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Bounds on heat transfer have been the subject of previous studies concerning convection
in the Boussinesq approximation: in the Rayleigh-Bénard configuration, the first result
obtained by Howard (1963) states that the dimensioless heat flux Nu carried out by
convection is such that Nu < (3/64 Ra)1/2 for large values of the Rayleigh number Ra,
independently of the Prandtl number Pr. This is still the best known upper bound, only
with the prefactor improved to Nu−1 < 0.02634 Ra1/2 by Plasting and Kerswell (2003).
In the present paper, this result is extended to compressible convection. An upper bound
is obtained for the anelastic liquid approximation, which is similar to an anelastic model
used in astrophysics based on a turbulent diffusivity for entropy. The anelastic bound is
still scaling as Ra1/2, independently of Pr, but depends on the dissipation number D and
on the equation of state. For monatomic gases and large Rayleigh numbers, the bound
is Nu < 25.8Ra
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1. Introduction

An important landmark of fluid mechanics has been to show that rigorous upper
bounds could be obtained from the governing equations on quantities such as energy
dissipation (or pressure gradient) in a pipe with a given flow rate, or heat flux between
walls maintained at different temperatures (Howard 1963). Concerning Rayleigh-Bénard
convection, the method of Howard (1963) consisted in identifying two integral constraints
based on energy conservation and on the limit of an entropy balance in the Boussinesq
approximation. In the large space of all possible temperature fields, not necessarily sat-
isfying the pointwise governing equations, but satisfying the boundary conditions and
the integral constraints, an upper bound on the heat flux was determined. A second
method – the so-called ’background’ method – was developed in the 90s by Doering and
Constantin (1996) and is based on a decomposition of the temperature field into an ar-
bitrary vertical profile (the background profile) satisfying the boundary conditions and
an homogeneous 3D, time-dependent field. A spectral condition is said to hold when the
’dissipation’ contained in the background profile (in fact the L2 norm of its derivative) is
larger than the total possible dissipation of the convective flow. This spectral condition
has been shown to be related to the same eigenvalue problem as that involved in the en-
ergy stability (Joseph 1976) of the background profile. The problem is finally turned into
finding the background profile with the minimum possible dissipation. Kerswell (1999)
proved that both methods were dual approaches to the same problem of optimization. A
third method was obtained recently by Seis (2015), with a more intuitive approach. The
average heat flux must be constant over height, but cannot be carried by conduction after
some distance to the bottom wall and convection must take over. This implies that suf-
ficiently strong vertical velocity components exist there, which is necessarily associated
with deformation (hence viscous dissipation) as those vertical components are zero at the
bottom. However the total viscous dissipation is related to the heat flux and imposes a
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limit to the convective flux. That constraint leads to the same scaling as that of Howard.
Finally, Chernyshenko (2022) makes the connection between what he calls the auxiliary
functional method(Howard’s method can be considered as a very particular instance of
this more general method), the background method (by Doering and Constantin) and
the direct method (a formulation of Seis’s method).

Upper bounds of the heat flux have not been derived for compressible convection un-
til now. Here, in section 2, we consider a simple model of compressible convection, the
anelastic liquid approximation (Anufriev et al. 2005). As an anelastic model, acoustic
modes have been filtered out. Moreover, entropy is supposed to depend on the supera-
diabatic temperature only, so that pressure is not a relevant thermodynamic variable.
In astrophysics, an anelastic model is used too (Lantz and Fan 1999) with nearly the
same equations as the anelastic liquid model, although the path to get there has taken
a different direction. From a general anelastic model, a subgrid model for turbulence is
used to change the conduction term (gradient of temperature) into a gradient of entropy.
Again, this anelastic model depends only on a single thermodynamic variable, entropy.
We also use a simple equation of state, that of the ideal gases. Finally, we consider a
simple geometry, that of a plane layer, in a uniform gravity field perpendicular to the
plane layer. The horizontal extent of the layer can be infinite or finite. The vertical depth
of the layer is such that compressible effects range from negligible (Boussinesq limit) to
extreme values (adiabatic temperature profile reaching zero kelvin at the top).

The maximum principle for parabolic equations plays an important role in our deriva-
tion of an upper bound. This also plays a crucial role in the work by Seis (2015). In the
Boussinesq model, temperature is bounded below by the cold temperature imposed at the
top and bounded above by the hot temperature imposed at the bottom. In a compressible
model, adiabatic compression and decompression as well as viscous heating imply that
these limits not longer hold for temperature. Instead, we show in section 3 that entropy
has a minimum value imposed at the top boundary but no obvious maximum value. That
property will be used several times in the paper.

In section 4 we derive an equation for the logarithm of entropy (up to a constant), a
quantity that we call log-entropy. We show that, similarly to the entropy flux, the flux
of that log-entropy increases with height, or decreases only slightly. Otherwise stated,
the sources of log-entropy are either positive (possibly unbounded) or slightly negative
(bounded from below). With that equation, we can bound the integral of the gradients
of the log-entropy in the layer. The derivation follows then the same principle as that of
Seis (2015). Two cases have to be discussed, a case of small Nusselt number and a case
of large Nusselt number that is expected to hold when the Rayleigh number is large.
In the latter case, a lower bound of vertical velocities (rms) is found to be necessary
to carry the flux of log-entropy at some finite distance to the lower boundary, leading
to a lower bound of viscous dissipation required to generate these velocity components.
Coming back to the entropy equation (not log-entropy) in section 5, we obtain an upper
bound for dissipation. As shown in section 6, the condition that the lower bound is less
than the upper bound of dissipation leads to an upper bound for the heat flux in terms
of the governing parameters. Formally, the absolute upper bound is the maximum of the
small Nusselt number case and the upper bound obtained under the assumption of a
larger Nusselt. As discussed in section 7, the case of large Nusselt numbers should apply
to most – if not all – convective flows. In appendices A and B, we discuss the choice of
constants and optimization of the bound. Appendix C is devoted to the application of
our method to an anelastic model with turbulent thermal diffusivity.
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2. Governing equations and dimensionless numbers

