
Le soufre

Non métal

Présent à la surface de la Terre (0,06% de l'écorce terrestre) sous forme de :

- Soufre élémentaire : cristaux jaunes principalement présents dans les régions volcaniques
- Sulfure métallique (ex : disulfure de fer dans les pyrites)

25 isotopes dont 4 stables : 32 S (le plus abondant), 33 S (S = 34 S), 34 S et 36 S.

Présent dans 2 acides aminés : la cystéine et la méthionine

Les composés du soufre

$$S (Z = 16) : 1s^2 2s^2 2p^6 3s^2 3p^4$$

=> 6 électrons de valence

Les différentes valences :

S (III)

S (IV)

S (V)

S (VI)

Les différents degrés d'oxydation :

$$DO = -II$$

 H_2S

$$DO = II$$
$$S_2O_2$$

$$DO = IV$$

 SO_2

$$SO_2$$
 H_2SO_3

Éléments	S	С	Н	0
Électronégativité de Pauling	2,59	2,55	2,2	3,44
Rayon atomique (pm)	102	70	25	60
Énergie de la liaison S – X (kJ/mol)	213	259	339	265
Énergie de la liaison O – X (kJ/mol)	265	351	464	138

1. Les composés divalents : thiols et thioéthers

1.1. Comparaison thiols / alcools

1.1.1. Propriétés physiques

Les thiols forment moins de liaisons hydrogènes que les alcools

=> ils sont **plus volatils**

Composés	T _{éb} (°C) pour X = S	T _{éb} (°C) pour X = O
H ₂ X	-61	100
CH ₃ XH	6	65
CH ₃ CH ₂ XH	37	78

1.1.2. Acido-basicité

Couple acido- basique	Et – XH / Et – X ⁻	Ph – XH / Ph – X ⁻
pK _a pour X = S	10,5	6,5
pK _a pour X = O	16	10

Le soufre est plus volumineux donc stabilise mieux les charges négatives et la liaison S – H plus faible que la liaison O – H

=> les thiols sont **plus acides** que les alcools et produisent plus facilement des radicaux

1.1. Comparaison thiols / alcools

1.1.3. Nucléophilie

Les thiols (et thiolates) sont **plus nucléophiles** que les alcools (et alcoolates) car :

- les électrons de valence (de nombre quantiques n = 3) sont moins liés à l'atome
- Le soufre est plus polarisable

Les thiols sont des nucléophiles mous

1.2.1. Formation des thiols

A partir de l'hydrogénosulfure

de sodium:

$$\sim$$
 CI + NaSH $\stackrel{\text{(n-Bu)}_4\text{N}^+, \text{Br}^-}{\longrightarrow}$ \sim SH + NaCl 88%

Sous- produit possible (issu de la formation du thioéther) :

$$SH$$
 + NaSH SH SH + H₂S $PKa (H2S / HS-) = 7$

A partir de l'acide thioacétique:

N CI
$$\frac{1}{N}$$
 SH $\frac{1}{N}$ NEt₃, CH₂Cl₂ $\frac{1}{2}$ N SH $\frac{1}{2}$ SH $\frac{1}{2$

Formation d'un thioester puis réduction

1.2.1. Formation des thiols

A partir de la thiourée :

$$H_2N$$
 NH_2
 H_2O
 HO
 O
 S
 NH_2
 NH_2
 NH_2
 NH_2O
 $NAOH, H_2O$
 $NAOH$

Mécanisme :

1.2.2. Formation des thioéthers

A partir du sulfure de sodium:

Cette réaction permet de former des thioéthers symétriques pKa $(HS^{-}/S_{2}^{-}) = 19$

A partir d'un thiol:

- Par
$$S_N$$
: Br NH_2

NEt₃, DMF

15 min à t.a. puis
2 h à 50 °C

93%

Mécanisme de type S_N2 donc **réaction stéréospécifique**

Cette réaction permet de former des thioéthers dissymétriques

- Par réaction radicalaire :

Réaction régiosélective

1.2.2. Formation des thioéthers

<u>A partir d'α-énones:</u>

Addition nucléophile 1,4 car le thiol est un nucléophile mou

1.3.1. Substitutions nucléophiles en $oldsymbol{eta}$

Mécanisme :

Intérêts de l'utilisation de thioéther :

- Cinétique : $k_S = 600 k_C => S_N$ plus rapide
- Fonctionne même avec **X = F**
- Régiosélectivité : en β du soufre

1.3.1. Protection des dérivés carbonylés

Catalysé par un acide de Lewis ou de Bronsted

Mécanisme similaire à celui de l'acétalisation avec alcool

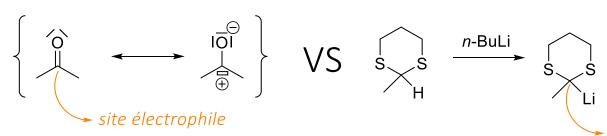
La formation des dithiocétals est plus facile que celle des acétals car :

