4.4.8 Change of nondimensionalization

We thought after the discussion of the basic balance of atiorein section 4.2,
that it was logical to use a Stokes veloclty, to normalize the equations. We
have therefore introduced a velocity and a time of order df 80yr! and of
a/Vy=10000 yr (see Table 1). This is certainly very fast or shornpared with
geological scales. Most physical and geophysical textbgelg.,Schubert et aJ.
2001) use instead a diffusive timg = pCpa?/ko and velocitya/tp. This is
perfectly valid but Table 1, shows that the diffusive timelalocity amount to
tp = 400 byr andVp = 7 107 m yr—!. This is even less Earth-like which means
that the nondimensionalized values using a diffusive tirag have rather unequal
orders of magnitude. Using this approach, we would haveiddathe anelastic
equations
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and the Boussinesq equations,
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Notice that theRa number appears in different places than in (125) or (131). Of
course after their appropriate changes of variables thatieak back with real
dimensions are the same.

4.5 Linear stability analysis for basally heated convectio

Using the Boussinesqg approximation, it is easy to undedstany the diffusive
solution is not necessarily the solution chosen by the flliide standard way to
test the stability of a solution is what physicists call adgtef marginal stability
(see also Chapter 5). It consists of substituing into théckeguations a known
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solution plus an infinitely small perturbation and checkimgether or not this
perturbation amplifies, decreases or propagates. Its i ibmhe perturbation
decreases in amplitude, that the tested solution is stable.

Since we benefit from the assumption that the perturbatienimgally an
infinitely small amplitude, computing its time evolutionsgnpler than solving
the general equations since the nonlinear products cangbeated. The marginal
stability study is therefore powerful for mapping the sti#ypdomain of a solution
and describing its destabilization. At the same time its®@aomewhat frustrating
as the real unstable solution cannot be obtained.

This approach can be employed to understand the destébitisd the diffu-
sive solution. We use the Boussinesq approximation, witistant viscosity and
conductivity, neglecting inertia and without internal tieg. The nondimension-
alized equations (131) (the tilde sign has been omittedifoplcity) write

V v =0,

—VP+ VQV - Tez :0, (137)

aT 1,
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(e. is a normal vector directed alorg). The steady diffusive nondimensional
temperature solution i = z with z directed alongg, and we test a solution of the
formT = 2+4-6T. The temperature boundary conditidh= 0 ontop and’ = 1 at
the bottom requires thafl’ vanishes for = 0 andz = 1. As in the diffusive case
the velocity is zero, the velocity induced by’ will be infinitely smalldv. In the
nonlinear term, we can do the approximatioitW 1" = 6v-V (z+T) ~ dv, = v,.
With this approximation, the equations are linear and wefireha solution in the
form of a plane wave.

For a fluid confined between = 0 andz = 1 and unbounded in the-
direction, a solutiony7T" = 6(t) sin(rz) sin(kx) is appropriate and satisfies the
boundary conditions. This solution is 2D, has a single madiae z-direction,
and is periodic inz with wavelength\ = 27 /k. More complex patterns could
be tried but the mode we have chosen would destabilize fiest Ghapter 5).
It is then straightforward to deduce that for such a thernmalnaaly, the energy
equation imposes a vertical velocity

s TN .
v, = («9 + Ra 0) sin(7z) sin(kx). (138)

From mass conservation thecomponent of the velocity must be
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(8 + TQ) cos(mz) cos(kx). (139)
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This flow has a vertical component that vanishes on the tofbattdm surfaces
where the horizontal component is maximum. The choice ofténeperature
structure corresponds to free-slip velocity conditionshaf' the velocity and the
temperature are introduced in the momentum equation, e évolution of the
temperature perturbation is found

- k2 (7% + k?)
9_9<(W2+k2)2— — ) (140)

For any wavenumbet, a small enough Rayleigh number corresponds to a
stable solutiond/# < 0. When the Rayleigh number is increased, the temperature
component of wavenumbérbecomes unstable at the threshold Rayleigh

(72 + k2)?

Ra =3 (141)
This Ra(k) curve is plotted in Fig 3. This curve has a minimum when
T 27
L= _ 2l 65T 142
ek Ra, 1" 657 (142)

What can be interpreted as the size of one convective cejlissince one wave-
length corresponds to two contrarotating cells. The @altell has an aspect ratio,
width over height, of/2.