The fluid (a monatomic ideal gas) is contained in a horizontal layer, between altitudes
0 and d, in a uniform gravity field g. A superadiabatic temperature difference ∆Tsa is im-
posed in addition to the adiabatic gradient between the bottom and top boundaries. The
governing equations in the anelastic liquid approximation are written in a dimensionless
form as follows (see Anufriev et al. 2005)

∇ · (ρav) = 0, (2.1)

ρa
Pr

Dv

Dt
= −ρa∇

(
P

ρa

)
+Raρasez +∇ · τ, (2.2)

ρaTa
Ds

Dt
=

D
Ra

ε̇ : τ +∇2T, (2.3)

where ez is the vertical unit vector (ex and ey are the horizontal unit vectors) and where
the dimensionless governing parameters are the Prandtl Pr, Rayleigh Ra and dissipation
D numbers

Pr =
ηcp
k

, Ra =
ρ20cpg∆Tsad

3

T0ηk
, D =

gd

cpT0
, (2.4)

where the viscosity η, the thermal conductivity k and the heat capacity cp of the gas are
uniform and constant. The dimensionless tensors of deformation rate and stress, in the
Stokes approximation of zero bulk viscosity (proven correct for monatomic ideal gases
Emanuel 1998), are the following

ε̇ij =
1

2
(∂ivj + ∂jvi) , (2.5)

τij = 2ε̇ij −
2

3
(∂kvk)δij . (2.6)

The average temperature T0 and average density ρ0 of the adiabatic profiles are chosen to
express dimensionless temperature and density adiabatic profiles (hydrostatic, isentropic)
as follows (Curbelo et al. 2019)

Ta(z) = 1−D
(
z − 1

2

)
, (2.7)

ρa(z) =
D/
(
1− γ−1

)
(1 +D/2)

γ
γ−1 − (1−D/2)

γ
γ−1

[Ta(z)]
1

γ−1 , (2.8)

where γ = cp/cv is the ratio of heat capacities (for example γ = 5/3 for monatomic gases).
The dimensionless gradient of adiabatic temperature is −Dez, uniform and vertical.
Superadiabatic temperature T and entropy s are scaled using ∆Tsa and cp∆Tsa/T0,

respectively. Space coordinates (x, y, z), time t, velocity v, rate of deformation tensor
ε̇, stress tensor τ and pressure P are made dimensionless using d, ρ0cpd

2/k, k/(ρ0cpd),
k/(ρ0cpd

2), kη/(ρ0cpd
2) and kη/(ρ0cpd

2) respectively.
In the anelastic liquid model, entropy s – or rather the superadiabatic entropy in

addition to a uniform base value – is assumed to depend on superadiabatic temperature
T only

s =
T

Ta
. (2.9)

A consequence is that pressure P has no effect on thermodynamic variables. In this
model, pressure P is only a Lagrange multiplier associated with the conservation of mass
(2.1).
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The boundary conditions are given by constant values of temperature or entropy on
bottom and top boundaries. In terms of velocity, we impose that the normal component
vanishes on both horizontal boundaries and that no work is done by the boundaries. Both
non-slip (zero tangential velocity components) or no-stress in the horizontal direction are
acceptable.

z = 0 : vz = 0 and (vx = vy = 0 or ∂zvx = ∂zvy = 0), (2.10)

z = 0 : T =
1

2
or s =

1

2 +D , since Ta = 1 +
D
2
, (2.11)

z = 1 : vz = 0 and (vx = vy = 0 or ∂zvx = ∂zvy = 0), (2.12)

z = 1 : T = −1

2
or s = − 1

2−D , since Ta = 1− D
2
. (2.13)

In astrophysics, the Fourier law for thermal conduction is replaced by a subgrid model
of turbulent diffusion for entropy. This has the consequence that the term∇2T in equation
(2.3) is changed for ∇ · (c∇s), where the coefficient c accounts for turbulence at small
scale. In this paper, we will stick to the usual conduction term ∇2T , but the treatment
of the ’turbulent diffusivity’ will be discussed in appendix C.
The parameter D is the one associated with compressibility, as better seen in the rela-

tionshipD = αgd/cp = (1−γ−1)ρgd/KT , proportional to the ratio of hydrostatic pressure
to incompressibility KT . Its range, 0 < D < 2, covers all cases from the Boussinesq limit
(D → 0) to the most extreme case of compressibility (D → 2) where a temperature of
0 K and a vanishing density are reached at the top of the layer, see equations (2.7) and
(2.8).
We define the Nusselt number as Nu = −dzT (z = 0) the average superadiabatic heat

flux injected at the bottom and extracted at the top (an overline X on any quantity
X denotes its horizontal and time average). The additional heat flux conducted along
the adiabat does not affect convection and is here uniform and equal to DT0/∆Tsa

in the same dimensionless scale as the superadiabatic heat flux. The proof that the
average heat flux conducted at the top is equal to the average heat flux conducted
at the bottom can be found in several papers, including Curbelo et al. (2019) where
this is also tested in numerical simulations. This reflects the consistency of the set of
the governing equations. The left-hand side of (2.3) can be expanded as ρaTaDs/Dt =
ρaD(Tas)/Dt−ρa(dTa/dz)vzs and the last term of adiabatic heating (with the expression
for the adiabatic gradient dTa/dz = −D) can be seen to balance the average viscous
dissipation because it corresponds to the same balance as in the dot product of velocity
with the momentum equation (2.2), between the power of buoyancy forces and viscous
dissipation.

