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S U M M A R Y 

Inverse problems occur in many fields of geophysics, wherein surface observations are used to 

infer the internal structure of the Earth. Given the non-linearity and non-uniqueness inherent 
in these problems, a standard strategy is to incorporate a priori information regarding the 
unknown model. Sometimes a solution is obtained by imposing that the inverted model remains 
close to a reference model and with smooth lateral variations (e.g. a correlation length or a 
minimal wavelength are imposed). This approach forbids the presence of strong gradients or 
discontinuities in the recovered model. Admittedly, discontinuities, such as interfaces between 

layers, or shapes of geological provinces or of geological objects such as slabs can be a 

priori imposed or even suggested by the data themselves. This is however limited to a small 
set of possible constraints. For example, it would be very challenging and computationally 

e xpensiv e to perform a tomographic inversion where the subducting slabs would have possible 
top discontinuities with unknown shapes. The problem seems formidable because one cannot 
even imagine how to sample the prior space: is each specific slab continuous or broken into 

different portions having their own interfaces? No continuous set of parameters seems to 

describe all the possible interfaces that we could consider. To circumvent these questions, 
we propose to train a Generative Adversarial neural Network (GAN) to generate models 
from a geolo gicall y plausible prior distribution obtained from geodynamic simulations. In 

a Bayesian framework, a Markov chain Monte Carlo algorithm is used to sample the low- 
dimensional model space depicting the ensemble of potential geological models. This enables 
the integration of intricate a priori information, parametrized within a low-dimensional model 
space conducive to efficient sampling. The application of this approach is demonstrated in 

the context of a downscaling prob lem, w here the objective is to infer small-scale geological 
structures from a smooth seismic tomographic image. 

Key wor ds: Bay esian inference; Inverse theory; Machine learning; Statistical methods; To- 
mography. 

convection. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/238/3/1676/7717381 by guest on 10 Septem

ber 2024
1  I N T RO D U C T I O N  

In seismic tomography, surface recordings of seismic waves are 
used to image the structure of the Earth (for comprehensive 
re vie ws, see Rawlinson et al. 2010 ; Liu & Gu 2012 ; Tromp 
2020 ; Tsai 2023 ). Thanks to recent advances in the quality and 
quantity of seismic observations (Het ényi et al. 2018 ; Schmandt 
et al. 2019 ), to a number of theoretical breakthroughs in seismic 
waves modelling (Bozda ̆g et al. 2011 ; Fichtner & Trampert 2011 ; 
Lebedev et al. 2023 ), and the growing availability of computing 
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po wer , seismologists are no w obtaining increasingly detailed con- 
straints on the 3-D structure inside the Earth (Bodin et al. 2015 ). In 
the mantle, several key features have been identified, including sub- 
ducted plates penetrating deep into the mantle (Van der Hilst et al. 
1997 ; Fukao & Obayashi 2013 ), or plumes connecting large low 

shear velocity provinces at the base of the mantle to hotspots at the 
surface (Bijwaard & Spakman 1999 ; Montelli et al. 2004 ; French 
& Romanowicz 2015 ). These discoveries are offering important in- 
sight into the mechanisms of plate tectonics and patterns of mantle 
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.1 Imaging a smooth effective Earth 

lthough the long-wavelength structure of the mantle ( ∼ 1000 km)
s well resolved b y v arious global models (Dalton et al. 2008 ; Rit-
ema et al. 2011 ; Durand et al. 2017 ), there are still a number of
ebates in seismology and geodynamics about shorter wavelength
tructures and the associated processes at play, such as the fate of
labs (Grand et al. 1997 ; K árason & Van Der Hilst 2000 ; Faccenda
t al. 2009 ; Fukao & Obayashi 2013 ; Ballmer et al. 2015 ), the
tructure of continents (Aulbach 2012 ; Priestley et al. 2021 ; Boyce
t al. 2024 ), the shape of plumes (French & Romanowicz 2015 ;
aguire et al. 2018 ; Ritsema et al. 2021 ) or the origin of large low

hear velocity provinces (LLSVP) at the base of the mantle (Wenk
t al. 2011 ; Koelemeijer et al. 2012 ; Cottaar & Romanowicz 2013 ;
horne et al. 2013 ; Davies et al. 2015 ; Lau et al. 2017 ; Jones et al.
020 ; Davaille & Romanowicz 2020 ). The Earth is heterogeneous
t all scales, from crystals that make up rocks, to the tectonic blocks
hat make up continents, to the scale of entire tectonic plates (Scha-
ffer & Lebedev 2015 ). A well-known problem is that tomographic
odels obtained from long period seismograms do not depict this

ull spectrum of heterogeneities, but at most a smooth (without
igh spatial frequencies) ef fecti ve (i.e. equi v alent to the reality
or the observed wavefield) medium, that is only accurate at long-
avelengths, and that is not suited for detailed interpretation (Ricard

t al. 1996 ; Bodin et al. 2015 ; Capdeville & M étivier 2018 ; Tsai
023 ). Structures at small scales cannot be resolved, are non-linearly
apped in the recovered long wavelength structures and subject

o non-uniqueness. For example, it is well known that a stack of
sotropic layers will be equi v alent, at large scale, to a homogeneous
nisotropic medium (Backus 1962 ) (which does not preclude the
xistence of intrinsic anisotropy, Mainprice et al. 2000 ). When the
edium is observed at large wavelength, the ability to distinguish

ifferent layers disappears. Thus, part of the anisotropy observed at
arge scale may be artificial and simply the effect of unmapped fine
ay ering (F ichtner et al. 2013 ; Alder et al. 2017 ; Magali et al. 2021 ).
his may be the case in areas where a lot of fine geological layering is

nvolved. 
In this context, mantle models obtained from long period waves

ften lack the signature of compositional discontinuities and de-
ormation mechanisms, and hence lack geological accurac y. The y
re difficult to interpret, and to compare to results from other dis-
iplines such as geodynamics or mineralogy (K árason & Van Der
ilst 2000 ; Garnero & McNamara 2008 ; McNamara et al. 2001 ;
horne et al. 2013 ; Ballmer et al. 2015 ; Priestley et al. 2021 ; Wolf
t al. 2024 ). 

.2 Adding information about small scales 

tandard tomographic approaches use finite discrete basis (e.g. v o x-
ls, spherical harmonics), which imposes a limit on the scales that
an be resolved. Thus traditional models are ine vitabl y designed
o capture a low-pass filtered version of the true earth. The most
ommon way to include information about structures that cannot
e resolved by the data is to use a reference model and to penal-
ze solutions that are far from it (Ricard et al. 1996 ; Asnaashari
t al. 2013 ). But a single reference model is often not adequate to
ully represent our state of knowledge about small-scale geological
tructures. 

Otherwise, there are a number of parametrization and regulariza-
ion approaches to enhance discontinuities in reconstructed images.
ut their application to seismic tomography remains limited as they
ake the inverse problem highly non-linear and its resolution com-

utationally challenging. In the case of full waveform inversion,
ome studies proposed a total variation regularization to preserve
harp interface of subsurface structures (e.g. Burstedde & Ghattas
009 ; Guitton 2012 ; Lin & Huang 2014 ; Esser et al. 2018 ; Kalita
t al. 2019 ). Many other strategies have also been proposed and
ested such as wavelet parametrization with sparsity constraints (Si-

ons et al. 2011 ; Charlety et al. 2013 ), compressed sensing (Li
t al. 2012 ), Cauchy function regularization (Guitton 2012 ), model
eduction (Barnier et al. 2019 ) and level set parametrizations (Muir
 Tsai 2020 ). Ho wever , these approaches often have their limita-

ions, using either structures that are too simple, or a number of
arameters that is too large for an easy numerical implementation.
nother common problem is that these methods solve an optimiza-

ion prob lem w here the solution is a single model that minimizes
n objective function based on data derivatives and a regularization
er m. In this context, uncer tainty anal ysis is dif ficult as the range of
eolo gicall y plausible solutions that explain the data cannot be prop-
rly described and non-uniqueness can not be properly accounted
or. 