- Cinétiquement : les thiols sont plus nucléophiles que les alcools
- Thermodynamiquement : Gain énergétique plus important

Bilan :
$$\Delta E(X) = 2 E(X - H) + E(C = O) - 2 E(X - C) - 2 E(O - H)$$

Donc $\Delta E(O) = 97 \text{ kJ/mol} < \Delta E(S) = 103 \text{ kJ/mol}$

1.3.2. Protection des dérivés carbonylés

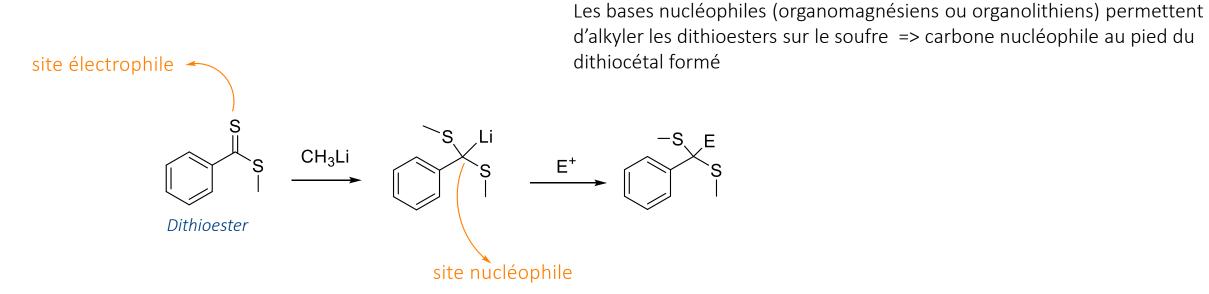

Ces conditions de déprotection sont orthogonales à la déprotection des acétals.

- 1) Condition HgCl₂ : sélective du soufre mais usage limité de HgCl₂
- 2) m-CPBA n'est pas compatible avec toutes les fonctions chimiques
- 3) Condition douce mais attention à la présence d'autres nucléophiles qui pourraient réagir

1.3.2. Protection des dérivés carbonylés

Mécanismes :

1.3.3. Inversion de la polarité d'une fonction carbonyle (= Umpolung)


Les dithiocétals présentent un proton acide (pKa ≈ 30) et peuvent être déprotonés par une base forte => carbone nucléophile au pied de la fonction dithioacétal

site nucléophile

Permet d'allonger la chaine carboné au pied d'un aldéhyde :

Avec E = R - X par exemple

1.3.3. Inversion de la polarité d'une fonction carbonyle (= Umpolung)

1.3.4. Intermédiaire réactionnel pour des réductions

<u>Des composés carbonylés :</u>

Réduction alternative plus douce à la réduction de Clemmensen (Zn/Hg, HCl) ou la réduction de Wolff-Kishner ($H_2N - NH_2$, KOH)

Le sous produits sont faciles à éliminer :

- Catalyseur et sulfure de nickel = solides
- Propane qui peut être distillé

1.3.4. Intermédiaire réactionnel pour des réductions

Des alcools:

Réaction de Barton Mc Combie

Bilan:

Mécanisme :

1.3.5. Formation de sulfoniums

Formation:

Réactivité des sulfoniums :

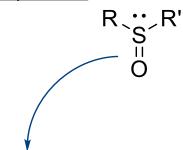
Déprotonation en α :

Ylures de sulfonium

Transposition de Sommelet ou Stevens

Elimination en β :

Substitution nucléophile :


Réactivité similaires aux ammoniums

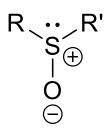
Addition thiophile:

Réactivité spécifique aux sulfoniums

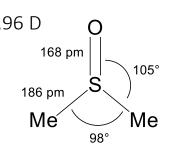
2. Les composés tétravalents : les sulfoxydes

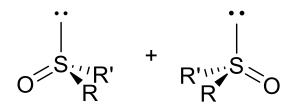
2.1. Structure et propriétés

Nature de la liaison S - O: E = 370 kJ/mol

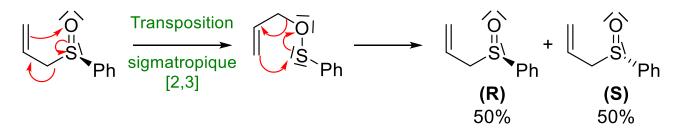

 μ = 4,5 D

I = 145 pm


Aptitude a former des liaisons


hydrogènes

=> Liaison de type semi-polaire (comme pour les N-oxydes)


Le diméthylsufoxyde (DMSO) : ϵ = 47 et μ = 3,96 D => solvant dissociant, polaire et aprotique 186 Bon solvant pour les S_N2