3. A minimum principle

In the anelastic liquid approximation (2.9), equation (2.3) can be re-written using
entropy s alone

ρaTa
Ds

Dt
=

D
Ra

ε̇ : τ + Ta∇2s+ 2∇Ta ·∇s, (3.1)

because ∇2Ta = 0, see equation (2.7), for our choice of an ideal gas equation of state
and uniform gravity. The entropy equation has a suitable form for a maximum principle
(Picone 1929; Nirenberg 1953). The second order operator is elliptic and even uniformly
elliptic as the coefficient Ta is above a positive constant in the whole domain, for any
choice of the dissipation parameter 0 < D < 2. Furthermore, the term of viscous dissi-
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pation (D/Ra) ε̇ : τ is positive (or zero) everywhere and at all times. It follows from the
maximum principle that s cannot take a value smaller than a value it takes at a boundary
or at an initial time. As we are interested in statistically stationary solutions, we argue
either that the memory of the initial time is lost (the argument developed by Foias et al.
(1987) can be applied here to prove that initial values smaller than that imposed at the
boundaries will eventually be erased by diffusion), or that the initial condition is chosen
such that it does not contain values of the entropy s lower than those at the boundaries.
We are left with the conclusion that entropy must be larger, everywhere and at all times,
than the value assigned at the top boundary

s ⩾ − 1

2−D . (3.2)

4. A log-entropy equation

Let us define a constant s0 = 1/(2−D)+8/(4−D2), such that s+s0 is always positive
from the maximum principle and satisfies

s+ s0 ⩾
8

4−D2
. (4.1)

This choice of s0 will simplify subsequent calculations but we will show in appendix
A that an optimization of this choice only leads to a mild improvement. Let us divide
equation (3.1) by Ta and by s + s0, two positive terms. After re-arranging some terms,
we obtain

ρa
DL
Dt

=
D
Ra

ε̇ : τ

Ta(s+ s0)
+ |∇L|2 + 2dz(lnTa)∂zL+∇2L, (4.2)

where L = ln(s + s0). With our choice of s0, the value of L on the bottom and top
boundaries are L(z = 0) = ln(12/(4−D2)) and L(z = 1) = ln(8/(4−D2)). Averaging over
horizontal directions and in time, and taking into account (2.1), we obtain an equation
for the vertical flux of L

dzΦL =
D

Ra Ta

ε̇ : τ

s+ s0
+ |∇L|2 + 2dz(lnTa)dzL, (4.3)

where ΦL is defined as the average vertical flux of L, at any height z, as follows

ΦL(z) = −dzL+ ρavzL. (4.4)

We shall now average equation (4.2) over the whole layer and in time. This is equivalent
to integrating (4.3) between z = 0 and z = 1. Our objective here is to obtain an integral

bound on |∇L|2. Let us first consider the integral of the last term in (4.3)∫ 1

0

2dz(lnTa)dzLdz = −2D
∫ 1

0

dzL
Ta

dz,

= −2D
([ L

Ta

]1
0

−
∫ 1

0

D L
T 2
a

dz

)
. (4.5)

The first term is known from the boundary conditions (2.11,2.13). We use the minimum
principle (4.1), implying L ⩾ ln

(
8/(4−D2)

)
, to bound the last term in (4.5) so that we

have ∫ 1

0

2dz(lnTa)dzLdz ⩾
4D

2 +D ln

(
3

2

)
. (4.6)
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The term dz(ρavzL) has no integral contribution because vz vanishes at the bottom
and top, we simply have to evaluate the contribution of the diffusion term −dzL in the
integral of (4.3), given that ∂zL = ∂z(T/Ta)/(s+ s0),

−
[
dzL

]1
0
=

Nu

12
(2 + 5D) +

D
4

2 +D
2−D +

D
6

2−D
2 +D , (4.7)

Since the term involving viscous dissipation is positive in (4.3), combining (4.6) and
(4.7) leads to the following bound〈

|∇L|2
〉
⩽

Nu

12
(2 + 5D) +

D
4

2 +D
2−D +

D
6

2−D
2 +D − 4D

2 +D ln

(
3

2

)
, (4.8)

where the bracket denotes time and space average (horizontal and vertical), so that

⟨X⟩ =
∫ 1

0
Xdz for any variable X. The sum of the last two terms is less than zero for all

values of D, hence the sum of the last three terms is less than D/(2−D) so that we have〈
|∇L|2

〉
⩽

Nu

12
(2 + 5D) +

D
2−D . (4.9)

This bound is linear in the Nusselt number with a coefficient ranging from 1/6 at small
D to 1 when D reaches its maximum value 2. In addition, the other term depends on D
only and diverges toward infinity when D approaches 2.
At z = 0, the diffusive part of the log-entropy flux, −dzL, carries the whole flux

ΦL(0) = −dzL(0) =
2−D

6

(
Nu− D

2 +D

)
. (4.10)

Let us first consider the large Nusselt number case, precisely such that

Nu >
D

2 +D + 24
ln
(
3
2

)
2−D . (4.11)

The flux ΦL(0) is therefore strictly positive and this ensures that L (see (4.10)) is locally
decreasing at z = 0. If it kept decreasing at the same rate as in (4.10), then the flux
ΦL would still be carried by diffusion at higher values of z. However, L cannot decrease
below the minimum value ln

(
8/(4−D2)

)
, limiting the extension of the diffusive region,

and indicating that the convective part of the flux (4.4) must take over. We define the
height δ as the smallest value of z > 0 where the diffusive component, −dzL, becomes
less than half of ΦL(0)

−dzL(δ) ⩽
ΦL(0)

2
and − dzL(z) >

ΦL(0)

2
for 0 ⩽ z < δ. (4.12)

It is shown in appendix B that this choice of half value is better than any other fraction
of the bottom flux. The value of L at z = δ is

L(δ) = L(0) +
∫ δ

0

dzL dz,

< ln

(
12

4−D2

)
− δ

2
ΦL(0). (4.13)

Let us define δ0 as

δ0 =
12 ln

(
3
2

)
(2−D)

(
Nu− D

2+D

) , (4.14)

which is ensured to be less than 1/2 from (4.11). We will prove by contradiction that δ
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exists and is less than δ0. Suppose that this is not the case, then from (4.13) and using
(4.10), we would have L(δ0) < ln

(
8/(4−D2)

)
which would be less than the minimum

value for L. This is impossible, hence there exists a value of δ satisfying (4.12).
The definition of δ implies that L is decreasing everywhere in the range 0 ⩽ z ⩽ δ. This

ensures the positivity of the last term of (4.3) in that interval, so that ΦL(δ) ⩾ ΦL(0).
Because the diffusive part has been divided by a factor two, this means that the convective
part of the flux of the log-entropy, at z = δ, must be at least half the boundary flux (4.10)

ρavzL(δ) ⩾
2−D
12

(
Nu− D

2 +D

)
. (4.15)