Some approaches have been used to produce seismic models that
an be directly interpreted in terms of geological, mineralogical, or
eodynamic processes. In this case, the produced Earth model is the
irect result of a physical process and can therefore be interpreted
eolo gicall y. Tsai et al. ( 2023 ) proposed to directly parametrize a
rustal model in terms of blocks separated by faults. Munch et al.
 2018 ) and Bissig et al. ( 2022 ) inverted body waves measurements
or temperature and composition in the mantle. Magali et al. ( 2021 )
roposed to use geodynamic simulations for the parametrization,
here the patterns of seismic anisotropy were solutions of Stoke’s
ow equations. In these approaches the relation between model
arameters and seismic observations becomes highly non-linear,
nd sampling methods (e.g. Monte Carlo) may be used instead of
tandard linearized inversion schemes. Although this enables the
uantification of uncertainties, sampling approaches can be com-
utationall y expensi ve if the number of parameters is large. This is
ggrav ated b y the well-known curse of dimensionality, which makes
he sampling difficult at high dimensions (Curtis & Lomax 2001 ;
cheiter et al. 2022 ). 
We also note that some approaches from geostatistics such

s multiple point statistics (Gonz ález et al. 2008 ; Bosch et al.
010 ; Cordua et al. 2012 ; Lochb ühler et al. 2014 , 2015 ) or hid-
en Markov models (Feng et al. 2018 ) have been used to inter-
ret seismic models in terms of geological facies, while includ-
ng complex geological information. But here again, exploring the
nsemble of possibilities that explain the data remains computa-
ionall y expensi ve. Indeed, in these methods, each pixel is indi-
idually reconstructed with conditional probabilities, leading to
ultiple computations for only constructing one possible image

Mariethoz & Caers 2014 ). 
As a summary, the multiscale parametrization of seismic models

eeds to address the following challenges: 

(i) The inclusion of geolo gicall y accurate a priori information
bout small scales. 

(ii) A low dimensionality of the model space. 
(iii) A computationally cheap relationship between model pa-

ameters and the actual velocity model. 
(iv) The reduction of non-linearities in the relationship between
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1.3 Dee p g enerative models 

In order to address these parametrization challenges (small-scale 
geolo gicall y accurate a priori , low dimensionality, reduced com- 
putational cost and mitigated non-linearities), a number of recent 
studies have used deep generative models (Foster 2022 ): neural net- 
works that are able to generate new images statistically similar to 
that of a chosen set of images, called training set. In geophysical 
inverse problems, to reconstruct geolo gicall y realistic earth models, 
Liu et al. ( 2022 ) used a Variational Auto-Encoder (VAE, a gen- 
erative neural network that learns to encode input images into a 
low-dimensional space and from each point of this space, associate 
a new similar image, Kingma & Welling 2013 ). Others (Richardson 
2018 ; Chan & Elsheikh 2019 ; Mosser et al. 2020 ; Lopez-Alvis et al. 
2021 ; Bloem et al. 2023 ; Feng et al. 2024 ) preferred a Generative 
Adversarial Network (GAN, a generative neural network trained 
in an adversarial relationship with a discriminator which tries to 
identify the fake generated images, Goodfellow et al. 2014 ). Since 
the unknown model is described by a low number of parameters, 
it becomes possible to use a Markov chain Monte Carlo (McMC) 
algorithm to explore the range of possible solutions and embrace 
the non-uniqueness of the problem (Mosegaard & Tarantola 1995 ). 
In this case, the inverse problem can be defined in a Bayesian frame- 
work and the generative model can be seen as a tool to sample from 

the prior distribution (e.g. Patel & Oberai 2019 ; Bohra et al. 2022 ). 
Generative models can also be used in similar approaches to reduce 
the dimension of the data or the parameter spaces (Valentine & 

Trampert 2012 ; Chen & Saygin 2021 ; Scheiter et al. 2022 ). 
In this study, we use a GAN trained on images from geody- 

namic simulations to ef ficientl y explore the space of possible mod- 
els. By generating random models from a low-dimensional space, 
our method aims to depict shapes representing chemical discon- 
tinuities in a convecting mantle, thus addressing the mentioned 
parametrization challenges. We follow the ideas of Capdeville & 

M étivier ( 2018 ) and Hedjazian et al. ( 2021 ), and view the tomo- 
graphic problem as a two-step approach, consisting on first recov- 
ering a smooth ef fecti ve model that gathers the information present 
in the data, before reconstructing geolo gicall y realistic small-scale 
structures from the smooth ef fecti ve model. Our work focuses on 
the second step, called the downscaling problem. We cast this prob- 
lem in a Bayesian framework, where the ensemble of potential 
fine-scale models sharing the same long wavelength effective prop- 
erties are explored with a McMC algorithm, using the GAN for the 
parametrization. 

To illustrate the potentiality of the method, we use a simple 2- 
D geodynamic toy problem, and train a generative neural network 
with a set of numerical simulations of 2-D sections of the upper 
mantle, the so-called ‘marble cake models’ (All ègre & Turcotte 
1986 ; Alder et al. 2017 ; Magali et al. 2021 ), where the stirring of 
crustal and lithospheric components continuously introduced in the 
deep mantle by subductions leads to a veined structure reminiscent 
of a marble cake. Our goal is then to find the ‘best’ marble cake 
structure that would correspond to a given smooth tomographic 
image. In this way, this parametrization of marble cake models with 
a generative neural netw ork allo ws us to downscale a synthetic 
smooth tomographic image. 

In this paper, we introduce and illustrate the proposed method in 
five sections. In Section 2 , we detail the geodynamic simulations 
leading to marble cake structures. We also discuss the elastic ho- 
mogenization that enables us to compute a long wavelength effective 
medium, and thus to approximate the tomographic operator. Sec- 
tion 3 discusses the generation of artificial marble cake structures 
with Deep Learning. Section 4 details the methodology proposed 
for the inversion. Section 5 illustrates the benefits of the proposed 
method on the simple synthetic problem, and results are discussed 
in the last section. 

2  F RO M  G E O L O G I C A L  S T RU C T U R E S  

T O  A  T O M O G R A P H I C  I M A G E  

2.1 Simulating geological structures: the marble cake 
mantle model 

Since the seminal work of Batchelor ( 1959 ), it is well accepted that 
mantle heterogeneities follow a 1 /k power spectrum, where k is the 
wavenumber (Olson et al. 1984 ; Antonsen & Ott 1991 ). All ègre & 

Turcotte ( 1986 ) introduced a model for the upper mantle, resulting 
from the stirring of two components with basaltic and harzburgitic 
compositions and depicting marble cake structures. Mancinelli et al. 
( 2016 ) showed that this structural configuration is responsible for 
the observed 1 /k power spectrum beha viour, for wa velengths down 
to the kilometre. Therefore, for the purpose of this study, we ap- 
proximate mantle structures, seen on a cross-section, as a binary 
geological system. 

