PHYSICS OF MANTLE CONVECTION

Yanick Ricard
Laboratoire de Science de la Terre

Université de Lyon; Université de Lyon 1; CNRS; Ecole NatmSupérieure de Lyon,

2 rue Raphaél Dubois, 69622, Villeurbanne Cedex, France.

abstract This chapter presents the fundamental equations necdssamger-
stand the physics of fluids and some applications to mantiesmtion. The first
section derives the equations of conservation for mass, entum and energy,
and the boundary and interface conditions for the variousblikes. The thermo-
dynamic and rheological properties of solids are discugséige second section.
The mechanism of thermal convection and the classical Boess and anelas-
tic approximations are presented in the third section. Asshibject is not often
included in geophysical text books, an introduction to thggics of multicom-
ponent and multiphase flows is given in a fourth section. At the specifics of
mantle convection are reviewed in the fifth section.
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1 Introduction

In many text books of fluid dynamics, and for most students,wiord “fluid”
refers to one of the states of matter, either liquid or gasgoucontrast to the
solid state. This definition is much too restrictive. In fattte definition of a
fluid rests in its ability to deform. Basically any materialat appears as non-
deformable in most common life experiments, with a crystallstructure (i.e.,
belonging to the solid state) or with a disordered strucfarg., a glass, that from
a thermodynamic point of view belongs to the liquid state) loa deformed when
subjected to stresses for a long enough time.

The characteristic time constant of the geological praeesslated to mantle
convection, typically 10 Myrs (810 s), is so long that the mantle, although
stronger than steel and able to transmit seismic shear waaesbe treated as
a fluid. Similarly, ice, which is the solid form of water, is labto flow from
mountain tops to valleys in the form of glaciers. A formaliimat was developed
for ordinary liquids or gases can therefore be used in ordestudy the inside
of planets. It is not the equations themselves, but theiarpaters (viscosity,
conductivity, spatial dimensions...) that characterfmsrtapplicability to mantle
dynamics.

Most materials can therefore behave like elastic solidsewy short time con-
stants and like liquids at long times. The characteristitetithat controls the
appropriate rheological behavior is the ratio betweenosgy, 1, and elasticity
(shear modulus)y,, called Maxwell timer,, (Maxwell, 1831-1879),

™ = ﬂ' (1)
The rheological transition in some materials like silicators in only a few min-
utes; a silicon ball can bounce on the floor, but it turns inpuddle when left on
a table for tens of minutes. The transition time is of the owfea few hundred
years for the mantle (see 3.2). Phenomena of a shorter dardtan this time
will experience the mantle as an elastic solid while mostot@ic processes will
experience the mantle as irreversibly deformable. Surfaading of the Earth
by glaciation and deglaciation involves times of a few tremds years for which
elastic aspects cannot be totally neglected with respedstous aspects.
Although the word “convection” is often reserved for flowsvein by internal
buoyancy anomalies of thermal origin, in this chapter, wikmore generally use
“convection” for any motion of a fluid. Convection can be kimatically forced
by boundary conditions or induced by density variationse @ensity variations
can be of compositional or thermal origin. We will howevegstly focus on the
aspects of thermal convection (or Rayleigh-Bénard caimec(Rayleigh, 1842-
1919; Bénard, 1874-1939)) when the fluid motion is driverihigrmal anomalies
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and discuss several common approximations that are matesioase. We know
however that many aspects of mantle convection can be marple& and involve
compositional and petrological density anomalies or nqiti@se physics. We will
review some of these complexities.

The physics of fluid behavior, like the physics of elastitstpased on the gen-
eral continuum hypothesis. This hypothesis requires thedrpeters like density,
temperature, or momentum are defined everywhere, contshyotihis hypoth-
esis seems natural for ordinary fluids at the laboratoryescdfe will adopt the
same hypothesis for the mantle although we know that it isrbgeneous at var-
ious scales and made of compositionally distinct grains.

2 Conservation equations

The basic equations of this section can be found in moreldetaiany classical
text books Batchelor 1967;Landau and Lifchitz1980). We will only emphasize
the aspects that are pertinent for the Earth.