Using continuity (2.1) which implies that the horizontal average of vz is zero at all
heights, the property ρa ⩽ ρa0 and a Cauchy-Schwarz inequality, the convective flux can
be bounded as follows

ρavzL(δ) ⩽ ρa0vz(L − L0) ⩽ ρa0

√
v2z

√
(L − L0)

2
, (4.16)

where ρa0 and L0 are the density of the adiabatic profile and the value of L at z = 0,
while vz and L are evaluated at z = δ. Now, we use the gradients of L to bound L(δ)

L(δ) = L0 +

∫ δ

0

∂zLdz. (4.17)

Using a Cauchy-Schwarz inequality, we have

(L(δ)− L0)
2 ⩽ δ

∫ δ

0

(∂zL)2 dz. (4.18)

Taking time and horizontal average, extending the last integral over the whole volume
and including all gradient components, we obtain

(L(δ)− L0)
2 ⩽ δ

〈
|∇L|2

〉
⩽ δ0

〈
|∇L|2

〉
, (4.19)

where
〈
|∇L|2

〉
is itself bounded from (4.9). Following the same steps, we can bound vz,

at any height z, as

v2z(z) ⩽ z

∫ z

0

(∂zvz)2dζ. (4.20)

Now, we need to relate (∂zvz)2 to the mean viscous dissipation. From the general expres-
sion of viscous dissipation with zero bulk viscosity (Landau and Lifshitz 1966)

ε̇ : τ =
1

2

3∑
i=1

3∑
j=1

[
∂ivj + ∂jvi −

2

3
(∂kvk)δij

]2
, (4.21)

retaining only the three ’diagonal’ terms i = j among the nine terms, finally dropping
2(∂xvx)

2 and 2(∂yvy)
2, we derive

ε̇ : τ ⩾ 2(∂zvz)
2 − 2

3
(∂kvk)

2. (4.22)

Using the anelastic equation of continuity (2.1), this leads to an upper bound of (∂zvz)
2

(∂zvz)
2 ⩽

1

2
ε̇ : τ +

1

3

D2v2z
(γ − 1)2T 2

a

, (4.23)
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which is substituted in (4.20) to obtain

v2z(z) ⩽
z

2
⟨ε̇ : τ⟩+ D2

3(γ − 1)2
z

∫ z

0

v2z
T 2
a

dζ. (4.24)

We now use this equation for z ⩽ δ ⩽ δ0, given that δ0 ⩽ 1/2 from (4.11) so that 1/T 2
a

in the integral above is smaller than 1, and bounding the same integral by extending its
range from ζ = 0 to ζ = δ for all z. Integrating (4.24) from 0 to δ leads to the bound∫ δ

0

v2z(z)dz ⩽
δ2

4
⟨ε̇ : τ⟩+ D2

3(γ − 1)2
δ2

2

∫ δ

0

v2z(z)dz, (4.25)

which is used to express
∫ δ

0
v2z(z)dz in terms of ⟨ε̇ : τ⟩ so that (4.24) can finally be written

at z = δ

v2z(δ) ⩽
δ0
2
⟨ε̇ : τ⟩ 1

1− D2δ20
6(γ−1)2

, (4.26)

where the denominator of the last fraction can be checked to be positive when δ0 ⩽ 1/2
which has been shown to follow from (4.11) and the definition of δ0 (4.14).

With (4.9), (4.14), (4.16), (4.19), (4.26), we can essentially write (4.15) as a lower
bound for the viscous dissipation

⟨ε̇ : τ⟩ ⩾ 2Nu3 (2−D)4

123
(
ln 3

2

)2
ρ2a0(2 + 5D)

[
1− D

Nu (2+D)

]4 [
1− 24(ln 3

2 )
2D2

(2−D)2(Nu− D
2+D )

2
(γ−1)2

]
1 + 12D

Nu(2−D)(2+5D)

. (4.27)

This bound is valid as long as the large Nusselt number condition (4.11) is valid. For
very large Nusselt numbers (more precisely (2−D)Nu ≫ 1), this lower bound becomes

⟨ε̇ : τ⟩ ⩾ 2Nu3 (2−D)4

123
(
ln 3

2

)2
ρ2a0(2 + 5D)

. (4.28)

Finally, we come back to the condition imposed on the Nusselt number (4.11) and
consider the alternative case of small Nusselt numbers

Nu ⩽
D

2 +D + 24
ln
(
3
2

)
2−D . (4.29)

This expression is itself an upper bound for the Nusselt number. Whenever another upper
bound obtained under assumption (4.11) gets lower than (4.29), it must be replaced by
(4.29).

5. Upper bound on viscous dissipation for a given heat flux

We have thus obtained (4.27) a lower bound of the viscous dissipation ⟨ε̇ : τ⟩ for a
given heat flux Nu. Now, considering the classical entropy budget, we are going to obtain
an upper bound for ⟨ε̇ : τ⟩. Let us divide the governing equation (2.3) by Ta, rearrange
the diffusion term, and obtain the usual anelastic entropy equation

ρa
Ds

Dt
=

D
Ra

ε̇ : τ

Ta
+

∇T ·∇Ta

T 2
a

+∇ ·
(
∇T

Ta

)
, (5.1)
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The time and space average of the second term on the right-hand side can be evaluated
as follows 〈

∇T ·∇Ta

T 2
a

〉
= −

∫ 1

0

D
T 2
a

dzTdz =

[
− D
T 2
a

T

]1
0

+

∫ 1

0

dz

( D
T 2
a

)
Tdz

=
4D(4 +D2)

(4−D2)2
+ 2D2

∫ 1

0

1

T 2
a

T

Ta
dz. (5.2)

Once again, the maximum principle applying to the entropy variable s = T/Ta is used
to bound the second term.〈

∇T ·∇Ta

T 2
a

〉
⩾

4D(4 +D2)

(4−D2)2
− 2D2

2−D

∫ 1

0

1

T 2
a

dz

⩾
4D
(
4− 4D −D2

)
(4−D2)2

. (5.3)

With that bound (5.3), integrating equation (5.1) in space and time leads to an upper
bound