Here we adopt the numerical modelling framework described in 
Alder et al. ( 2017 ) to reproduce a 2-D representation of these mar- 
ble cake structures, as illustrated in Fig. 1 . This modelling approach 
involves the stirring of a circular anomaly by the chaotic convection 
mechanism into a confined spatial domain. For this study, the two 
components are in the same proportion, and the confined domain is 
a L × L square re gion. The conv ection field within the model is de- 
fined by a simple incompressible chaotic flow where the horizontal 
and vertical velocities are: 

v x = 

∂� 

∂y 
, (1) 

v y = −∂� 

∂x 
, (2) 

derived from the stream function �

�( x , y , t) = sin ( πy )[ sin (2 πx ) + a( t) sin (3 πx) + b( t) sin (4 πx)] , (3) 

where a( t) and b( t) are sinusoidal functions of time: 

a( t) = A sin ( f a t + φa ) , (4) 

b( t) = B cos ( f b t + φb ) . (5) 

These functions a and b, with their 6 parameters: amplitudes A , B, 
frequencies f a , f b and phases φa , φb introduce chaotic behaviour 
into the convection. The initial circular anomaly undergoes a se- 
quence of deformations according to the prescribed velocities. The 
number of points defining the interface between the two compo- 
nents is increased over time, as the contour lengthens and becomes 
more convoluted. The resulting configuration gives rise to a binary 
image featuring a distinctive marble cake. This toy model is used 
as the marble cake geodynamic simulator S . This simulator takes 
9 input parameters gathered in the vector p , including the initial 
position of a fixed-size circular anomaly, the six parameters defin- 
ing the convection field and the number of time step. In response, it 
generates a binary image of N pixels, either 0 (black) or 1 (white). 
A visual representation of this conv ectiv e construction process at 
various time intervals is provided in Fig. 1 . 

Both phases of the material are assigned an isotropic S -waves 
velocity v s , an isotropic P -waves velocity v p and a density ρ. 
We choose v s, 1 = 4 . 13 km s −1 and v s, 2 = 3 . 38 km s −1 , to reach 
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Figure 1. Illustration of the conv ectiv e construction of a marble cake shape, 
at various time steps. It is obtained by stirring a circular anomaly with chaotic 
convection. The simulated marble cake is the final image. This particular 
example of marble cake was obtained with the following parameters : initial 
anomaly centred in (0 . 50696 , 0 . 49770) , A = 1 . 04568 , B = 0 . 88601 , f a = 

0 . 72566 , f b = 0 . 55985 , φa = 0 . 12535 and φb = 0 . 22108 . 
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0 per cent contrast of velocity which is in the upper range of what
s expected in the upper mantle (Stixrude & Jeanloz 2007 ; Xu et al.
008 ). The corresponding P velocities are given by v p /v s = 1 . 8 . We
nally fix ρ = 3 g cm 

−3 . In order to fully characterize the mechan-
cal behaviour of the medium, we define a local elasticity tensor. In
he isotropic case, the Lame’s coefficients are: 

= ρ
(
v 2 p − 2 v 2 s 

)
, (6) 

= ρv 2 s . (7) 

n the 2-D case, the isotropic elastic tensor expressed at each point
f the medium, using Kelvin notation is 

C = 

⎛ 

⎝ 

λ + 2 μ λ 0 
λ λ + 2 μ 0 
0 0 2 μ

⎞ 

⎠ . (8) 

.2 Appr o ximating the tomographic operator: the elastic 
omogenization 

or each marble cake structure, we could in principle propagate seis-
ic waves and obtain the synthetic seismic observables. Ho wever ,
e cannot directly use these synthetics to mimic a real experiment.

ndeed, due to practical, theoretical and computational limitations,
nly a limited bandwidth of the seismic signal can be observed and
nverted (this is true for both synthetic and real seismograms). In
ddition to these limitations, the imperfect data coverage is also an
bvious problem with real observations (sources and observations
re une venl y and too sparsely distributed). That is why currently,
he images obtained with seismic tomography depict only a smooth
f fecti ve representation of the true Earth. Even assuming a perfect
ata coverage, the limited bandwidth that can be used, suggests to
se a two-steps procedure to compute the propagation of seismic

aves in a marble cake structure: d  
(i) From the fine-scale structure, compute a smooth medium that
s equi v alent for the seismic w avelengths used in the tomo graphic
nversion. 

(ii) Use this ef fecti ve medium for the wave propagation simu-
ation. This makes the computations easier and leads to synthetics
omparable with real observations. 

The first step can be done with Fast Fourier homogenization
Capdeville et al. 2015 ). The input of this operation is the seis-
ic medium ( 3 × 3 elastic tensor C , defined at each point, see
ection 2.1 ). The output is the homogenized anisotropic elastic-

ty tensor C 

∗, also defined in each point, that we call the effec-
ive medium. We illustrate an example of an ef fecti ve medium in
ig. 2 . We show the initial elastic tensor C and its homogenize
ounterpart C 

∗. Both 3 × 3 tensors are symmetric (i.e. have 6 in-
ependent components) and spatial variations of the initial tensor
re smoothed by the homogenization. Notice that the homogeniza-
ion of a complex but isotropic medium leads to a fully anisotropic
edium (Backus 1962 ; Magali et al. 2021 ). At an y gi ven location,

he level of anisotropy of the tensor can be quantified. Indeed, the
oefficients C 

∗
11 are proportional to the squared velocity of P waves

long the x -axis and C 

∗
22 along the y -axis. ξ = C 

∗
22 / C 

∗
11 corresponds

o the anisotropy of the P waves, caused by small-scale layering
esulting in a preferential direction. An example of the anisotropy
or a homogenized tensor is provided in Fig. 3 . 

Assuming perfectly data-covered tomography, we follow Capdev-
lle et al. ( 2013 ) and Capdeville & M étivier ( 2018 ) that show how
lastic homogenization can provide the best image that one would
et from a tomographic inversion; homogenization is equivalent to a
tomographic operator’. Therefore, with this operator, it is possible,
rom a fine-scale structure, to compute the equi v alent tomo graphic
mage, that is the image that would be obtained from a tomographic
nversion. 

The main objective of this study is to recover the underlying
ne-scale marble cake mantle structure m from a low-resolution
nd homo genized tomo graphic image, that is the ef fecti ve medium

t . Both are linked through the forward problem H, illustrated in
ig. 2 , and expressed as followed: 

t = H( m ) + ε , (9) 

here ε is an error term that will be detailed in Section 4.2 . Although
m is an array of isotropic velocities, t includes the six components
f the homogenized velocity. 

Note that the equation symbolizing the forward problem ex-
ressed by eq. ( 9 ) and the inverse problem that we want to deal
ith (somehow defining an inverse ˜ H operator) look trivial but in

act are not. There is no safe way to sample all possible marble
ake patterns, there is no obvious mathematical distance to define
etween two marble cake patterns and we cannot make sense of the
ifferentiation of H( m ) which is often necessary in inverse theory.
ow ever w e will see that a deep generative network can perform

he remarkable trick of describing m as a function of a vector z in
 space of moderate dimensions, as discussed in the next section. 

