
4.4.8 Change of nondimensionalization

We thought after the discussion of the basic balance of convection in section 4.2,
that it was logical to use a Stokes velocityV0, to normalize the equations. We
have therefore introduced a velocity and a time of order of 300 m yr−1 and of
a/V0=10000 yr (see Table 1). This is certainly very fast or short compared with
geological scales. Most physical and geophysical textbooks (e.g.,Schubert et al.,
2001) use instead a diffusive timetD = ρCPa

2/k0 and velocitya/tD. This is
perfectly valid but Table 1, shows that the diffusive time and velocity amount to
tD = 400 byr andVD = 7 10−6 m yr−1. This is even less Earth-like which means
that the nondimensionalized values using a diffusive time may have rather unequal
orders of magnitude. Using this approach, we would have obtained the anelastic
equations
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ᾱ

α0
RaT̃

ρ̄

ρ0

C̄P

C0
P

DT̃

Dt̃
=∇̃ ·

[

k̄

k0

∇̃

(

T̄

∆T
+ T̃

)]

+

ᾱ
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and the Boussinesq equations,
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Notice that theRa number appears in different places than in (125) or (131). Of
course after their appropriate changes of variables the solutions back with real
dimensions are the same.

4.5 Linear stability analysis for basally heated convection

Using the Boussinesq approximation, it is easy to understand why the diffusive
solution is not necessarily the solution chosen by the fluid.The standard way to
test the stability of a solution is what physicists call a study of marginal stability
(see also Chapter 5). It consists of substituing into the basic equations a known

47



solution plus an infinitely small perturbation and checkingwhether or not this
perturbation amplifies, decreases or propagates. Its is only if the perturbation
decreases in amplitude, that the tested solution is stable.

Since we benefit from the assumption that the perturbation has initially an
infinitely small amplitude, computing its time evolution issimpler than solving
the general equations since the nonlinear products can be neglected. The marginal
stability study is therefore powerful for mapping the stability domain of a solution
and describing its destabilization. At the same time it is also somewhat frustrating
as the real unstable solution cannot be obtained.

This approach can be employed to understand the destabilisation of the diffu-
sive solution. We use the Boussinesq approximation, with constant viscosity and
conductivity, neglecting inertia and without internal heating. The nondimension-
alized equations (131) (the tilde sign has been omitted for simplicity) write
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(ez is a normal vector directed alongg). The steady diffusive nondimensional
temperature solution isT = z with z directed alongg, and we test a solution of the
formT = z+δT . The temperature boundary condition,T = 0 on top andT = 1 at
the bottom requires thatδT vanishes forz = 0 andz = 1. As in the diffusive case
the velocity is zero, the velocity induced byδT will be infinitely smallδv. In the
nonlinear term, we can do the approximationv·∇T = δv·∇(z+δT ) ∼ δvz = vz.
With this approximation, the equations are linear and we canfind a solution in the
form of a plane wave.

For a fluid confined betweenz = 0 and z = 1 and unbounded in thex-
direction, a solution,δT = θ(t) sin(πz) sin(kx) is appropriate and satisfies the
boundary conditions. This solution is 2D, has a single mode in thez-direction,
and is periodic inx with wavelengthλ = 2π/k. More complex patterns could
be tried but the mode we have chosen would destabilize first (see Chapter 5).
It is then straightforward to deduce that for such a thermal anomaly, the energy
equation imposes a vertical velocity
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From mass conservation thex-component of the velocity must be
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This flow has a vertical component that vanishes on the top andbottom surfaces
where the horizontal component is maximum. The choice of thetemperature
structure corresponds to free-slip velocity conditions. When the velocity and the
temperature are introduced in the momentum equation, the time evolution of the
temperature perturbation is found
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For any wavenumberk, a small enough Rayleigh number corresponds to a
stable solution,̇θ/θ < 0. When the Rayleigh number is increased, the temperature
component of wavenumberk becomes unstable at the threshold Rayleigh
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(π2 + k2)3

k2
. (141)

ThisRa(k) curve is plotted in Fig 3. This curve has a minimum when

k =
π√
2
, Rac =

27

4
π4 ∼ 657. (142)

What can be interpreted as the size of one convective cell isπ/k since one wave-
length corresponds to two contrarotating cells. The critical cell has an aspect ratio,
width over height, of

√
2.