2.1 General expression of conservation equations

Let us consider a fluid transported by the velocity fielda function of position
X and timet. There are two classical approaches to describe the physibs
deformable medium. Any variabld in a flow, can be considered as a simple
function of position and timed (X, t), in a way very similar to the specification
of the electromagnetic field. This is the Eulerian point @wi(Euler, 1707-1783).
The second point of view is traditionally attributed to Lagge (Lagrange, 1736-
1813). It considers the trajectory that a material eleménhe flow initially at
X, would follow X (X, t). An observer following this trajectory would naturally
choose the variablel(X (X, ?),t). The same variablel seen by an Eulerian
or a Lagrangian observer would have very different timenddives. For Euler
the time derivative would simply be the rate of change seearbgbserver at a
fixed position, i.e., the partial derivativ&/0t. For Lagrange, the time derivative
noted withD would be the rate of change seen by an observer riding on aialate
particle

0A 0X; O0A

0X; Ot o

where theX; are the coordinates . SinceX is the position of a material ele-
ment of the flow, its partial time derivative is simply the flewlocity v. The La-
grangian derivative is also sometimes material called drevative, total deriva-
tive, or substantial derivative.

DA B dA(X(XO,t),t) B Z
Dt dt

i=1,3

(2)



The previous relation was written for a scalar fieldout it could easily be
applied to a vector field\. The Eulerian and Lagrangian time derivatives are thus
related by the symbolic relation

D 0

E:&ﬂL(V'V) (3)

The operatofv - V) is the symbolic vectofv,0/0z1, v20/0z2,v30/0x3) and a
convenient mnemonic is to interpret it as the scalar prodtitte velocity field by
the gradient operatd®)/0x;, 0/0x2, 0/0z3). The operatofv- V) can be applied
to a scalar or a vector. Notice that - V)A is a vector that is neither parallel to
A nortov.

In a purely homogeneous fluid, the flow lines are not visibiethis case the
point of view of Euler seems natural. On the other hand, a iplstslescribing
elastic media can easily draw marks on the surface of defaerabjects and flow
lines become perceptible for him. He thus favors the Lageangoint of view.
We will mostly adopt the Eulerian perspective for the dgstonn of the mantle..
However when we discuss deformation of heterogeneitiesdadxd in and stirred
by the convective mantle the Lagrangian point of view willrbere meaningful
(see section 5.1.7).

A starting point for describing the physics of a continuum tre conservation
equations. Consider a scalar or a vector extensive variljie., mass, momen-
tum, energy, entropy, number of moles...) per unit volume awirtual but fixed
volumef? enclosed in its boundaty. This virtual volume is freely crossed by the
flow. The temporal change of enclosed iff is

%/QAdV:/Q%—de. (4)

Sincef is fixed, the derivative of the integral is indeed the intégfahe partial
time derivative.

The total quantity of the extensive variablein a volume) can be related to
a local productionH 4 (with units of A per unit volume and unit time), and to the
transport (influx or outflux) ofA across the interface. This transport can either
be a macroscopic advective transport by the flow or a moreentliiransport, for
example at a microscopic diffusive level. Let us chllthe total flux ofA per unit
surface area. The conservationdtan be expressed in integral form as

DA
QEdV:—/ZJA-dSJr/QHAdV, 5)

where the infinitesimal surface is oriented with the outwamd normal. Equation
(5) is the general form of any conservation equation. Whenfiinx is regular
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enough (when no surface of discontinuity crosses the volfijpeve can make
use of the divergence theorem

/EJA~dS:/QV-JAdV, (6)

to transform the surface integral into a volume integrale Tivergence operator
transforms the vectad = (Ji, J;, J;) into the scalaiv - J = 3=, ;0J;/0;,
scalar product of the symbolic operaf®r by the real vectod (notice the differ-
ence between the scal¥f- J and the operatafF - V). Since the integral equation
(5) has been written for any volunig we can deduce that the general differential
form of the conservation equation is,

%—?—FV-JA:HA. (7)
A similar expression can be used for a vector quanfityith a tensor fluxJ
and a vector source terid 5. In this case, the divergence operator converts the
second-order tensor with components into a vector whose components are
> j=130Ji;/0x;.

We now apply this formalism to various physical quantiti€aree quantities
are strictly conserved: the mass, the momentum and the yenéfg must iden-
tify the corresponding fluxes but no source terms should lesgnt (in fact, in
classical mechanics the radioactivity appears as a sotirerargy). One very
important physical quantity is not conserved - the entropyt-the second law of
thermodynamics insures the positivity of the associatencss.

2.2 Mass conservation
The net rate at which mass is flowing is
J,=pv. (8)

Using either the Eulerian or the Lagrangian time derivajithe mass conserva-
tion can be written

dp B
or D
zr v —
L pvev=o. (10)

In an incompressible fluid, the Lagrangian observer doese®tiny density vari-
ation andDp/Dt = 0. In this case, mass conservation takes the simple form
V - v = 0. This equation is commonly called the continuity equatithaugh

this name is a little bit awkward.