A Rayleigh number of 657 is the critical Rayleigh number faneection
heated from below with free-slip boundary conditions. Asis@sRa > Ra.
there is a wavenumber interval over which convection begdtcourse, when
convection grows in amplitude, the marginal stability $@no becomes less and
less pertinent as the assumption that Vo7 << dv - Vz becomes invalid.

4.6 Road tochaos

Following the same approach, but with some additional cexipés, the criti-
cal Rayleigh number for convection between no-slip sudaoexed free-slip/no-
slip, with internal heating in Cartesian and spherical getras could be obtained
(e.g., seesSchubert et al(2001)). In all cases, critical Rayleigh numbers of order
of 10° are found.

In Cartesian geometry, when the Rayleigh number reachesititsal value,
convection starts, and forms rolls. When the Rayleigh nunsfarther increased,
complex series of convection patterns can be obtained statibnary, then peri-
odic, anf finally, chaotic. Using the values of Table 1, thécal Rayleigh num-
ber of the mantle would be attained for a non-adiabatic teatpee difference
between the surface and the CMB of only 0.025 K! The mantlddigly number
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Figure 3: Critical Rayleigh number as a function of the hadfnelengthr /% (the
size of the convection cells). Above this curve, convecboours with a whole
range of unstable wavelengths. Below this curve, the caindutemperature is
stable since temperature perturbations of any wavelergtirease. When the
Rayleigh number is increased, the first unstable wavelecwtiesponds to a con-
vection cell of aspect ratig/2 and a critical Rayleigh number of 657.
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is orders of magnitude higher than critical and the mantie & chaotic state of
convection.

Figure 4 shows a stationary convection patterizat= 105 and three snap-
shots of numerical simulation of convection at higher Reyl@wumber. The color
scale has been chosen differently in each panel to emphhbsi#ggermal structures
that decrease in length scale wiila. This view is somewhat misleading since all
the thermal anomalies become confined in a top cold boundgey nd in a hot
bottom one at large Rayleigh numbers. Most of the interiathefcell becomes
justisothermal (or adiabatic when anelastic equationsiseel). The various tran-
sitions of convection as the Rayleigh number increasesbeilliscussed in other
chapters of this Treatise (see e.g., Chapter 4).

5 Introduction to physics of multicomponent and mul-
tiphase flows

The mantle is not a simple homogeneous material. It is madeadrs of variable
bulk composition and mineralogy and contains fluids, magn@é gases. Dis-
cussion of multicomponent and multiphase flows could de#t wolids, liquids
or gases, include compressibility or not, and considertielagiscous or more
complex rheology. For each combination of these charatiesia geophysical
application is possible. Here we will restrict the presé@ntato viscous creep
models (i.e., without inertia), where the various compdsane treated with con-
tinuous variables (i.e., each component is implicitly preseverywhere). We do
not consider approaches where the various components jgaieased by moving
and deformable interfaces. Our presentation excludesaakere the problem
is to match properties at macroscopic interfaces betwegione of different but
homogeneous compositions.

We will focus on two cases. First, when all the componentpartectly mixed
in variable proportions. This corresponds to the classibamical approach of
multiple components in a solution. This will provide someltoto understand
mantle phase transitions and the physics of chemical dnfuand mixing. We
will be rather formal and refer the applications and illasions to other chapters
of this Treatise (e.g., Chapter 11 and Chapter 12). Our gdal @xplain why and
when the advection diffusion equation can be used in magtiamics. The irre-
versible thermodynamics of multicomponent flows is disedss various classi-
cal books (e.g.Haase 1990;de Groot and Mazurl984). However as usual with
geophysical flows, the mantle has many simplifications anemadomplexities
that are not necessarily well documented in these clageixtidooks.

The second case will be for two phase flows in which the two ghase sepa-
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Figure 4: Convection patterns of a fluid heated from below al&gh number
10°, 1¢°, 107, 10°. The temperature color bars range from 0 (top boundary) to 1
(bottom boundary). The Boussinesq approximation was usaaé€rical simula-
tions by F. Dubuffet). The increase in Rayleigh number gponds to a decrease
of the boundary layer thicknesses and the width of plume$y @nhe case of the
lowest Rayleigh number (top left) is the convection stadigrwith cells of aspect
ratio ~ /2 as predicted by marginal stability. For higher Rayleigh iem the
patterns are highly time-dependent.
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