 G E N E R AT I N G  A RT I F I C I A L  

E O L O G I C A L  S T RU C T U R E S  

.1 A low-dimensional parametrization 

ownscaling a tomographic image present numerous challenges.
ndeed, as we described it in Section 2.2 , there is information loss
uring the homogenization H that we try to inverse. Many different

art/ggae240_f1.eps
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Figure 2. Summary of the physical forward problem. Left-hand panel: marble cake model. Middle panel: corresponding elastic medium, computed from v s , 
v p , ρ of each phase. Right-hand panel: ef fecti ve medium, obtained with homogenization of the seismic medium, for λ0 = L/ 5 , where L is the side length of 
the box. For the wave equation, and down to a minimum period, this effective medium and the seismic medium (middle panel) are equivalent. 

Figure 3. Ef fecti ve medium and anisotropy of a marble cake image for homogenization at λ0 = L/ 5 , L being the side length of the box. Left-hand panel: a 
marble cake model, composed by two phases: an enriched component transformed into a dense assemblage (white) and a harburzgite phase (black). Middle 
panel: ef fecti ve medium, obtained by homogenization of the marble cake at λ0 . No structures smaller than λ0 are kept. Only the first coefficient C 

∗
11 is 

represented on this figure. Right-hand panel: anisotropy of the ef fecti ve medium, computed as the ratio ξ = C 

∗
22 /C 

∗
11 . The red and blue areas correspond to 

horizontal and vertical layering, respecti vel y. 
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fine-scale models can homogenize to the same smooth tomographic 
image. To restrain the possible solutions to ‘realistic’ models, we 
want to restrict the solution to the manifold of images that look 
like convection models such as the one described in Section 2.1 . 
To do this, we want to construct, by means of a deep generative 
network, a function G( z ) that maps a low-dimensional space (called 
latent space) to the high-dimensional distribution of marble cake 
images. By sampling the latent vectors z from a distribution p( z ) (by 
construction a normal distribution with unit variance), the generator 
G( z ) will sample the prior distribution p( m ) of all possible marble 
cake patterns. This generator is designed to possess several desirable 
attributes: (i) to be computationall y ef ficient and ensure rapid image 
generation and (ii) to be defined in a latent space with dimensions 
as small as possible to facilitate efficient and effective sampling. 

With this proposed parametrization, we reformulate the forward 
problem in a Bayesian framework: the aim is now to infer the pos- 
terior distribution p( z | t ) of latent vectors z . The complete forward 
problem (see Fig. 4 ) is the marble cake generation operator G fol- 
lowed by the homogenization operator H described in Section 2 . 
Eq. ( 9 ) is thus reformulated as: 

t = H ◦ G( z ) + ε . (10) 

This form of the forward problem is now suitable to an inverse prob- 
lem. Initiall y, the dif ficulty with eq. ( 9 ) w as to find the probability 
p( m | t ) that the marble cake m corresponds to the observation t . 
Now the reformulated problem (eq. 10 ) is to find p( z | t ) , the proba- 
bility that z generates a marble cake whose tomographic image is t . 
3.2 Generativ e adv ersarial network 

To build the generator G, we use a Generative Adversarial neu- 
ral Network (GAN) framework. This process involves training the 
GAN on a set of geodynamically simulated marble cake images, as 
described in Section 2.1 . The geodynamic input parameters used 
to simulate the training images (see Section 2.1 ) were taken ran- 
domly on independent uniform distributions, with the exception of 
the stirring duration which was kept constant. This training set of 
‘true’ marble cakes can be seen as a representative sample from the 
prior distribution. Once trained, the GAN is expected to generate 
samples m from the same distribution as the training set. 

A Generativ e Adv ersarial Netw ork, introduced by Goodfello w 

et al. ( 2014 ), is a machine learning framework designed for image 
generation. It consists of two primary components: a generator G
and a discriminator D. Throughout the training process, these two 
components engage in an adversarial and competitive relationship. 
The objective of the generator is to produce synthetic images that 
become pro gressi vel y more challenging for the discriminator to 
distinguish from real images. On the other hand, the discriminator 
aim is to accuratel y dif ferentiate between real and generated marble 
cake images. Both networks are successi vel y trained, improving 
with each step. This framework is illustrated in Fig. 5 . 

In this study, the marble cake generator is made of a GAN of 
Z = 30 latent variable trained with gradient penalty on 19 456 
marble cake models. These models are obtained with the simula- 
tor S from parameters p taken over a uniform distribution. More 
architecture and implementation details are given in Appendices 
A and B . 
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Figure 4. The complete forward problem. The neural network generator G generates a marble cake G( z ) from a small dimensional latent vector z . The marble 
cake is homogenized at a given cutoff wavelength, resulting in the computed data, that is the ef fecti ve medium: H ◦ G( z ) . This ef fecti ve medium can then be 
compared to the observations t . The aim in our experiment is to sample the posterior probability p( z | t ) . 

Figure 5. Training framework of a GAN. The discriminator learns to differentiate between training images and generated images, while the generator learns 
to generate images fooling the discriminator. They are trained successi vel y v arious times, until the generator is able to produce images looking like the training 
images, that is to sample the prior p( m ) from which is taken the training set. In this way, the generator G is able to map a Gaussian distribution p( z ) on the 
latent space onto the prior distribution p( m ) . 

3

S  

w  

m  

a  

t  

t  

v  

s  

o  

f  

T  

t  

A

4
D
I

T  

e  

a  

i  

v  

b  

p  

w  

(  

c  

m  

s

4

G  

m  

A  

e  

h  

p  

v  

t

w  

l  

o  

d

w  

l  

t

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/238/3/1676/7717381 by guest on 10 Septem

ber 2024
.3 Generator assessment 

ome examples of generated images are shown in Fig. 6 together
ith some images of the training set. The generator is able to
imic the shapes of the simulated marble cakes, providing ‘re-

listic’ geological structures. Note that, like the training images,
he generated marble cakes have only local values of 0 or 1, al-
hough the generator is capable of producing a continuous range of
alues between 0 and 1. When comparing their respective power
pectra on Fig. 7 the GAN reproduces the statistical properties
f the training images, displaying a power spectral density that
ollows a 1 /k curve fairly precisely, where k is the wavenumber.
his is consistent with theoretical expectations (as discussed in Sec-

ion 2.1 and in references such as Batchelor 1959 ; Olson et al. 1984 ;
ntonsen & Ott 1991 ). 

 T H E  I N V E R S E  P RO B L E M :  
OW N S C A L I N G  T O M O G R A P H I C  

M A G E S  

he method proposed for downscaling tomographic images involves
stimating the posterior distribution of marble cakes, given the avail-
ble tomographic measurements. Since the solution to this problem
s highly non-unique (as one ef fecti ve medium can be explained by
arious fine-scale layered velocity models), it cannot be represented
y a single best fitting model. Instead, we follow a Bayesian ap-
roach where the solution is represented by a collection of images,
hich are samples from the posterior probability density p( z | t )
Tarantola 2005 ). This approach facilitates a more comprehensive
haracterization of the uncertainties associated with the estimated
arble cake images, embracing the inherent non-uniqueness of the

olution. 