D
Ra

〈
ε̇ : τ

Ta

〉
⩽

4D
4−D2

Nu− 4D
(
4− 4D −D2

)
(4−D2)2

. (5.4)

As Ta ⩽ 1 +D/2, this becomes an upper bound on viscous dissipation

⟨ε̇ : τ⟩ ⩽ 2Ra

2−DNu

[
1− 4− 4D −D2

(4−D2)Nu

]
. (5.5)

In the limit of large Nusselt numbers (more precisely (2−D)Nu ≫ 1), this upper bound
becomes

⟨ε̇ : τ⟩ ⩽ 2Ra

2−DNu. (5.6)

6. Obtaining an upper bound on the heat flux

Combining the upper bound (5.5) and the lower bound (4.27) leads to the following
inequality

Ra ⩾
Nu2 (2−D)5

123
(
ln 3

2

)2
ρ2a0(2 + 5D)

[
1− D

Nu (2+D)

]4 [
1− 24(ln 3

2 )
2D2

(2−D)2(Nu− D
2+D )

2
(γ−1)2

]
[
1 + 12D

Nu(2−D)(2+5D)

] [
1− 4−4D−D2

(4−D2)Nu

] . (6.1)

This bound is valid when the condition (4.11) is valid. Rigorously, expression (6.1) pro-
vides an implicit Nusselt bound in terms of Ra and D and we have thus proven that the
Nusselt number is bounded by the maximum of this implicit bound and the right-hand
side of (4.11). With the condition (4.11), we can bound the fraction of brackets in the
end of (6.1) to be less than 21/2(2+ 5D)−1/2 for all acceptable values of Nu. Moreover it
can be checked that ρa0 ⩾ 1 + 3

4D, so that (6.1) leads to the following bound of Nusselt

Nu ⩽
12

3
2

2
1
4

(
ln

3

2

)(
1 +

3

4
D
)
(2 + 5D)

3
4

Ra
1
2

(2−D)
5
2

, (6.2)

also valid when (4.11) applies.
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1Figure 1. Prefactor of Ra1/2 in the Nusselt bound, in the limit of large values of (2−D)Nu for
a perfect gas with γ = 5/3, computed from (6.4). The simpler expression computed from (6.5)
is also shown as a function of D. The thin line shows the bound (A12) when s0 is optimized
(see appendix A).

In the limit (2−D)Nu ≫ 1, coming back to (6.1), we just have

Ra ⩾
Nu2 (2−D)5

123
(
ln 3

2

)2
ρ2a0(2 + 5D)

, (6.3)

which may be re-written

Nu ⩽ 123/2
(
ln

3

2

)
ρa0(2 + 5D)

1
2

Ra
1
2

(2−D)
5
2

. (6.4)

When D varies from 0 to 2, the value of ρa0 varies from 1 to 2.5 (perfect monatomic gas)
and 2 + 5D is less than 12, so that we have a simpler bound of the form

Nu < 25.8
Ra

1
2(

1− D
2

) 5
2

. (6.5)

We plot the Ra1/2 prefactors of these Nusselt laws in Fig. 1, using a logarithmic scale
since the singularity at D = 2 leads to large values of Nu. Keep in mind that (6.2) is a
rigorous bound, valid for all Nusselt numbers satisfying (4.11), while (6.4) and (6.5) are
valid only in the limit of very large Nusselt numbers.

7. Conclusions

We have obtained an upper bound for the heat transfer in a compressible model of
convection known as the anelastic liquid approximation. The bound is expressed in an im-
plicit algebraic form (6.1), valid under the condition (4.11) of a sufficiently large Nusselt
number. An explicit, less stringent, bound (6.2) is also obtained, under the same condi-
tion. The bound (6.1) takes the simpler expression (6.4) in the limit of infinite Nusselt
numbers. This simpler expression can itself be bounded by Nu < 25.8Ra1/2/(1−D/2)5/2.
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Figure 2. Isovalues of the bound of the Nusselt number (indicated by color level and a few
isolines), for small Nusselt numbers (4.29) in zone A and large Nusselt numbers (6.2) in zone B,
separated by the boundary (7.1).

We had to treat separately the case of small Nusselt numbers (4.29) and that of large
Nusselt numbers (4.11). However, it turns out that the case of small Nusselt numbers is
most likely irrelevant. Using the explicit bound (6.2), we can derive the condition in the
(D, Ra) space when it is equal to the small Nusselt upper bound (4.29)

Ra
1
2 =

D(2−D)
5
2

2+D + 24
(
ln 3

2

)
(2−D)

3
2

12
3
2

2
1
4

(
ln 3

2

) (
1 + 3

4D
)
(2 + 5D)

3
4

. (7.1)

This limit corresponds to the thick full line in Fig. 2, with a lower region A where the
small Nusselt number bound (4.29) applies and an upper region B where the large Nusselt
number bound (6.2) is valid. The maximum value of the Rayleigh number along the limit
between the small and large Nusselt number zones (see Fig. 2) is equal to 4/3 ≃ 1.333
when D = 0. This value is well below the linear stability limit at D = 0 and also for any
value of D, as shown by Alboussière and Ricard (2017). At D = 0, the results of non-
linear stability by Joseph (1976) ensure that no subcritical flow can develop below the
linear stability threshold Ra = 27π4/4, however we do not have such a result for D ≠ 0.
We can only remark that it is highly unlikely that a convective flow can be sustained
below the limit (7.1) in zone A, so that the actual Nusselt number is most probably equal
to 1 in zone A.
In order to obtain the large Nusselt number bound, we have introduced an unusual

quantity, the logarithm of entropy (shifted with a constant so that it is positive every-
where), and have shown that it obeys an equation similar to that of entropy. Its flux
has a conduction term and a convective term and its sources are positive (or at least
bounded from below). The difference with entropy is that it is possible to derive an L2

upper bound for the gradients of this quantity while we could not do so for the gradients
of entropy.
Importantly, obtaining a bound relies heavily on the existence of a minimum principle