Using mass conservation, a few identities can be derivedktigavery useful
for transforming an equation of conservation for a quanpiéy unit mass to a
guantity per unit volume. For example for any scalar figld

d(pA) D(pA) DA

T+V-(pAv):Tt+pAV~V:pE, (11)
and for any vector field\,
d(pA) _ D(pA) DA
BT + V- -(pAvV)= Dt + pAV V=07 (12)

whereA ® v is a tensor of component$v;. WhenA is a constant the equalities
(11) corresponds to the two expressions of mass consemv@j@nd (10).

2.3 Momentum conservation
2.3.1 General momentum conservation

The changes of momentum can be easily deduced by balan@nchdnges of
momentum with the body forces acting in the volufdeand the surface force
acting on its surfac&. The total momentum is

/ ov dV, (13)
Q
and its variations are due to

e advective transport of momentum across the surtace
e forces acting on this surface and, last,

¢ internal body forces.

The momentum conservation can therefore be expressecegraiform as

/Q%tv)cﬂ/:—/Epv(v.dS)—i—/Zg.ds_i_/Qde' (14)

By definition, the tensogr corresponds to the total stresses applied on the surface
Y, (see Figure 1). The terii represents the sum of all body forces, and in partic-
ular the gravitational forcegg (we will not consider the electromagnetic forces
in this chapter).

Using the divergence theorem (for the first term of the rigbespv (v - dS)
can also be writtep(v ® v) - dS) and the equality (12), the differential form of
momentum conservation becomes

Dv
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0, dxdz

oyydxdz

0,,dxdz

X

Figure 1. The force per unit area applied on a surface didebtethe normal
vectorn; is by definitione - n;. The component of this force along the unit vector
e; thereforee; - o - n;.

It is usual to divide the total stress tensor into a thermaayic pressure- P1
wherel is the identity stress tensor, and a velocity-dependeasstr. The re-
lationship between the tenserand the velocity field will be discussed later in
section 3.2. Without motion, the total stress tensor is thasopic and equal to
the usual pressure. In all the geophysical literature, stibeen assumed that the
velocity dependent tensor has no isotropic componentitiietraceless frr) = 0
or that t{lo) = —3P (see section 3.2 for more details). The velocity-dependent
stress tensor is thus also the deviatoric stress tensor.

As V - (PI) = VP, momentum conservation (14), in terms of pressure and

deviatoric stresses is
Dv

p—

Dt

This equation is called the Navier-Stokes equation (NavigB5-1836; Stokes,

1819-1903) when the stress tensor is linearly related tctfaen rate tensor (see
3.2).

— _VP+V.-T+F, (16)

2.3.2 Inertia and non-Galilean forces

In almost all studies of mantle dynamics the fact that thétEarotating is simply
neglected. It is however worth discussing this point. Ledaine a reference



frame of vectors; attached to the solid Earth. These vectors rotate with tinEa
and with respect to a Galilean frame

dei
dt

=w X €, (17)

wherew is the angular velocity of Earth’s rotation. A poiXt = >, X,e; of the
Earth has therefore an acceleratipm a Galilean frame (Galileo, 1564-1642)

wzaa—z+2wxv+wx(wxX)+il—L:xX. (18)
In this well known expression, one recognizes on the rigie sihe acceleration
in the non-Galilean Earth reference frame, the Coriolipri@dis, 1792-1843),
centrifugal and Poincaré accelerations (Poincaré, 118842).

To quantify the importance of the three first acceleratiomte(neglecting the
Poincaré term), let us consider a characteristic scaléefayth (the Earth radius
a = 6371 km), and mantle velocityl{ = 10 cm yr!) and let us compare the
various acceleration terms. One immediately gets

inertia U 1
Coriolis  2wa 2.9 x 101’ (19)
Coriolis WU 1 (20)
gravitational force ¢ = 2.1 x 1013’
centrifugal wla 1 1)
gravitational force ¢ 291°

A first remark is that the inertial term is much smaller thae @oriolis term
(this ratio is also known as the Rossby number, (Rossby,-1898)). The Corio-
lis term is itself perfectly negligible in front of the grdstional force. Even if we
argue that a more meaningful comparison would be to compare/hole Coriolis
force2pwU to the lateral variations of the gravitational foiggy, (this ratio would
be the inverse of the Eckman number, (Eckman, 1874-195®)tia and Corio-
lis accelerations play absolutely no role in mantle dynamideglecting inertia
means neglecting the changes in kinetic energy as inetti isme-derivative of
the kinetic energy. We can perform a simple numerical egena realize how
ridiculously small the mantle kinetic energy is. The kicetinergy of a litho-
spheric plate (a square of size 2000 km, thickness 100 kro¢igl5 cm yr! and
density 3000 kg m?) is 1.5 kJ, comparable to that of a middle size car (2000 kg)
driven at only 8 km h'!