.1 Bay esian f orm ulation 

i ven the tomo graphic measurements t , the statistics of the upper
antle structure m is described by its posterior distribution p( m | t ) .
s stated in Section, 3.1 , this posterior distribution is difficult to

stimate in practice, as the space of possib le marb le cakes m is
ard to sample. Using the generator G defined in Section 3.2 to
arametrize m , we then define the posterior distribution of the latent
ariab les p( z | t ) w here m = G( z ). According to Bay es’ theorem,
his posterior distribution writes: 

p( z | t ) ∝ p( z ) p( t | z ) , (11) 

here the prior probability distribution p( z ) quantifies our geo-
ogical prior knowledge about the unknown model independently
f the observations. By construction, and conveniently, it is a Z -
imensional normal distribution: 

p( z ) ∝ exp 

(
−‖ z ‖ 2 

2 

)
, (12) 

here the generator G has been trained so that by exploring the
atent space with probability p( z ) , the generator G( z ) samples all
he possible marble cake patterns. 
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Figure 6. Left-hand panel: examples of training images, obtained from geodynamic simulations described in Section 2.1 . These images represent realizations 
of the prior distribution p( m ) . Right-hand panel: images generated by the generator G from latent vectors z taken on the distribution p( z ) . These ‘artificial 
marble cakes’ depict similar conv ectiv e structures to the training images. 

Figure 7. Mean power spectra of heterogeneities, for the set of training images (green) and the generated images (red). 
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The likelihood distribution p( t | z ) quantifies how the model G 

( z ) 
fits the geophysical observations t . From eq. ( 10 ), it writes: 

p( t | z ) ∝ exp 

(
−1 

2 
‖ t − H ◦ G( z ) ‖ 2 Cov 

)
, (13) 

with the norm : 

‖ t − H ◦ G( z ) ‖ 2 Cov = ( t − H ◦ G( z )) T Cov −1 ( t − H ◦ G( z )) , (14) 

where Cov is the covariance matrix of the data errors. We recall 
that the obser ved tomog raphic model t is described by 6 images of 
N pixels. 
4.2 Covariance matrix and data errors 

We consider that the errors in the six elastic coefficients obtained 
b y homo genization are not correlated with each other. To sim- 
plify the numerical procedure, instead of computing the corre- 
lations on the N points and computing Cov −1 in eq. ( 14 ), we 
resample the data on a coarse grid such that the distance be- 
tween two points is half the homogenization wavelength, λ0 / 2 . 
This ensures that the data errors are not spatially correlated 
and makes the covariance matrix diagonal. Hence, eq. ( 14 ) is 
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pproximated by 

‖ t − H ◦ G( z ) ‖ 2 Cov ≈
∑ 

i= 1 , 6 

1 

σ 2 
i 

∑ 

j 

( t − H ◦ G( z )) 2 i, j , (15) 

here the sum over i applies to the 6 components of the images and
he sum over j to the pixels of the coarse images. The coefficients σi 

an be interpreted as uncertainties with the form σ 2 
i = σ 2 

oi + σ 2 
Gi ,

here σoi accounts for the observational errors and σGi for the errors
f the GAN process. We assume that σoi is typically 20 per cent [i.e.
ignal-to-noise ratio (SNR) = 14 dB] of the spatial variability of
ach elastic coefficient estimated for a set of homogenized marble
akes. The σGi derives from the inability of the generator to produce
xactly a chosen marble cake. We estimate the closest fit to a given
arble cake that the generator can get, and compare them for each

lastic coefficient after homogenization; allowing us to estimate

Gi ≈ 75 per cent of the spatial variability. Combining the prior
n eq. ( 12 ) and the likelihood in eq. ( 13 ), the posterior probability
ensity function is expressed as follows: 

p( z | t ) ∝ exp 

(
−‖ z ‖ 2 

2 

)
× exp 

(
−1 

2 
‖ t − H ◦ G( z ) ‖ 2 Cov 

)
. (16) 

.3 Sampling the posterior 

o estimate the posterior probability density function p( z | t ) in
q. ( 16 ), we use a Metropolis–Hastings McMC algorithm. Intro-
uced by Hastings ( 1970 ), McMC has become a cornerstone in
ayesian statistical methods, offering an efficient means of ap-
roximating complex posterior distributions. It involves construct-
ng a random walk to explore the model space (here the latent
pace), where each step is a perturbation of the pre viousl y visited
odel. At each step, the complete forward operator is computed

or the proposed model and the data simulated for this model are
ompared to observations. The proposed model is then either ac-
epted or rejected according to an acceptance law. The ensemble
f sampled models asymptotically converges towards the poste-
ior distribution. The solution is therefore a large ensemble of
ow-dimensional vectors in the latent space, from which differ-
nt statistics (mean model, standard deviations...) can be taken
or visualization and interpretation. More detailed explanations
nd considerations about McMC can be found for example in
rooks et al. ( 2011 ). 

 R E S U LT S  

he performance of the presented method is assessed on synthetic
ata. We simulate a marble cake image with the geodynamic simula-
ion presented in Section 2.1 . This image m t is considered to be the
r ue str ucture to be recov ered from its smooth homogenized v ersion.
t is homogenized with a cut-off wavelength of λ0 = L/ 5 (where L
s the side length of the box) and a SNR = 14 dB additive Gaussian
oise. The simulated observation is then the resulting 6 component
 3 × 3 symmetric) tensor t = H( m t ) + ε. The target model m t and
he corresponding synthetic observations used in Sections 5.1 , 5.2
nd 5.3 are shown in Fig. 8 . 

.1 Appraising the posterior solution 

he data shown in Fig. 8 is inverted by running in parallel 16
cMCs of 100 000 iterations each to produce an empirical esti-
ate of the posterior distribution p( z | t ) . The number of chains
nd iterations was chosen as a compromise between ensuring the
cMC convergence (see more details about the convergence as-

essment in Appendix C ) and reasonable computing time (mostly
ontrolled by the homogenization process).The first 4 of the Z di-
ensions of the posterior distribution are represented on Fig. 9 . On

he presented histograms, the sampled posterior distribution has a
maller standard deviation than the prior (that has a unit variance).
his is expected from the information gain brought by the obser-
ations. In addition, this posterior distribution is bimodal meaning
here are at least two classes of marble cake images that explain
ell the data. 
Each sampled latent vector z corresponds to a binary marble cake

odel m = G( z ) . Therefore, the complete posterior distribution can
e appraised in different ways in the image space. Examples of
mages randomly drawn from the ensemble solution are shown in
ig. 10 . They all share the same overall shapes that match the target
tructures, and only differ on small scales. 

We can also visualize our results by showing different statistical
stimates of the distribution in the marble cake space. In Fig. 11 , we
how the mode and mean of the distribution taken either in the latent
pace or the image space: G ( z m 

) , G ( z ) , G ( z ) m 

, G ( z ) . Only the last
anel showing G( z ) has a continuous scale between 0 and 1, that can
e interpreted as the probability of the presence of the white phase
t each location. Note that the standard deviation of the ensemble
olution at each pixel can be used as a map of uncertainties (see
igs 12 and 14 ). 

.2 Testing different homogenization w av elengths 

ere we present results for different homogenization cut-off wave-
engths λ0 (see Fig. 12 ). As expected, the smaller the cut-off wave-
ength λ0 , the sharper the mean model and the smaller the uncertain-
ies. Indeed, for short cut-off wavelength, smaller scales are kept,
nd the solution is better constrained by the measurements. 

Conversel y, the observ ations with λ0 = L/ 2 onl y contain a low
evel of information, resulting in a low-contrast mean model and
arge standard deviations. On the histogram of sampled values in the
atent space, the posterior distribution is close to the prior, highlight-
ng the fact that solutions are poorly constrained by measurements.
espite these poor constraints, the global structure of the target is

ecovered, thanks to the high level of constraints gi ven b y the a
riori distribution. 

When the cut-off wavelength is equal to the length of the box
 λ0 = L ), there is no information left after the homogenization. As
xpected, the McMC only samples the prior distribution. The mean
mage shows no particular structure. 

