-uple � = (�1; � � � ; �g) = (k1 � 1; � � � ; kg � g) =

k + �c � �nc 2 Zg where �c is half the sum of the positive compact roots, and �nc is
half the sum of the positive non-compact roots. We see that k is dominant if and only
if � is R+

c regular: h�; ˛i > 0 for all ˛ 2 R+
c .

The theorem above says that if k is such that � is far enough from all the walls perpen-
dicular to all the roots, then H?(X;!k) is concentrated in one single degree which can
be determined as follows: let C � Zg be the chamber defined by �1 > : : : > �g � 0;
the cohomological degree is the minimum of the length of the elements of the Weyl
groupWSp2g

= (Z/2Z)gÌSg that take � to an element ofC . Let � be far enough from
the walls and let w be an element of the Weyl group of minimal length such that w:� 2

C . Although the Hecke modules H`(w)
(XK ; !

���c+�nc ) and H0
(XC; !

w:���c+�nc )

are rarely isomorphic (except for g = 1), they are closely related 7.
So from that perspective, a generic weight has cohomology in one single degree, and

moreover, one can often reduce to degree 0 cohomology. In that sense, Theorem 3.1 is
optimal as long as we want to work over the total weight space.

We’d now like to consider “singular” weights � that lie on the walls h�; ˛i = 0 for
˛ 2 R+

nc . The main reason is that the corresponding cohomology groups of weight
�� �c + �n are conjecturally related to irregular motives. Moreover, they don’t admit
a Betti cohomology realization and can only be seen in the coherent cohomology. In
one direction, one knows how to attach compatible systems of Galois representations
to automorphic forms realized in the coherent cohomology 8 (Deligne and Serre [1974],
Taylor [1991], Goldring [2014], Pilloni and Stroh [2016], Boxer [2015], Goldring and
Koskivirta [2017]). The method is to establish congruences with automorphic forms
which are holomorphic discrete series at infinity and whose Galois representations can
(often) be constructed in the étale cohomology of a Shimura variety.

Example 1 (Limits of discrete series). Let � be an automorphic representation for the
group GSp2g/Q for which �1 is a limit of discrete series with infinitesimal character
� lying on such non-compact wall. Then �f is realized in limK Hi (XK ; !���c+�nc ).
Moreover, it will often be realized (for instance if the associated parameter has trivial
centralizer) in several consecutive degrees (the number of consecutive degrees is the
number of non-compact roots ˛ 2 R+

nc such that h�; ˛i = 0). For the standard 2g + 1

dimensional representation of the L-group GSpL2g ! GL2g+1, the associated com-
patible system has (conjectural) Hodge-Tate weights (�1;��1; � � � ; �g ;��g ; 0). The
simplest situation is g = 1, � = 0, k = 1. There is an isomorphism of Hecke modules

7If � is far enough from the walls, all the cohomology is represented by automorphic forms �1 ˝ �f

which are discrete series at infinity. The L-packet corresponding to �1 contains a holomorphic discrete
series �h

1. It the global Langlands parameter associated to � has trivial centralizer, then �h
1 ˝ �f is still

automorphic and realized in the degree 0 cohomology
8For automorphic forms which are not holomorphic limits of discrete series, they are very “weak” com-

patible systems since they are not known to be de Rham.
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H0
(XK ; !

1) = H1
(XK ; !

1) and limK Hi (XK ; !1) = ˚�f where �f runs over all
admissible GL2(Af )-modules for which �1 ˝�f is cuspidal automorphic for �1 the
unique limit of discrete series of GL2(R) 9. For the tautological 2-dimensional repre-
sentation of theL-group, the associated compatible system arises from an Artin motive
(Deligne and Serre [1974]).