The centrifugal term is also quite small but not so small91/af gravitational
force). It controls two effects. The first is the Earth’s #ating with an equatorial
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bulge of 21 km (1/300 of Earth’s radius). This is a static pireenon that has
no interactions with convection dynamics. The second igthssibility that the

whole planet rotates along an equatorial axis in order t@ ksamain inertial axis
coincident with its rotational axisSpada et al.1992;Ricard et al, 1993b). This

rotational equilibrium of the Earth will not be discussedéée.g., sedlunk and

MacDonald(1960) for the dynamics of a deformable rotating body).

We neglect all the acceleration terms in the following butsheuld remember
that in addition to the convective motion of a non-rotatiteyet, a global rotation
of the planet with respect to its rotation axis, is possibles motion documented
by paleomagnetism, is called True Polar Wandgse and Courtillgt1991).

2.3.3 Angular momentum conservation

The angular momentum per unit mabks= r x v is also a conserved quantity. Its
conservation law can be obtained by two different ways.tFaswe did for mass
and momentum conservation, we can express the balancedbangpmentum in
integral form. In the absence of intrinsic angular momensanrces, its variations
are due to

e advective transport of angular momentum across the sukace
e torque of forces acting on this surface and, last,

e torque of internal body forces.
The resulting balance is therefore,

Npd) ...
/dev_—/EpJ(v dS)—l—/er(g dS)+/Qr><FdV. (22)
The only difficulty to transform this integral form into a lalcequation is with the

integral involving the stress tensor. After some algeliragquation (22) becomes

DJ

"Dt

where the torqué’ is the vectol 1., — 7., Tu: — Tow, Tyz — Tay ). A S€CONd EXpPres-

sion can be obtained by the vectorial multiplication of themnentum equation
(15) byrx. This expression,

=rxV-o+rxF+4+T, (23)

D
pﬁi:rxV-QerXF, (24)

differs from (23) by the absence of the torgéie This proves that in the absence
of sources of angular momentum, the stress (eigher —) must be represented
by a symmetrical tensor,

c=0', 1T=1" (25)

where] |* denotes tensor transposition.
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2.4 Energy conservation
2.4.1 Firstlaw and internal energy

The total energy per unit mass of a fluid is the sum of its irdkemergy{, and
its kinetic energy (this approach implies that the work of trarious forces is
separately taken into account; another approach that wenus86.3, adds to the
total energy the various possible potential energies andreg forces). In the
fixed volume(?, the total energy is thus

2

/Q p(U + %) dv. (26)

A change of this energy content can be caused by

e advection of energy across the boundariy the macroscopic flow,

transfer of energy through the same surface, but at a micpastevel

work of body forces,

work of surface forces, and, last

¢ radioactive heat production

Using the divergence theorem, the balance of energy caeftirerbe written

2 2
% (p(u—i- %)) =-V. (p(u+ %)V—l—q—i-Pv—z-V) +F-v+pH, (27)
whereq is the diffusive flux,H the rate of energy production per unit mass and
where the stresses are divided into thermodynamic pressutevelocity depen-
dent stresses.

This expression can can be developed and simplified by usengguality (11)
and the equations of mass and momentum conservation, ({L&htb reach the

form
DU

"Dt
The viscous dissipation term : Vv is the contraction of the two tensorsand
Vv. Its expression i§_,; 7;;0v;/0x; (be careful with the difference between the
scalarV - v and the tenso¥ v of componentg®v; /0z;).

=-V.-q—-PV:-v+71:Vv+pH. (28)
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2.4.2 State variables

The internal energy can be expressed in terms of the mord tranodynamic
state variables, namely, temperature, pressure and voluifee use volume to
follow the classical thermodynamics presentation, butesiwve apply thermody-
namics per unit mass, the volunieis in fact the volume per unit mass oy p.
We use the first Law that states that during an infinitesimat@ss the variation of
internal energy is the sum of the hé&) and worké W exchanged. Although irre-
versible processes occur in the fluid, we assume that we agot gtk hypothesis
of local thermodynamic equilibrium.