A Rayleigh number of 657 is the critical Rayleigh number for convection
heated from below with free-slip boundary conditions. As soon asRa > Rac

there is a wavenumber interval over which convection begins. Of course, when
convection grows in amplitude, the marginal stability solution becomes less and
less pertinent as the assumption thatδv · ∇δT << δv · ∇z becomes invalid.

4.6 Road to chaos

Following the same approach, but with some additional complexities, the criti-
cal Rayleigh number for convection between no-slip surfaces, mixed free-slip/no-
slip, with internal heating in Cartesian and spherical geometries could be obtained
(e.g., seeSchubert et al.(2001)). In all cases, critical Rayleigh numbers of order
of 103 are found.

In Cartesian geometry, when the Rayleigh number reaches itscritical value,
convection starts, and forms rolls. When the Rayleigh number is further increased,
complex series of convection patterns can be obtained, firststationary, then peri-
odic, anf finally, chaotic. Using the values of Table 1, the critical Rayleigh num-
ber of the mantle would be attained for a non-adiabatic temperature difference
between the surface and the CMB of only 0.025 K! The mantle Rayleigh number
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Figure 3: Critical Rayleigh number as a function of the half wavelengthπ/k (the
size of the convection cells). Above this curve, convectionoccurs with a whole
range of unstable wavelengths. Below this curve, the conductive temperature is
stable since temperature perturbations of any wavelength,decrease. When the
Rayleigh number is increased, the first unstable wavelengthcorresponds to a con-
vection cell of aspect ratio

√
2 and a critical Rayleigh number of 657.
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is orders of magnitude higher than critical and the mantle isin a chaotic state of
convection.

Figure 4 shows a stationary convection pattern atRa = 105 and three snap-
shots of numerical simulation of convection at higher Rayleigh number. The color
scale has been chosen differently in each panel to emphasizethe thermal structures
that decrease in length scale withRa. This view is somewhat misleading since all
the thermal anomalies become confined in a top cold boundary layer and in a hot
bottom one at large Rayleigh numbers. Most of the interior ofthe cell becomes
just isothermal (or adiabatic when anelastic equations areused). The various tran-
sitions of convection as the Rayleigh number increases willbe discussed in other
chapters of this Treatise (see e.g., Chapter 4).

5 Introduction to physics of multicomponent and mul-
tiphase flows

The mantle is not a simple homogeneous material. It is made ofgrains of variable
bulk composition and mineralogy and contains fluids, magma and gases. Dis-
cussion of multicomponent and multiphase flows could deal with solids, liquids
or gases, include compressibility or not, and consider elastic, viscous or more
complex rheology. For each combination of these characteristics a geophysical
application is possible. Here we will restrict the presentation to viscous creep
models (i.e., without inertia), where the various components are treated with con-
tinuous variables (i.e., each component is implicitly present everywhere). We do
not consider approaches where the various components are separated by moving
and deformable interfaces. Our presentation excludes cases where the problem
is to match properties at macroscopic interfaces between regions of different but
homogeneous compositions.

We will focus on two cases. First, when all the components areperfectly mixed
in variable proportions. This corresponds to the classicalchemical approach of
multiple components in a solution. This will provide some tools to understand
mantle phase transitions and the physics of chemical diffusion and mixing. We
will be rather formal and refer the applications and illustrations to other chapters
of this Treatise (e.g., Chapter 11 and Chapter 12). Our goal is to explain why and
when the advection diffusion equation can be used in mantle dynamics. The irre-
versible thermodynamics of multicomponent flows is discussed in various classi-
cal books (e.g.,Haase, 1990;de Groot and Mazur, 1984). However as usual with
geophysical flows, the mantle has many simplifications and a few complexities
that are not necessarily well documented in these classicaltextbooks.

The second case will be for two phase flows in which the two phases are sepa-
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Figure 4: Convection patterns of a fluid heated from below at Rayleigh number
105, 106, 107, 108. The temperature color bars range from 0 (top boundary) to 1
(bottom boundary). The Boussinesq approximation was used (numerical simula-
tions by F. Dubuffet). The increase in Rayleigh number corresponds to a decrease
of the boundary layer thicknesses and the width of plumes. Only in the case of the
lowest Rayleigh number (top left) is the convection stationary with cells of aspect
ratio ∼

√
2 as predicted by marginal stability. For higher Rayleigh number, the

patterns are highly time-dependent.
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