When g = 1we have the following theorem (a particular case of Artin’s conjecture):

Theorem 6.0.2 (Langlands [1980], Tunnell [1981], Buzzard, Dickinson, Shepherd-Bar-
ron, and Taylor [2001], Khare and Wintenberger [2009], Kisin [2009], Kassaei [2013],
Kassaei, Sasaki, and Tian [2014], Pilloni and Stroh [2016], Calegari and Geraghty
[2018]). There is a bijective correspondence between isomorphism classes of continu-
ous irreducible odd Galois representations � : GQ ! GL2(C) and cuspidal automor-
phic forms � = �1 ˝ �f on GL2/Q such that �1 is a limit of discrete series. This
bijection satisfies L(�; s) = L(� ˝ j j�

1
2 ; s).

Remark 6.0.3. The theorem holds also for totally odd irreducible two dimensional repre-
sentations of the Galois groupGF of a totally real finite field extension F of Q. Under
mild technical hypothesis one can also prove that a representation � : GF ! GL2(Qp)

which is totally odd, irreducible and geometric with Hodge-Tate weights all equal to 0

is an Artin representation. See Pilloni and Stroh [2016].
The case g = 2 is also particularly interesting. LetA ! Spec Q be a simple abelian

surface and denote by H1(A) the associated motive. For every prime p, we can define a
Weil-Deligne representationWDp(H1(A)) : WDQp

! GSp4(C). ByGan and Takeda
[2011] there is a localL-packetΠp(A)whose Langlands parameter isWDp(H1(A))˝

j j
3
2 . This local L-packet contains at most two elements and exactly one generic ele-

ment �gp . At the infinite place there is a local L-packet Π1(A) which consists of the
two limits of discrete series (respectively holomorphic and generic) f�h1; �

g
1g with in-

finitesimal character� = (1; 0)10. We letΠ(A) =
Q
p Πp(A)�Π1(A). The following

is a particular example of Langlands’s conjectures:

Conjecture 2. The global L-packet Π(A) contains a cuspidal automorphic form. As
a consequence the complex L-function L(H1(A); s) extends to an entire function over
C and satisfies a functional equation as predicted in Serre [1970].

Remark 6.0.4. 1) If End(A) ¤ Z (the GL2-type case), the conjecture is known thanks
to the works Khare and Wintenberger [2009], Kisin [2009] and Yoshida [1984].

2)�f = ˝p�p 2
Q
p Πp(A) is realized (withmultiplicity one) in limK H0

(XK ; !
(2;2))

provided �h1 ˝�f is automorphic, and in limK H1
(XK ; !

(2;2)) provided �g1 ˝�f is
automorphic.

3) The character formula of Labesse and Langlands [1979] describes which elements
ofΠ(A) should be cuspidal automorphic. If End(A) = Z, all elements ofΠ(A) should

9� is normalized by imposing that the central character of is j:j � � where � is a finite character
10we normalize here f�h; �gg by asking that the central character is j j2 on the connected component of

the center
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be cuspidal automorphic. If End(A) ¤ Z an element �1 ˝�p should be automorphic
if and only if the number of non-generic representations occurring in the product is
even. If End(A) = Z we can choose the particular element of Π(A) which is generic
at all finite places and �h1 at infinity. This representation has a unique line which is
generated by a lowest weight vector at 1 and is invariant under the paramodular group
of a certain levelN (A) at all finite places. Therefore there should be a well determined
(up to scalar) holomorphic weight (2; 2) cuspform of paramodular level N (A) with
rational Hecke eigenvalues attached toA. This is the paramodular conjecture of Brumer
and Kramer [2014].

Theorem 6.0.2 and Conjecture 2 share high similarities: the Hodge-Tate weights
of the motives considered have multiplicity two and the relevant automorphic forms
contribute to two coherent cohomology degrees of the same automorphic sheaf. We
will now explain how these singular weights behave in p-adic families: this appears to
be a crucial tool in the proof of Theorem 6.0.2 and in the approaches to Conjecture 2.

6.1 Modular curves and weight one forms. We slightly change notations. Let p
be a prime integer and N � 3 an integer prime to p. Let X be the modular curve of
level Γ1(N ) over Spec Zp and XIw the modular curve of level Γ1(N ) \ Γ0(p). We
now examine the behaviour of p-adic families at weight one. We restrict ourselves to
ordinary families because weight one modular forms of finite slope at p are necessarily
ordinary.