The exchanges of heat and work are not exact differentiaésentire precise
process has to be known to compute these exchanges, noheniyttal and final
stages. Using eithédr — V orT" — P variables, we can write

5Q = CydT + 1dV = CpdT + hdP, (29)

whereCp an Cy are the heat capacities at constant pressure and voluma and
and/ are two other calorimetric coefficients necessary to accéamthe heat
exchanges at constant temperature. In the formalism ofllgsigs of fluids the
exchange of work is only due to the work of pressure forces

SW = —PdV. (30)

This implies that only the pressure term corresponds to anggncapable to be
stored and returned without loss when the volume changeessed. On the con-
trary the stresses related to the velocity will ultimateppaar in the dissipative,
irrecoverable term of viscous dissipation. This point vadl further commented
in the section 3.2 about rheology.

Thermodynamics states that the total variations of enefigy= 6Q + 6,
enthalpydH = diU+d(PV') or entropydS = §Q /T, are exact differentials. This
means that the difference in energy (enthalpy, entropyyéen an initial and a
final state only depends of the initial and final states thémse not the inter-
mediate stages. This implies mathematically that theioisegartial derivatives
with respect to any pair of variables are independent of tHeraof differentiation.
Using these rules a large number of equalities can be dearexhg the thermo-
dynamic coefficients and their derivatives. These are dalie Maxwell relations
and are discussed in most thermodynamics textbooks Ragier, 1991, ). We
can in particular derive the values bandh,

T
| =aTKy, and h=—2") (31)
p
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In these expressions forandh, we introduced the thermal expansivityand the
isothermal incompressibilit)'r,

L LV _ 1fop
vi\or), p\oT),’
oP oP
Ky =— — | =pl—=—] .
g V<8V>T p(ap>T
The thermodynamic laws and differentials apply to a close@mnable vol-
umeQ(t). This corresponds to the perspective of Lagrange. We caeftite
interpret the differential symbolsd” of the thermodynamic definitions (29) of
(30) as Lagrangian derivative®)”.
To summarize, when the expressionsffandh are taken into account, (31),

and when the differential symbols are interpreted as Lagemnderivatives, the
first law, dUd = 0Q) + §W can be recast as

(32)

DU DT V.v

= = Cy— + (aTKp — P 33
D Oth+(04 T ) o (33)
oras DU DT oTDP V
«Q -V
b —P . 34
Dt "Dt  p Dt P (34)

In these equations we also have replaced the volume variasimg mass conser-
vation (9)
DV D(/p) 1Dp V-v
Dt Dt  p>2Dt  p

. (35)

2.4.3 Temperature

We can now identify these two thermodynamic equations (8334), with our
conservation equation deduced from fluid mechanics, (88)xpress the conser-
vation of energy in terms of temperature variations

DT DP

pCp—=—-V  .-q+al'— +71: Vv +pH,
Dt Dt (36)
DT

pCVE:—V~q—aTKTV~V+I:VV+pH.

In these two equivalent expressions, in addition to diinsthree sources of tem-
perature variations appear on the right side. The last jgifims the source of ra-
dioactive heat production. This term is of prime importafaréhe mantle, mostly
heated by the decay of radioactive elementsiike, 238U, 25Th and*°K. All to-
gether these nuclides generate atitiuk 102 W (McDonough and Syri995).
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Although this number may seem large, itis in fact very sntaithce the Earth now
has aboué6 x 10° inhabitants, the total natural radioactivity of the Eaglonly~3
kW/person, not enough to run the appliances of a standashéitin a developed
country. It is amazing that this ridiculously small energivds the plates, raises
mountains and produces a magnetic field. In addition to teegmt-day radioac-
tivity, extinct radioactivities, like that of°Al (with a half life of 0.73 Myr), have
played an important role in the initial stage of planet fotima (Lee et al, 1976).

The viscous dissipation term : Vv converts mechanical energy into a tem-
perature increase. This term explains the classical Joyleranent (equivalence
between work and heat, (Joule, 1818-1889)) in which themiatieenergy of a
load (measured in joules), drives a propeller in a fluid, aisdigates the mechan-
ical energy as thermal energy (measured in calories). Thne shssipative term
explains why clay (e.qg., silly putty) heats when kneadeduniands.

The remaining source term, containing the thermodynamaffioients ¢ or
a K7 in (36)), cancels when the fluid is incompressible (e.g.,mde- 0 or when
V -v =0). This term is related to adiabatic compression and williseussed in
section 4.3.2.