for entropy. Although entropy is bounded from below only, this limit enables us to bound
the diffusive part of the flux close to the hot boundary and also to bound the sources
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of entropy (or its logarithm) from below. For this reason, it will be difficult to obtain
an upper bound for the general anelastic model, or for the complete set of compressible
equations as soon as entropy is also a function of pressure, as we do not know the value of
pressure at that boundary. We may impose an average pressure, but pressure fluctuations
are not known a priori. Hence we do not know what is the minimum value of the entropy
on the boundary.
Chernyshenko (2022) has shown how different existing approaches to obtaining bounds

on global quantities can be derived from each other. Here, we have used the ’direct
method’ and we can foresee clearly that our result can be cast into his ’auxiliary func-
tional’ method. Concerning the ’background profile’ method, this is less straightforward,
because the associated functionals will not be quadratic in the unknown fields (velocity
and entropy), nor even in our modified variables (velocity and log-entropy). So, even if
we can write the problem in terms of a background profile (far from obvious, according
to Chernyshenko 2022), this will not provide results simply by solving linear eigenvalue
problems. So it seems difficult to imagine that the background profile method will help
very much in improving our bound. But, at this stage, this is just the expression of our
feelings and should not be taken as definite statements.
There is a degree of freedom in the choice of the constant s0 added to entropy in order

to make it strictly positive. We have chosen it so that the minimum value of s + s0 is
a/(4 − D2) where a is a constant equal to 8, see equation (4.1). That choice affects the
final upper bound of Nusselt number and we can choose a(D), for each value of D, to
minimize the upper bound. This is done explicitly in appendix A and the optimal bound
is plotted in Fig. 1, from equation (A 12) for the optimal value a(D). Although our choice
a = 8 is not exactly the optimal choice, it is very close to the optimal bound. One cannot
improve the final upper bound of Nusselt number by more than 10 % with another choice
for 0.1 < D < 2, while a better choice could lower the upper bound by a factor 1.4 near
D = 0. The constant a = 8 has the advantage of making the algebra simpler.

There is another degree of freedom concerning the fraction of the conduction term
needed to define the thickness δ0. We have decided to consider when 1/2 of the flux must
be carried by convection, but we could have taken any fraction between 0 and 1. This is
investigated in appendix B. Actually, this choice of 1/2 leads to the best final bound in
our case. In the Boussinesq case, Seis (2015) found that a fraction 1/3 was the optimum,
but both the governing equations and the nature of the flux are different (heat flux versus
flux of log-entropy).
The bound (6.1) and its approximations at large Nusselt numbers (6.4) or (6.5) are not

expected to be very tight. In the limit D → 0, where the anelastic model should converge
toward the Boussinesq model, we can readily see that it is less tight than the original
bound by Howard by a factor nearly 20, while the bound (A 12) obtained in appendix A
for the optimal value amin is still a factor 14 above (see Fig. 1). Concerning large values
of D, our bound is made very large owing to the divergent factor (2−D)−5/2. We think
this is due to our inability to track the log-entropy flux near the cold boundary and, more
fundamentally, this originates from the lack of an upper bound for entropy (we only have
a lower bound). However, such a trend is not observed in numerical calculations, on the
contrary an increase of the dissipation number seems to lead to a decrease of the heat
flux (Curbelo et al. 2019).
In appendix C, we consider a model of turbulent diffusivity, rather than thermal con-

duction, with the gradient of entropy replacing the gradient of temperature. The analysis
is pretty similar, except there is a condition on the vertical profile of the diffusivity (or
conductivity) which must be verified otherwise a bound on the Nusselt number cannot
be obtained rigorously. When the small-scale heat flux is modelled as −c∇s that condi-
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tion is dz(c/T
2
a ) > 0, and when the Fourier law of conduction is considered −k∇T , the

condition is dz(k/Ta) > 0. For instance the original model of uniform diffusivity from
Lantz and Fan (1999) does not verify this condition, hence we cannot guarantee an upper
bound for the Nusselt number. On the contrary the model of uniform conductivity of
Mizerski and Tobias (2011) (or that of uniform conductivity for the Fourier law) does
verify the condition and our bound is proven.
Among the possible extensions of this work to other models, it would be interesting

to consider fluids of infinite Prandtl number. In that case and in the Boussinesq model,
tight upper bounds on the heat flow have been obtained (Doering et al. 2006). Also in
the Boussinesq limit and when Coriolis forces are taken into account, upper bounds have
been derived (Tilgner 2022a,b). Extending these results to a compressible model of con-
vection would be relevant to planetary convection. For that purpose, we need to consider
different models of equation of state for condensed matter, idealized (Alboussière et al.
2022) or more realistic (Ricard et al. 2022; Ricard and Alboussière 2023) concerning
compressible convection in planetary interiors.

Appendix A. On the choice of the entropy offset s0
In section 4, we have chosen to add the constant s0 to entropy

s0 =
1

2−D +
8

4−D2
. (A 1)

The choice of the first part 1/(2 − D) is obvious as it ensures that s + s0 is positive
everywhere and always, by virtue of the minimum principle. The additional positive
term 8/(4−D2) is arbitrary and we investigate in this appendix whether another choice
could improve the bound on the Nusselt number. To this end, let us consider a constant
s0 of the form

s0 =
1

2−D +
a

4−D2
, (A 2)

where a is a strictly positive real number, which we shall make a function of D when
needed. Equation (4.6) now becomes∫ 1

0

2dz(lnTa)dzLdz ⩾
4D

2 +D ln

(
4 + a

a

)
. (A 3)

Equation (4.7) becomes

−
[
dzL

]1
0
= 2Nu

[
2 +D
a

− 2−D
4 + a

]
+ 2D

[
2 +D

(2−D)a
+

2−D
(2 +D)(4 + a)

]
. (A 4)

The corresponding bound for the square of gradients of L obtained in (4.8) now becomes〈
|∇L|2

〉
⩽ 2Nu

[
2 +D
a

− 2−D
4 + a

]
+ 2D

[
2 +D

(2−D)a
+

2−D
(2 +D)(4 + a)

]
− 4D

2 +D ln

(
4 + a

a

)
, (A 5)

and the corresponding equation to (4.9) becomes〈
|∇L|2

〉
⩽ 2Nu

[
2 +D
a

− 2−D
4 + a

]
+

8D
(2−D)a

. (A 6)
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1Figure 3. Value amin such that the prefactor of the Nusselt bound (A 12) is minimal (left).
Reduction of the prefactor of Nusselt’s bound by taking the value amin compared to a = 8
(right).