Espèces chirales si R ≠ R' Stéréochimiquement stables jusqu'à ≈ 200°C

Exception: les sulfoxydes allyliques

2.2. Synthèse des sulfoxydes

2.2.1. Par oxydation ménagée des thioéthers

Bilan :
$$\frac{H_2O_2 \text{ (1\'eq)}}{\text{EtOH, } H_2O}$$

Il faut utiliser **seulement 1 équivalent** d'oxydant pour former le sulfoxyde correspondant

Autres oxydants possibles : NaIO₄, m-CPBA, KHSO₅

Mécanisme :

Utilisation de catalyseurs chiraux pour une oxydation stéréosélective :

S Bi₂O_{3,} (-)-Binol
EtOAc
90%

$$ee = 92\%$$

2.2. Synthèse des sulfoxydes

2.2.2. Par alkylation des chlorures de sulfinyles

Bilan:

$$\begin{array}{cccc}
O & & & & & & O \\
I & & & & & & & & \\
S & & & & & & & & \\
R & & & & & & & \\
\end{array}$$

Mécanisme d'addition puis élimination

Formation de sulfoxydes avec Nu = RMgX

Exemples:

Diastéréoisomères

Séparables par cristallisation

2.3.1. Oxydation ménagée des alcools primaires

Mécanisme général :

DMSO n'est pas le solvant mais bien une espèce réactive Différents couples électrophile/base utilisés :

- Oxydation de Swern :

Oxydation de Pfitzner-Moffat :

```
Dicyclohexylcarbodiimide
Espèce réactive =
```

- Oxydation de Parrikh-Doering :

```
Pyridine.SO<sub>3</sub>/NEt<sub>3</sub>
Espèce réactive =
```

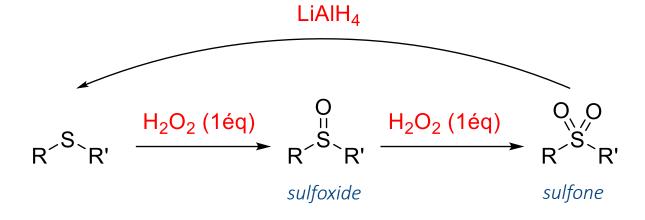
2.3.2. Addition nucléophile en α

Réarrangement de Pummerer

Activateur = anhydride triflique, anhydride acétique et acide de Lewis

Nucléophile = H₂O, alcool, carboxylate, haloégnure, cycle aromatique enrichis en électron

Avec $Nu = H_2O$: on forme un thiohémicétal qui s'hydrolyse en condition acide => cétone O


Mécanisme :

3.1. Synthèse des composé hexavalents

3.1.1. Synthèse des sulfones

Par oxydation :

Autres oxydants possibles : KMnO₄, m-CPBA

3.1.2. Synthèse des ester sulfoniques

Par estérification:

$$\begin{array}{c|c}
 & OH & OO \\
\hline
 & NEt_3 \\
 & CH_2Cl_2 \\
 & 95\% \\
\hline
 & ester sulfonique \\
\end{array}$$

Fonctionne aussi à partir de l'acide sulfonique mais avec de moins bon rendement

3.2. Utilisation des ester sulfoniques en synthèse

Couple acide/base	pK _a
MsOH/MsO ⁻	-2
TsOH/TsO ⁻	-6,5
TfOH/TfO ⁻	-15

Les acides sulfoniques sont des acides forts => leurs bases conjuguées (les sulfonates) sont d'excellents nucléofuges

3.3.1. Stabilisation des carbanions en α

Comme les autres composés soufrés, les protons en α des sulfones sont acides :

Dérivé soufré	S – Me	S(O) – Me	S(O) ₂ – Me	S+ – Me	S+(O) – Me
pKa des protons méthyls en α	40	35	32	23	15

Structure des carbanions :

Réaction des bases conjugués avec des électrophiles :

3.3.2. Réaction intramoléculaire

Réaction de Ramberg-Backlund

Bilan:

Mécanisme :

3.3.2. Réaction intramoléculaire

Réaction de Ramberg-Backlund

Contrôle de la stéréochimie :

$\underline{Avec\;R=R'=M}$	<u>e :</u> Conditions	Proportions Z / E		
	KOH 2M, H ₂ O, 100 °C	79 / 21		
_	KOtBu 1M, tBuOH, 93 °C	23 / 77		

- Base faible (KOH) => alcène (Z) majoritaire
- **Base forte** (KO*t*Bu) => alcène **(E)** majoritaire

Avec R = R' = Ar: (E) majoritaire même avec KOH

3.3.3. Réaction intermoléculaire

Réaction de Julia

Réaction stéréosélective qui permet de former des alcènes (E) à partir de sulfones et d'aldéhydes

Étape de réduction avec Na(Hg) nécessaire

Mécanisme :

3.3.3. Réaction intermoléculaire

Réaction de Julia-Kociensky

Réaction en une étape

Pas d'étape de réduction => compatible avec plus de fonctions

3.3.4. Réactivité des tosylhydrazone

Réaction de Shapiro