2.4.4 Second law and entropy

We now apply the second law of thermodynamics and first espiles entropy
conservation law. Assuming local thermodynamic equilibyj we havelld =
TdS — PdV. Using the equation of conservation for the internal enérgy28),
and expressing the volume change in term of velocity divecg€35), we obtain

pI'— =-V.-q+7:Vv+pH (37)

To identify the entropy sources, we can express this equatiadhe form of a
conservation equation (see (7)),

%;S):—V-<p8v+%>—%q-VT+%z:Vv+%pH. (38)
The physical meaning of this equation is therefore that thenge of entropy is
related to a flux of advected and diffused entropyy andq/7T, to radioactive
production and to two other production terms.

A brief introduction to the general principles of non-eguilum thermody-
namics will be given in 5.1.4. Here, we simply state that theosid law requires
that in all situations, the total entropy production is pesi When the entropy
terms are of different tensor orders (tensors, vectors @alasg), the fact that they
are affected differently by a change of coordinates, inglgg isotropic systems
that the production terms of different tensor orders muptestely be positive.
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This is called the Curie principle (Curie, 1859-1906) (seg,de Groot and Mazur
(1984);Wo0dg(1975)). It implies that

—q-VT >0, and 7:Vv>0. (39)

The usual Fourier law (Fourier, 1768-1830) with a positivermal conductivity
k>0,
q=—kVT, (40)

satisfies the second law.

When the conductivity: is uniform, the thermal diffusion term of the energy
equation—V - q becomes V2T whereV? = V - V is the scalar Laplacian oper-
ator (Laplace, 1749-1827). Instead of a thermal condugtiaithermal diffusivity

Kk can be introduced )

= E’
(in principle isobaric and isochoric thermal diffusivisishould be defined). In

situations with uniform conductivity, without motion anddioactivity sources,
the energy equation (36) becomes the standard diffusioatieu

(41)

K

T
%—t = kV°T. (42)

The relation between stress and velocity will be discussetétail in section
3.2. We will show that the relationship

r=2 (-39 v) (43)

is appropriate for the mantle, where the strain rate teasedefined by

e= 1 (Ivv] +[9v)). (44)

Using this relation and assumipguniform, the divergence of the stress tensor
that appears in the momentum conservation equation hagtipteform

v-zzuv2v+§V(v-v), (45)

where the vectorial LaplacieR? stands forV(V:) — V x (Vx). This rela-
tionship suggests a meaningful interpretation of the \8ggo The momentum
equation (16), can be written

ov — B2y 4 other terms.... (46)
o p
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forgetting the other terms, a comparison with the thermflision equation (42)
shows that the kinematic viscosity defined by

v=F (47)

P
should rather be called the momentum diffusivity; it plajie same role with
respect to the velocity as thermal diffusivity does withpest to temperature.

2.5 Gravitational forces
2.5.1 Poisson equation

In this chapter, the only force is the gravitational bodyctar The gravity is the
sum of this gravitational body force and the centrifugac®already discussed
(see 2.3.2). The gravitational force per unit mass is thdigrd of the gravitational
potentialy, a solution of Poisson’s equation (Poisson, 1781-1840)

g=-Vy, and Vi = 47 Gp, (48)

where( is the gravitational constant (some textbooks defineas the gravita-
tional potential). In the force term that appears in the motme equation (16),
F = pg, the gravitational force per unit mass should be in agre¢mwéh the
distribution of masses: the Earth should be self-gravitati

2.5.2 Self-gravitation

When dealing with fluid dynamics at the laboratory scale gtavitational force
can be considered as constant. The gravitational forcelaseteto the entire
distribution of mass in the Earth (in the Universe) and ispcally independent of
the local changes in density in the experimental room. Tibezeat the laboratory
scale, it is reasonable to forget Poisson’s equation anddorae thag = g, a
uniform and constant reference gravitational field.

Inside a planet, the density can be divided into an averagéhdiependent
density, po(r), the source of the reference depth-dependent gravitdticeid,
go(r), and a density perturbatiofp, origin of a gravitational perturbatiofig.
The force termF is thereforep,go + dpgo + podg at first order. It is tempting to
assume that each term in the previous expression is muddr ldrgn the next one
and hopefully that only the first two terms are of importaneeglecting the sec-
ond term would suppress any feed back between density pations and flow).
Practically, this would imply consideration of the totahd@y anomalies but only
the depth dependent gravitational field. Solving Poissegigation to compute
the perturbed gravitational field would thus be avoided.
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We can test the above idea and show that unfortunately treetérim, namely
the force due to the perturbation of gravitation acting andkierage density, may
be of the same order as the second driedrd et al, 1984;Richards and Hager
1984;Panasyuk et al.1996). To perform this exercise we have to introduce the
spherical harmonic functions,,, (6, ¢). These functions of latitude and longi-
tude ¢ oscillate on a sphere just like 2D sinusoidal functions oram@ Each
harmonic function changes sign- m times from North to South pole, and
times over the same angle (180 degrees) around the equbatodefreé can thus
be interpreted as corresponding to a wavelength of otderi(. Spherical har-
monics constitute a basis for functions defined on the spdiedeare also eigen-
functions of the angular part of Laplace’s equation whidbva$ an easy solution
of Poisson’s equation.