Let us now consider the flux of L at the bottom

ΦL(0) = −dzL(0) =
2(2−D)

4 + a

(
Nu− D

2 +D

)
. (A 7)

This provides a maximal value of L at z = δ

L(δ) ⩽ ln

(
a+ 4

4−D2

)
− δ

2
ΦL(0). (A 8)

In order to avoid values below the minimum entropy, δ must be less than δ0, with ex-
pression (4.14) changed for

δ0 =
4 + a

(2−D)
(
Nu− D

2+D

) ln

(
a+ 4

a

)
. (A 9)

At z = δ the convective flux must be at least half the flux of L at z = 0, so equation
(4.15) becomes

ρavzL(δ) ⩾
2−D
4 + a

(
Nu− D

2 +D

)
. (A 10)

Using equations (4.16), (4.19), (4.26) which are valid for all values of a, and using (A 6)
and (A 9), equation (A 10) can be written in the limit of large Nusselt numbers as

⟨ε̇ : τ⟩ ⩾ aNu3 (2−D)4

(a+ 4)3
(
ln a+4

a

)2
ρ2a0(8 + 4D + 2Da)

, (A 11)

which is the equivalent of (4.28) for a general value of a instead of a = 8.
The upper bound (5.6) from the classical entropy equation is still valid. Combined

with (A 11), this leads to the following bound for the Nusselt number

Nu ⩽ (a+ 4)
3
2Ra

1
2

ρa0

(2−D)
5
2

ln

(
a+ 4

a

)(
16

a
+

8D
a

+ 4D
) 1

2

, (A 12)

which is identical to (6.4) when a = 8. Now we can optimize a to lower the bound (A 12).
This is done by finding the value of a providing the minimum of the following prefactor
function f(a,D) for each D

f(a,D) = (a+ 4)
3
2 ln

(
a+ 4

a

)(
4

a
+

2D
a

+D
) 1

2

. (A 13)
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The numerical solution to this problem is shown in Fig. 3. This value is close to 8 for
large values of D (actually reaching 7.75 near D = 2) and diverges to infinity near the
Boussinesq limit D = 0. The gain in term of the bound of Nusselt is defined as the ratio
of the prefactor with optimal a compared to the prefactor with a = 8. It is shown on the
right-hand side of Fig. 3. It is close to one except for small values of D, falling just below
0.7 near D = 0. The bound (A 12) with the optimal value amin is shown on Fig. 1 in the
main text.

Appendix B. On the definition of the boundary layer thickness δ0
Another arbitrary choice we have made has been to consider where the convective flux

of L must be at least one half of the flux ΦL(0) at the bottom (z = 0). Instead, let us
consider the point where the conduction flux of L falls below a factor b of the bottom
flux (with 0 < b < 1) and the convective flux must be more than (1 − b) times the flux
at the bottom. This changes equation (4.13) into

L(δ) ⩽ ln

(
12

4−D2

)
− b δ ΦL(0), (B 1)

and the expression for (4.14) becomes

δ0 =
6 ln

(
3
2

)
b (2−D)

(
Nu− D

2+D

) . (B 2)

Then equation (4.15) is changed for

ρavzL(δ) ⩾ (1− b)
2−D

6

(
Nu− D

2 +D

)
. (B 3)

Following the same steps as in the main text, in the limit of large Nusselt numbers, the
lower bound for dissipation (4.28) becomes

⟨ε̇ : τ⟩ ⩾ 4 (1− b)2b2 Nu3 (2−D)4

63
(
ln 3

2

)2
ρ2a0(2 + 5D)

. (B 4)

The lower bound is now proportional to b2(1 − b)2. The largest lower bound is then
obtained for b = 1/2. The choice we made is indeed optimal. Because the upper bound
(5.6) is independent of any choice of δ0, the final bound on the Nusselt number (6.4) is
also optimal with respect to the parameter b.

Appendix C. Application to models of turbulent diffusivity

The idea stems from the model of Lantz and Fan (1999), where small scale turbu-
lence transports entropy with a turbulent diffusivity and superadiabatic conduction heat
transport −∇T is changed for −ρaTa∇s. In this original paper, turbulent diffusivity was
taken uniform and used implicitly to determine a Rayleigh number much smaller than it
would be evaluated with a molecular diffusivity. However, we can make it more general
and consider a superadiabatic heat transfer of the form −c(z)∇s. When c(z) = ρaTa

this corresponds to the most widely used model of Lantz and Fan (1999) mimicking a
uniform diffusivity and when c(z) = Ta this corresponds to a uniform turbulent thermal
conductivity (rather than diffusivity, see Mizerski and Tobias (2011)). Turbulent diffu-
sivity or conductivity (at small scale) are certainly functions of height, in stars and gas
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giants, and can be tailored to match detailed calculations or a scaling law. Any choice
is possible for c(z), as long as it is strictly positive, but we shall see we can obtain a
Nusselt upper bound for some profiles of c (e.g. uniform conductivity), while we cannot
for other profiles (including the case of uniform diffusivity). The condition when a bound
is obtained will be uncovered below.
Of course we need to change the definition of the Nusselt number Nu = −c(z =

0)dzs(z = 0). Equation (2.3) is changed for

ρaTa
Ds

Dt
=

D
Ra

ε̇ : τ +∇ · (c∇s) , (C 1)

None of the results concerning the minimum principle are affected, the same variable L
is considered, with the same constant s0 as in section 4. The change in the diffusion term
leads to the following equation for L instead of (4.2)

ρa
DL
Dt

=
D
Ra

ε̇ : τ

Ta(s+ s0)
+

c

Ta
|∇L|2 + c

Ta
dz(lnTa)∂zL+∇ ·

(
c

Ta
∇L

)
. (C 2)