Theorem 6.1.1 (Hida [1986]). There is a finite projective Λ = Zp[[Z�
p]]-moduleM 11

such that for all k 2 Z�2,

M ˝Λ;k Zp = ordH0(XIw; !
k(�D)):

Here ord = limn U n!p is the ordinary projector for Up . There is a control theorem
in weight 1, but it is more complicated to state. By construction of M , there is an
injective mapH0(XIw ; !(�D)) ! M˝Λ;1Zp . In order to state the classicity theorem
in weight 1, we need to look at the Galois representation picture. For any k 2 Z,
and any eigenform f in M ˝Λ;k Zp , there is an associated two dimensional Galois
representation �f whose restriction to inertia at p is nearly ordinary (�p is the p-adic
cyclotomic character):

�f jIQp
'

�
1 ?

0 �1�k
p

�
If k � 2 the representation �f is automatically de Rham which is consistent with the
control theorem. If k = 1, the representation is de Rham if and only if it is unramified
at p and the classicity theorem in weight 1 states:

Theorem 6.1.2 (Buzzard and Taylor [1999], Pilloni and Stroh [2016]). An eigenclass
f 2 M ˝Λ;1 Zp is classical if and only if the associated Galois representation is
unramified at p.

11 Moreover,M carries an action of the Hecke algebra and the control isomorphism is Hecke equivariant.
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This classicity theorem is one of the key steps towards the proof of Theorem 6.0.2
via the strategy envisionned in Buzzard and Taylor [1999]12: establish a congruence
between an icoashedral artin representation and a modular elliptic curve modulo 5, and
prove a modular lifting theorem. There is a difficulty to prove a modular lifting theorem
with weight one forms because congruences are obstructed (since H1(X;!) ¤ 0) and
the usual Taylor-Wiles method doesn’t apply. The strategy is to prove the modular lift-
ing theorem with the module of ordinary p-adic modular forms of weight one instead
(that is the moduleM ˝Λ;1 Zp , for which the usual Taylor-Wiles method applies) and
then argue via this classicity theorem. In order to obtain a full proof of Theorem 6.0.2,
it is necessary to combine this strategy with solvable base change, and therefore one
needs an extension of theorem Theorem 6.1.2 over totally real fields (Pilloni and Stroh
[2016]). Observe that Theorem 6.0.2 was first proved in full generality as a conse-
quence of Serre’s modularity conjecture. Calegari and Geraghty [2018] found a way
to modify the Taylor-Wiles method in order to apply it directly to weight one forms,
therefore eliminating the use of Theorem 6.1.2. This method is very promising but as
its application depends on certain conjectural inputs it has not yet given a complete new
proof of Theorem 6.0.2.

6.2 The group GSp4 and potentially modular abelian surfaces. We now letX !

Spec Zp be the Siegel threefold of hyperspecial level at p (and some fixed level away
from p). We let XIw ! XKli ! X be the Siegel threefolds of Iwahori and Klingen
level at p. As we have seen, for all weights k = (k1; k2) with k1 � k2, we have
an automorphic vector bundle !k . The tempered part (at infinity) of the cohomology
H?(XC; !

(k1;k2)) is concentrated in degree 0 if k2 � 3 while there is cohomology in
degree 0 and 1 if k2 = 2. The situation resembles that of modular curves and weight
one forms, except that there are now infinitely many singular weights: all those of the
form (k; 2) for k � 2.

Let Λ1 = Zp[[Z�
p]] and Λ2 = Zp[[(Z�

p)
2]]. We first state the main theorem of classi-

cal Hida theory:

Theorem6.2.1 (Hida [1986], Pilloni [2011]). There exists a finite projectiveΛ2-module
M such that for (k1; k2)with k1 � k2 � 4,M˝Λ2;(k1;k2)Zp = ordH0(XIw; !

(k1;k2)(�D)).