Let us consider a density anomaly = od(r — a)Y;,,(0, ¢) at the surface of
a sphere of radiug and uniform density, (6(r — a) is the Dirac delta function
(Dirac, 1902-1984)¢ has unit of kg n1?). This mass distribution generates the
radial gravitational perturbation field inside the planet

l r -1
g = 4nGos— (5) Vi (0, &), (49)

We can compare the terms(dg) and go(dp), both averaged over the planet
radius. For a uniform planet, the surface gravitationatéoper unit mass is
go = 4/37Gpoa. Since(dp) = oY, (6, ¢), we get

poldg) 3
go(dp) 20+ 1

(50)

This estimate is certainly crude and a precise computasikimg into account a
distributed density distribution could be done. Howeveés thle of thumb would

remain valid. At low degree the effect of self-gravitatipgyg is about 50% of
the direct effectipg, and reaches 10% of it only near~ 15. Self-gravitation

has been taken into account in various models intended t@miexine Earth’s

gravity field from mantle density anomalies (see Chapterd @napter 8 of this
Treatise). Some spherical convection codes seem to negiseffect although it
is important at the longest wavelengths.

2.5.3 Conservative forms of momentum and energy equations

In the general remarks on conservation laws in section 2elywote that con-
served quantities like mass, momentum and energy can onfateported but do
not have production terms (contrary to entropy). Howewethe momentum con-
servation (16) and in the energy conservation (27) two tepgandpg - v, appear
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as sources (we also said that the radioactive tefmappears because the classi-
cal physics does not identify mass and energy. A negligisi@t-pH/c?, where
c is the speed of light, should, moreover, be present in thes m@sservation).

It is interesting to check that our equations can be recésian exact conser-
vative form. An advantage of writing equations in consameaform is that such
a form is appropriate to deal with global balance, interé&aaed boundaries (see
section 2.6). We can obtain conservative equations by u3oigson’s relation
and performing some algebra

1 1,
Pg——RV'<g®g—§9 l) (51)
Dy 1 oy 1 0

PEY =" Dy _4WGV'<gat>_8wG ot (52)

If we substitute these two expressions in the momentum andribrgy conserva-
tion equations, (16) and (27), we obtain the conservativ@s$o

A(pv)
ot

5] 2}2 92
o (”“”*“5)* &rc) -
§ g oY

v
—V-(pv(u—i-w—i-?)qu—i-Pv—z-vﬂLRE)—i—pH,

When the gravitational force is time independent, a po&etiergy,) can simply
be added to the kinetic and internal energies to replace trk of gravitational
forces. When gravitational force and its potential are toe@endent (due to mass
redistribution during convection, segregation of elerser)t two new terms must
be added; a gravitational energy proportionabtoand a gravitational flux pro-
portional togdi /ot (this is equivalent to the magnetic energy proportional to
B? (whereB is the magnetic induction, in Tesla (Tesla, 1856-1943)J, tanthe
Poynting vector of magneto-hydrodynamics (Poynting, 18924)).

In a permanent or in a statistically steady regime, the titependent terms of
energy equation (54) can be neglected. The equation carb&haniegrated over
the volume of the Earth. The natural assumption is that aEtréh’s surface the
velocities are perpendicular to the Earth’s normal vectut that the surface is
stress free. Using the divergence theorem to transformaheme integral of the
divergence back to a surface integral of flux, most termselaanad only remains

1 1
- V. PI—7+—— ——21).
v (pv®v+ I I+47rGg®g 87rGg_ (53)

(54)

/Eq-dS:/QpHdV. (55)
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The surface flux in a statistically steady regime is simpgytibtal radiogenic heat
production.