We also need to change the definition of the flux of L

ΦL(z) = − c

Ta
dzL+ ρavzL, (C 3)

instead of (4.4) and the equation for the averaged vertical flux (4.3) becomes

dzΦL =
D

Ra Ta

ε̇ : τ

s+ s0
+

c

Ta
|∇L|2 + c

Ta
dz(lnTa)dzL, (C 4)

Integrating from z = 0 to z = 1 will provide a bound on
〈
|∇L|2

〉
. The integral of the

last term in (C 4) is∫ 1

0

c

Ta
dz(lnTa)dzLdz = −

∫ 1

0

cD
T 2
a

dzLdz,

= −
[
cDL
T 2
a

]1
0

+D
∫ 1

0

dz

(
c

T 2
a

)
Ldz. (C 5)

Now comes the condition on c(z). If dz
(
c/T 2

a

)
< 0 for some value of z, then we cannot

have a lower bound of this term since L has no upper bound. In the other case, if
dz
(
c/T 2

a

)
> 0, we have∫ 1

0

c

Ta
dz(lnTa)dzLdz ⩾

D(
1 + D

2

)2 c(0) log(3

2

)
. (C 6)

The integral of the left-hand side of (C 4) is evaluated exactly

[ΦL]
1
0 =

Nu

12
(2 + 5D) , (C 7)

instead of (4.7). Integrating (C 4) leads finally to〈
|∇L|2

〉
⩽

Nu

12
(2 + 5D)− D(

1 + D
2

)2 c(0) log(3

2

)
. (C 8)

The reasoning is then similar to the anelastic liquid case, with (4.10) becoming

ΦL(0) = − c(0)

Ta(0)
dzL(0) =

2−D
6

Nu. (C 9)
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Expression (4.13) is still valid and (4.14) becomes

δ0 =
12 c

(
1
2

)
ln
(
3
2

) (
1 + D

2

)
(2−D)Nu

, (C 10)

where the condition dz(c/T
2
a ) > 0 has been used, along with the restriction δ0 < 1/2.

The condition on the convective flux (4.15) now becomes

ρavzL(δ) ⩾
2−D
12

Nu. (C 11)

All equations from (4.16) to (4.26) are equally valid for the model with turbulent diffu-
sicity. Equation (C 11) leads to the following mirror equation to (4.28), when using (C 8),
(C 10), (4.16), (4.19) and (4.26)

⟨ε̇ : τ⟩ ⩾ 2 Nu3 (2−D)4

123
(
ln 3

2

)2
ρ2a0c

2
(
1
2

) (
1 + D

2

)2
(2 + 5D)

[
1− 96c2(ln 3

2 )
2D2

(2−D)2Nu2(γ−1)2

]
[
1− 12Dc(0) ln( 3

2 )
(1+D/2)2Nu(2+5D)

] , (C 12)

We now derive a lower bound for dissipation, similarly as in section 5. Dividing equation
(C 1) by Ta and integrating by parts leads to

ρa
Ds

Dt
=

D
Ra

ε̇ : τ

Ta
+ c

∇Ta ·∇s

T 2
a

+∇ ·
(

c

Ta
∇s

)
. (C 13)

We aim to bound the integral of the middle term on the right-hand side〈
∇Ta ·∇s

T 2
a

〉
=

∫ 1

0

−cD
T 2
a

dzs dz, (C 14)

= −D
∫ 1

0

dz

(
c

T 2
a

s

)
dz +D

∫ 1

0

dz

(
c

T 2
a

)
s dz. (C 15)

The first term on the right-hand side is evaluated exactly from the boundary conditions,
and the last term can only be bounded if the same condition as before dz

(
c/T 2

a

)
> 0 is

met, since we have no upper bound for s but only a lower bound −1/(2−D). Assuming
this condition holds, we have〈

∇Ta ·∇s

T 2
a

〉
⩾ −D

[
c

T 2
a

s

]1
0

− D
2−D

[
c

T 2
a

]1
0

, (C 16)

⩾
4Dc(0)

(4−D2)
(
1 + D

2

)2 . (C 17)

The integral of equation (C 13) provides then an upper bound for dissipation

⟨ε̇ : τ⟩ ⩽ 2Ra

2−DNu

[
1− c(0)(

1 + D
2

)2
Nu

]
. (C 18)
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Combining equations (C 13) and (C 18) lead to an upper bound on the Nusselt number

Nu ⩽
24
√
3Ra1/2ρa0 ln

(
3
2

)
c
(
1
2

) (
1 + D

2

)√
2 + 5D

(2−D)5/2

×

[
1− c(0)

Nu(1+D
2 )

2

]1/2 [
1− 12Dc(0) ln( 3

2 )
(1+D/2)2Nu(2+5D)

]1/2
[
1− 96c2(ln 3

2 )
2D2

(2−D)2Nu2(γ−1)2

]1/2 , (C 19)

which for very large values of the Nusselt number becomes

Nu ⩽
24
√
3Ra

1
2 ρa0 ln

(
3
2

)
c
(
1
2

) (
1 + D

2

)√
2 + 5D

(2−D)
5
2

. (C 20)

This expression is rather similar to that obtained with classical uniform thermal con-
duction (6.3). Let us recall that the important message is that we have to make this
assumption dz(c/T

2
a ) > 0 in order to ascertain the validity of this bound. This is not

the case of the original model of Lantz and Fan (1999), with c = ρaTa: in that case,

c/T 2
a = ρa/Ta, which from (2.7) and (2.8) is proportional to T

2−γ
γ−1
a , hence decreasing with

z increasing, like Ta, since 1 < γ < 2. On the contrary, a model mimicking a uniform
thermal conductivity is c = Ta, see Mizerski and Tobias (2011). In that case, c/T 2

a = 1/Ta

is a function increasing with z increasing, and the bound (C 20) is valid.
Coming back to the main text, we have considered the usual Fourier law of conduction

heat transfer −k∇T with a uniform conductivity k = 1. If we make that conductivity a
function of height z, we can see that a similar condition holds on k(z). In equation (4.5),
when integrating by parts, the function dz(k/Ta) will appear and its sign is crucial when
using the minimum principle for entropy, in order to obtain the lower bound (4.6). The
same condition must hold to derive (5.3) from (5.2).
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