Here ord is the ordinary projector for the operator Up;1Up;2. The bound k2 � 4 is
an accident and the expected optimal bound is k2 � 3. It is instructive to look at the
Galois representation picture. For all eigenclasses f 2 M ˝Λ2;(k1;k2) Zp there is an
associated nearly ordinary Galois representation �f : GQ ! GSp4(Qp) such that:

�f jIQp
'

0BBB@
1 ? ? ?

0 �
�k2+2
p ? ?

0 0 �
�k1+1
p ?

0 0 0 �
�k1�k2+3
p

1CCCA
12Granting the fact that it is known in the solvable image case by automorphic methods
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Such a representation is automatically geometric if k1 � k2 � 3. It is tempting to
believe that an eigenclass of weight k1 � k2 = 2 is classical if and only if

�f jIQp
'

0BB@
1 0 ? ?

0 1 ? ?

0 0 �
�k1+1
p 0

0 0 0 �
�k1+1
p

1CCA
(the analogue of Theorem 6.1.2). The techniques of Theorem 6.1.2 which crucially de-
pend on the explicit relation between q-expansion and Hecke eigenvalues don’t appear
to generalize to this case. In particular, it seems impossible to generalize the strategy
of Buzzard and Taylor [1999] to Conjecture 2.

We now state the main theorem of Higher Hida theory which deals with the singular
weights:

Theorem 6.2.2 (Pilloni [2017]). There exists a perfect complex M �13 of Λ1-modules
of amplitude [0; 1] such that for all k 2 Z�2:

M �
˝
L
(k;2) Qp = ord0RΓ

�
XKli; !

(k;2)(�D) ˝ Qp

�
:

Here ord0 is the ordinary projector for the operator Up;1. The control theorem is
sharp. Let us explain briefly the construction ofM �. Let X ! Spec Zp be the Siegel
threefold of level prime to p. We let X be the p-adic completion of X and denote by
X�i the p-rank stratification on X. As we have seen in Section 3, over the ordinary
locus X�2 we have a multiplicative subgroup of rank 2 of G[p1] which provides the
extra structure on !G allowing for the interpolation property. Over X�1 there is still
an extra structure as we can choose a multiplicative Barsotti-Tate group of height 1,
H1 ,! G[p1] and for such a choice we have an exact sequence

0 ! !G[p1]/H1
! !G[p1] ! !H1 ! 0

and the Hodge-Tate map realizes an isomorphism Tp(H
D
1) ˝ OX�1(p1) ! !H1

.
Thus, we end up with half the extra structure we had over the ordinary locus and, this
allows the interpolation of the automorphic sheaves in one direction. It is quite impor-
tant to work over this larger base since X�1 is morally of cohomological dimension 1,
while X�2 is of cohomological dimension 014.

The projective moduleM is obtained by considering the (degree 0) ordinary coho-
mology of an interpolation sheaf over X�2 as explained in Section 3, while the complex
M � is obtained by considering the ordinary cohomology of an other interpolation sheaf,
whose weight is parametrized by Λ1 over X�1.

The cohomologyM �˝L
Λ1;2

Zp is an integralmodification of ord0RΓ
�
XKli; !

(2;2)(�D)
�
.

One important property ofM � is that it is concentrated in two degrees, while this is not
known to hold for RΓ

�
X;!(2;2)(�D)

�
. In Boxer, Calegari, Gee, and Pilloni [2018]

13M� carries an action of the Hecke algebra and the control theorem is Hecke equivariant
14 Precisely, for all k, Hi (X�1; !k(�D)) = 0 if i > 1 and Hi (X�2; !k(�D)) = 0 if i � 1
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we manage to study the Galois representation supported byM � and prove under some
technical assumptions that it is ordinary. As a corollary,M � ˝L

Λ1;2
Zp can be used to

construct modified Taylor-Wiles systems in the sense of Calegari and Geraghty [2018].
It is an important ingredient in the proof of the following theorem:

Theorem 6.2.3 (Boxer, Calegari, Gee, and Pilloni [2018]). Let A/Q be an abelian
surface. Then there is a finite field extension F of Q such thatH1(AjF ) is automorphic.
In particular L(H1(A); s) has a meromorphic continuation to C.

The theorem holds also when Q is replaced by a totally real field.
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