.3 Effect of anisotropy 

s stated in Section 1.1 , after homogenization, fine layering in
he underlying structures is non-linearly mapped into effective
nisotropy . In this way , it is clear that long wavelength anisotropy
arries information on the small scales, such as the direction and
he amplitude of layering. In order to investigate the impact of
nisotropy on the estimated posterior, we conduct a comparative
nalysis between the anisotropic case, where the complete homog-
nized elastic tensor is inverted, and the isotropic case where solely
he t 11 coefficient is used. This comparative assessment is performed
ith a cut-of f w avelength of λ0 = L/ 2 . The synthetic data are pre-

ented in Fig. 13 , while the characteristic images of the estimated
osterior distribution are depicted in Fig. 14 . 
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Figure 8. Left-hand panel: target model m t created with the geodynamic simulation described in Section 2.1 . Middle panel: first coefficient of the observations 
t = H( m t ) + ε, obtained b y homo genization of m t at λ0 = L/ 5 (where L is the side length of the box) with Gaussian noise with SNR = 14 dB. Right-hand 
panel: ef fecti ve anisotropy obtained after homo genization. 

Figure 9. McMC sampling (2-D and 1-D marginals) of the posterior distribution p( z | t ) for the 4 first dimensions. For more details, see Appendix D . The 
prior p( z ) (a standard normal distribution) is plotted in orange on the 1-D marginals for comparison. The posterior is tighter than the prior , thus sho wing the 
gain of information brought by the data. Two modes can be identified on the posterior distribution. 
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Figure 10. 10 images randomly drawn from the ensemble solution describing the posterior distribution. 

Figure 11. Characteristic images of the distribution. Mode (first column) 
and mean (second column), computed on the latent space (first row) and on 
the pixels space (second row). 
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Compared to the anisotropic case, the posterior mean image G( z )
n the isotropic scenario shows increased blurring, accompanied by
 higher standard de viation, indicati ve of a less informative and
roader posterior distribution. It is difficult to recognize the target
mage after inversion. Specifically, it fails to disclose specific local-
zations of layering, unlike in the anisotropic scenario where distinct
e gions e xhibiting pronounced v ertical layering can be identified
nd correspond to the targeted model layering. This emphasizes the
rucial role of anisotropy (and the ability of homogenization to ac-
ount for this extrinsic anisotropy) when constraining small-scale
tructures, thus providing valuable information to the downscaling
rocedure. 

.4 Methodology assessment 

o verify the general applicability of the proposed methodology,
e test it on a large number of different target models along with
heir corresponding simulated observations. For each model, we run
he McMC sampling for one chain of 100 000 iterations. Fig. 15
resents the results for a randomly selected subset of 10 models. For
ach synthetic test, we show the target model, the observed data, the
ean solution model and its associated estimated data. To verify

hat each tested target model m t (a marble cake image consisting
f 0 and 1) is significantl y dif ferent from the training set, we also
ompute its distance to the training set as: 

D min ( m t ) = min 
m ∈ training set 

D( m , m t ) , (17) 

here D( m , m t ) is the Mean Squared Error between m and m t ,
efined as: 

D( m , m t ) = 

1 

N 

N ∑ 

i= 1 
( m − m t ) 

2 
i , (18) 

here i runs through the number of pixels. In our context, pixel
alues are either 0 or 1. Therefore the distance D is simply the
roportion of pixels that have dif ferent v alues. D min is the mini-
al value of this distance between the target and all the training

mages. The lowest value for D min is about 0.23 (7th value of the
ottom row in Fig. 15 ), indicating that the target models are signif-
cantl y dif ferent from an y of the 19 456 training images. For all the
ested models, we get results similar to those shown in the previous
ections. The proposed methodology consistently demonstrates its
f fecti veness b y successfull y recovering the str uctural proper ties of
he target models, thereby identifying probable small-scale features
hat are in accordance with the observed data. 

 D I S C U S S I O N  

he aim of this study is to present and assess our methodology,
 hich inv olves encoding prior geological information into a gener-

tive neural network and subsequently integrating it into a Bayesian
n version framew ork with McMC. We e v aluate this methodolo gy
hrough a synthetic inversion problem, the downscaling of a smooth
omographic image. 

As shown in Section 5 , the obtained results are promising. De-
pite the loss of small scales in the forward problem, due to the
omogenization step, the prior information allows us to success-
ully reconstruct the structure of the target model, even capturing
robable small-scale features. Additionally, the Bayesian approach
rovides access to a complete distribution of possible models, en-
bling the quantification of uncertainties in the solution. 
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Figure 12. Results for different homogenization wavelengths λ0 . First column: Observations (first coefficient of the effective medium). They show different 
levels of details and thus different levels of difficulty for downscaling, as no structures lower than λ0 are kept. Second column: sampled posterior distribution 
(first 4 latent dimensions, same setup as Fig. 9 ) with McMC. Smoother observations lead to wider, and closer to the prior, posterior distributions. Third column: 
mean model over the pixels space. Smoother observations lead to less accurate mean models. Forth column: Uncertainties on the image space, gi ven b y the 
standard deviation of the ensemble solution at each pixel. 

Figure 13. Target model (reminder), first component of the observations and resulting anisotropy ξ = t 11 / t 22 , for λ0 = L/ 2 . The homogenization leaves few 

information in the data, as λ0 is equal to half the box length. 
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Figure 14. Comparison of results with and without anisotropy in the observed tomographic image. First column: mean image G( z ) . Second column: uncertainties 
in the image space. 

Figure 15. Inversions for different target models. First row: target models m t . Second row: mean image G( z ) of the inversed sampled posterior distribution. 
Third row: observations t . Fourth row: data estimated for the mean solution image. Fifth row: minimum distance between the target model and the training set 
images (quantifies the proximity between the target image and the training prior). 
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.1 Advantage of sampling a highly informative prior 

ith very poorly informati ve observ ations (homo genization with

0 = L/ 2 , see Fig. 12 ), we successfully capture the global struc-
ure of the target model. This underscores the advantages of using
 generator able to sample a highly informative prior. By adopting
his approach, the exploration of the model space becomes tightly
onstrained to a set of ‘realistic’ models, in a sense that it fol-
ows the multi-scale structures corresponding to the prior, which is
earned with examples. Consequently, the proposed models not only
xplain the observations but also suggest structures similar to the
ducated guesses, thereby significantly narrowing down the range
f plausible models. A common strategy for incorporating a priori
nformation in inverse problems involves the application of a regu-
arization or prior function to the proposed model. Formulating such
 function, especially for an informative and complex prior, presents
hallenges. For instance, in our synthetic problem, quantifying the
egree to which an image exhibits a marble cake shape is non-trivial.
ur approach, which involves sampling the prior directly during the
eneration process, circumvents the need for defining this intricate
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6.2 Advantage of the learning approach 

In the toy model that we have used, the marble cake simulator 
described in Section 2.1 only needs a few input parameters. It may 
seem possible to invert directly for these parameters rather than 
using a neural netw ork. Ho wever , this is impracticable for at least 
two reasons. 

F irst, the marb le cake simulator is several orders of magnitude 
slower ( ≈ 10 3 for our problem) than the GAN-based generation 
(typically executed in a few milliseconds, making homogenization 
the time-limiting factor). Only ∼ 20 000 images ( ∼ 6 hr of simu- 
lation) are needed for the training set, and the training lasted ap- 
proximately for 40 hr. This is much more efficient than the 19 d 
that would be needed for running 16 McMCs with 100 000 mar- 
ble cakes. Fur ther more, the training is done only one time : once 
trained, the GAN can be directly used for new inversions without 
another training. 

Second, the chaotic behaviour of stirring makes the search of 
an optimum and the exploration impossible as two infinitely close 
sets of parameters lead to totall y dif ferent marble cakes. In con- 
trast, the GAN-generated marble cakes exhibit smooth variations 
with respect to the latent parameters.To illustrate this beha viour, w e 
arbitrarily choose a point z 0 in the latent space and a set of physical 
parameters p 0 [these parameters are the amplitudes, frequencies 
and phases in eqs ( 4 ) and ( 5 )]. We then define two perturbations δz 
and δp with amplitudes equal to the standard deviations of the prior 
distribution in the latent and physical space, respecti vel y. Top pan- 
els in Fig. 16 show the evolution of resulting marble cakes when z 
and p vary in the ranges [ z 0 − δz ; z 0 + δz ] and [ p 0 − δp ; p 0 + δp ] . 
Clearly, the marble cakes vary erratically in the physical space and 
continuously in the latent space. The bottom panel in Fig. 16 shows 
the behaviour of the distances of each image to the central im- 
age D ( G( z 0 + αδz ) , G( z 0 )) and D ( S( p 0 + αδp ) − S( p 0 )) when α
varies between −1 and 1. Analysis of these curves reveals a larger at- 
traction basin for GAN-generated marble cakes, displaying greater 
continuity around the central model and avoiding multiple local 
minima. 

With this property, the learning approach provides a smoother 
distribution to sample. As a result, fewer samples will be needed to 
represent the solution. Coupled with the accelerated generation of 
each sample, this renders the proposed method appealing. 

6.3 Critical points for real data application 

In the context of further work, our aim is to apply the methodol- 
ogy to real datasets spanning various observational domains like 
tomographic images of the mantle, seismic and gravimetric (Panet 
2018 ; Scarponi et al. 2020 ; Panet et al. 2022 ) data, among others. In 
particular, the challenges we address here present significant sim- 
ilarities with those encountered in exploration geophysics (Kalla 
et al. 2009 ; Dupuy et al. 2016 ; Bayuk & Tikhotskiy 2018 ; Hed- 
jazian et al. 2021 ). Fur ther more, this versatile approach can be used 
with dif ferent, potentiall y more complex and realistic, prior models 
(e.g. models with temperature fields or rheological fields) with con- 
tinuous variables or categorical ones, like in our study, and adapted 
to variations in scale and depth (global or regional models). 

Transitioning from synthetic to real data introduces several chal- 
lenges to be addressed. The application on real data necessitates a 
careful consideration of issues related to data hetero geneity, v aried 
data shapes, the presence of noise in the training set, potential lim- 
itations arising from small datasets, and the precise definition of 
the likelihood function. One particular challenge will be to switch 
to 3-D models: geodynamic simulations can have different prop- 
erties and structures between 2-D and 3-D models (e.g. Ferrachat 
& Ricard 1998 ). Further work includes adapting the methodology 
to 3-D models. Addressing these challenges will be crucial for en- 
suring the robustness and practical utility of the methodology in 
real-w orld in versions. 

The key point to ensure the success of our approach lies in accu- 
rately defining the prior distribution. Unlike much less informative 
priors such as Tikhonov regularizations, our approach relies on a 
highl y informati ve prior to ef fecti vel y constrain the posterior distri- 
bution. Defining such a prior necessitates a profound understanding 
of the underlying geophysical model. For example, in our exper- 
iment, we model the underlying structures as marble cakes, akin 
to samples from the prior distribution. If the actual model deviates 
from this representation—that is if the prior does not align with 
the true model—any sample of the estimated posterior would still 
conform to the marble cake model. Hence, our method is doomed 
to produce models e xclusiv ely within the prior, making its choice 
extremely critical. In other words, even if the target image to be re- 
covered were the Mona Lisa painting, the code would still be trying 
to reconstruct a marble cake! In that case, we expect a poor level of 
data fit from the sampled models. 

Beyond these considerations of the domain spanned by the prior 
distribution, attention must be given to its shape within that domain. 
Through our GAN-based sampler, the prior is constructed from the 
distribution of images in the training set, assigning higher prob- 
abilities to models well-represented in the training data. Building 
an optimal GAN-based sampler requires a training set showcas- 
ing a substantial variability across all concei v able structures with 
a distribution that matches the expected distribution of the actual 
underlying structures. 

In the future, given the versatility of this approach, it may help to 
understand the processes at play in the Earth’s subsurface. Indeed, 
we believe it can provide a useful perspective in geophysical de- 
bates and contribute to, or reinforce, existing analyses combining 
geodynamics, seismology or other fields. This includes for example 
studies about dislocation versus diffusion creep in the lower mantle 
(McNamara et al. 2001 ), lower mantle dynamics (Lay et al. 1998 ; 
Garnero & McNamara 2008 ), deep slab hydration and interactions 
with the transition zone (Faccenda et al. 2009 ), partial melt in the 
upper mantle (Panet et al. 2024 ) or, as mentioned in the introduc- 
tion, other analyses about slabs, plumes, cratons or LLSVP (e.g. 
Garnero et al. 2016 ; Davaille & Romanowicz 2020 ). 

7  C O N C LU S I O N  

This paper presents a novel approach for downscaling tomographic 
images (i.e. recovering fine-scale geological structures that cannot 
be resolved by long period seismic waves). This is done by introduc- 
ing a learned parametrization of geophysical models that accounts 
for sharp chemical discontinuities. In a Bayesian framework, the 
posterior solution significantly relies on the definition of the prior 
distribution. Given the impracticality of explicitly defining such a 
prior distribution for geophysical models, we propose a GAN-based 
sampler to implicitly generate geophysical models under this prior. 

This method offers a solution to challenges that some inverse 
methods struggle to address. It provides a straightforward, compu- 
tationall y ef ficient, and low-dimensional parametrization for poten- 
tially complex models. Additionally, it offers a straightforward way 
to include a priori information about the models implicitly defined 
by a training set. 
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Figure 16. Top panel: marble cakes generated b y v arying parameters in the physical and latent space. Bottom panel: distances to the central marble cake 
D( S ( p 0 ) , S ( p 0 + α δp )) and D( G ( z 0 ) , G ( z 0 + α δz )) , where α varies from −1 to 1; the components amplitudes of δp and δz are equal to the standard deviations 
of the corresponding prior distributions. 
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We illustrate the potential of such a method on synthetic
ata generated from binary images of marble cakes mimick-
ng the oceanic lithosphere undergoing chaotic stirring in the

antle (All ègre & Turcotte 1986 ). We train a GAN to gener-
te such structures, thus learning a reparametrization of these
mages with a small number (30 in the presented results) of
atent variables. On the presented results, the structure of the
arget model is generally well recovered despite dealing with
ighly complex and fine-scale models, as well as poorly resolved
bservations. 

We hope that this work will lead to similar approaches with more
ealistic a priori models, in order to apply it on real data. This will
elp to reconcile geodynamics and seismology and will result in
ore accurate and efficient interpretations of geological structures

rom seismic data, significantly enhancing our understanding of
arth subsurface. 
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A P P E N D I X  A :  WA S S E R S T E I N  

G E N E R AT I V E  A DV E R S A R I A L  

N E T W  O R K  ( W  G A N )  

To train a GAN, the generator G and discriminator D are trained 
alternati vel y. Both trainings have to progress at the same speed, 
otherwise the slower-trained network will fail its training. Indeed, 
in this case, it would have reached an area where the gradient is too 
low because the dominating network won’t provide useful feedback 
(either the discriminator distinguishes too easily between real and 
fake, or the generator produces samples too hard to distinguish), pre- 
venting any training by gradient descent. This constraint can harden 
the training, or even make it impossible. One other problem is the 
so-called ‘mode collapse’ (Goodfellow et al. 2014 ): the generator 
ends up generating a small set of outputs, lacking of diversity. The 
mapping between the latent space and the pixels space is redundant 
and only done on a very restricted subset of the distribution p( m ) . 

One way to avoid those problems is to use a particular GAN: the 
Wassertein-GAN (WGAN). Arjovsky et al. ( 2017 ) proposes this 
type of GAN, by using the Wasserstein distance measure into the 
loss equation. The loss equation is 

L mi ni max = min 
G 

max 
D 

E m ∼p( m ) ( D( m )) − E z ∼p( z ) ( D ◦ G( z )) , (A1) 

that is the generator and the discriminator alternati vel y learn to 
maximize, respecti vel y, E z ∼p( z ) ( D ◦ G( z )) and E m ∼p( m ) ( D( m )) −
E z ∼p( z ) ( D ◦ G( z )) . This loss function is proved to improve train- 
ing stability and reduce mode-collapse (Arjovsky et al. 2017 ). In 
addition, we use a gradient penalty, that is we add a term on the loss 
that penalizes the gradient norm of the discriminator output with re- 
spect to its input images. This smoothly enforces the discriminator 
to be a 1-Lipschitz function, thus enhancing even more the stability 
and performance of the WGAN (Gulrajani et al. 2017 ). 

A P P E N D I X  B :  I M P L E M E N TAT I O N  

D E TA I L S  

To construct the generator G, we train a WGAN with gradient 
penalty (using coefficient λG P = 10 ). The network architecture is 
based on convolutional layers, inspired by LeCun et al. ( 1998 ), and 
is slightly adapted from the WGAN implementation available at gith 
ub.com/Zeleni9/pytorch-wgan.git . We use a latent space dimension 
of Z = 30 , as a compromise between a low dimension, for easier 
McMC sampling, and a high dimension for better representation 
of the training set. The generator produces output images with 
dimensions of 128 × 128 . The architecture details (layers, output 
sizes, stride values and padding) used for the discriminator and 
the generator are given in Tables A1 and A2 , respecti vel y. The 
GAN training process spanned approximately 130 epochs, with each 
epoch consisting of 304 batches of 64 images, for a total training 
set of 19 456 samples. During training, the generator is updated 
once per step, while the discriminator is updated five times, with 
each update using a different batch of data. The trainings of D
and G are done with Adam optimizer, with a learning rate value of 
λL R = 10 −4 , β1 = 0 . 5 and β2 = 0 . 999 . The ne gativ e slope of the
LeakyReLU in D is 0.2. This training regime allows the GAN to 
learn and refine its ability to generate realistic marble cake images. 

A P P E N D I X  C :  M c M C  C O N V E RG E N C E  

A S S E S S M E N T  

Although the McMC algorithm has a theoretical convergence, it is 
only asymptotic and not guaranteed for a finite number of samples. It 
is then necessary to assess the convergence. In our work, we verified 
each time the convergence by looking at the posterior value of 
sampled models along each chain after the burn-in period (the initial 
phase of the sampling where early samples are discarded to allow 

the chain to converge to its stationary distribution). For each chain, 
the curve oscillate around a stable value with no obvious trend. We 
show some of these curves in Fig. A1 . Another verification can be 
done by looking at the mean latent vector in the beginning of the 
sampling (first 1 / 3 ) compared to the ending (last 1 / 3 ). As Fig. A2 
shows, both mean vectors are similar. Finally, we also plotted, for 
each chain and for each latent dimension, the autocorrelation curve. 
Some of them, along with the mean of all of them, are shown in 
Fig. A3 . The autocorrelation curves are tight enough to show that 
most of the samples are not correlated between themselves. 

From these three verifications (posterior density evolutions, com- 
parison of the mean vector at the be ginning v ersus ending of the 
sampling, and autocorrelation curves), we are confident that the 
McMC converged. The figures of this appendix were computed for 
the principal experiment of Section 5.1 . 

A P P E N D I X  D :  C O M P L E M E N T  O N  T H E  

P O S T E R I O R  D I S T R I B U T I O N  

In Fig. 9 , the posterior distribution is only represented on the first 
four dimensions. The other 2-D marginals present similar bimodal 
structures. Although showing the complete plot is not possible for 
the sake of legibility, Fig. A5 presents all the 1-D marginals and 
Fig. A4 presents the covariance matrix of the 30 sampled latent 
variables. 
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Table A1. Structure of the discriminator with an input space of 128 × 128 × 1 . 

Discriminator D
Layers Output size Stride Padding 

Conv 4 × 4 + LeakyReLU 64 × 64 × 32 2 1 
Instance normalization 64 × 64 × 32 
Conv 4 × 4 + LeakyReLU 32 × 32 × 64 2 1 
Instance normalization 32 × 32 × 64 
Conv 4 × 4 + LeakyReLU 16 × 16 × 128 2 1 
Instance normalization 16 × 16 × 128 
Conv 4 × 4 + LeakyReLU 4 × 4 × 512 2 1 
Instance normalization 4 × 4 × 512 
Conv 4 × 4 1 × 1 × 1 1 0 

Table A2. Structure of the generator with an input space of 1 × 1 × 30 . 

Generator G
Layers Output Size Stride Padding 

ConvTranspose 4 × 4 + ReLU 4 × 4 × 2048 1 0 
Batch normalization 4 × 4 × 2048 
ConvTranspose 4 × 4 + ReLU 8 × 8 × 1024 2 1 
Batch normalization 8 × 8 × 1024 
ConvTranspose 4 × 4 + ReLU 16 × 16 × 512 2 1 
Batch normalization 16 × 16 × 512 
ConvTranspose 4 × 4 + ReLU 32 × 32 × 256 2 1 
Batch normalization 32 × 32 × 256 
ConvTranspose 4 × 4 + ReLU 64 × 64 × 128 2 1 
Batch normalization 64 × 64 × 128 
ConvTranspose 4 × 4 + tanh 128 × 128 × 1 2 1 

Figure A1. Evolution of the log-posterior of each chains in the principal experiment, after the burn-in period. The 16 chains are represented by groups of 4 for 
better legibility. The curves oscillates around the same values. 
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Figure A2. Comparison between the means (on all chains) of the latent vectors on each dimension, for the first 1 / 3 (blue) and last 1 / 3 (orange) samples, for 
the principal experiment. 

Figure A3. Autocorrelations curves of McMC sampling for the principal experiment. We represent the curves for 4 randomly chosen pairs of (latent dimension; 
chain), alongside with the mean curve on all dimensions and chains. 
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Figure A4. 1-D marginals of the posterior distribution sampled in the principal experiment shown in In Fig. 9 , for all 30 dimensions. The prior, a standard 
normal distribution, is plotted in orange for comparison. 

Figure A5. Covariance matrix of all the vectors sampled in the principal experiment (shown in Fig. 9 ). 
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article distributed under the terms of the Creative Commons Attribution License ( https://cr eativecommons.or g/licenses/by/4.0/ ), which 
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