It is surprising at first, that heat dissipation does not appe this balance.
To understand this point, we can directly integrate theggneguation written in
terms of temperature (36),

DT
Cp=——dV =
/Qp P Dt

DP (56)
—/q-dS+/ (aT——i—I:Vv) dV+/pHdV.
b Q Dt Q
On the right side, the first and last terms cancel each other@u the left side,
we can use (11) to replageDT' /Dt by 0(pT)/0t + V - (pvT). The modest
assumptions that'» is a constant and that the temperature is statisticallytaohs
lead to

/ (ME gy Vv) dv = 0. (57)
Q Dt

The total heat production due to dissipation is balancedbytork due to com-
pression and expansion over the convective cyldiew(itt et al, 1975). This bal-
ance is global not local. Dissipation occurs mostly nearltbendary layers of
the convection and compressional work is done along the deNmgs and up-
wellings of the flow.

2.6 Boundary and interface conditions
2.6.1 General method

A boundary condition is a special case of an interface cadivhen certain
properties are taken as known on one side of the interfacebian the interface
conditions for a quantity, the general method is to start from the conservation
equation ofA in its integral form (see (5)). We choose a cylindrical vokif
(a pill-box) of infinitely small radiusk where the top and bottom surfaces are
located at a distancée from a discontinuity surface (see Figure 2). If we now
make the volumé(¢) shrink to zero by decreasingat constant?, the volume
integrals of the time dependent and the source terms wil gdsto zero (unless
the source term contains explicit surface terms like in tsecf surface tension,
but this is irrelevant for the mantle). Since the surfacéefpill-boxX(e) remains
finite we must have
lim Ja-dS =0, (58)
e—0 %(e)
(the demonstration is here written for a vector flux, but isikgaextended to tensor
flux). Let us assume that the quantityaries very rapidly but continuously across
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Figure 2: The pillbox volume used to derive the interface Aodndary condi-
tions.

+e¢ so that the divergence theorem can be applied

lim
€—>

V.J,dV =0 (59)
0Ja(e)

We now consider a reference frame wheris along the normal to the interface,
n, andzx andy tangent to the interface. In the previous integral, therdigace can
be splitted into a the 2D divergence usiWy, = (0/0z,0/dy,0) and a vertical
derivative,

. € 0J4-n €
dxdylgrg)(/ 5 dz+VH-/€JAdz>:O. (60)

—€ Z

The boundary condition is therefore
T4 0+ V- lim [ Jadz =0, (61)

where[X] is the jump ofX across the interface, sometimes noféd — X . In
most cases, the second term goes to zero aiiticause the components.bére
bounded, or is exactly zero when the flux is only functioreofn this case, the
boundary condition fod becomes

[Ja] -n=0. (62)

At an interface, the normal flux ofi must therefore be continuous. However
in some cases, e.g., whdnvaries withz andy but contains a-derivative, the
second term may not cancel and this happens in the case of@ees associated
with phase changes.
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2.6.2 Interface conditions in the 1D case and for bounded vaables

Using the mass, momentum, energy and entropy conservatidhgir conser-
vative forms in (9), (53), (54) and (38) and assuming for nbatino variable
becomes infinite at an interface, the interface conditionthe reference frame
where the interface is motionless are

[pv] - n =0,
] - n—[Pln=0,
[ovU+q—T1-v+Pv]-n=0,

[va+%]-n:0,

(63)

(the gravitational force per unit mass and its potential@metinuous). In these
equations, we neglected the inertia and the kinetic eneagyd in the second
and third equations of (63) as appropriate for the mantle elinese terms are
accounted for (adding-pv ® v] - n to the second equation afavv?/2] - n to
the third), these equations are known as Hugoniot-Ranlanditions (Hugoniot,
1851-1887; Rankine, 1820-1872).

At the surface of a fluid, and on any impermeable interfacesres - n = 0,
the general jump conditions (63) without inertia, implytttiee heat flux|[q]-n, the
entropy flux|q/7]-n (and therefore the temperatufg and the stress components
[T] - n — [P]n are continuous.

In 3-D, four boundary conditions are necessary on a surfas®lve for the
three components of velocity and for the temperature. Thep&gature (or the
heat flux) can be imposed and, for the velocity, either frge (st - n = 0 and
T-n— (n-7-n)n = 0), ornoslip ¢ = 0), boundary conditions are generally
used.

2.6.3 Phase change interfaces

The mantle minerals undergo several phase transitionspdh @ad at least two
of them, the olivine-wadsleyite and the ringwoodite-peitate-magnesiowustite
transitions around 410 and 660 km depth

olivine = wadsleyite (64)

and
ringwoodite = perovskite + magnesiowustite. (65)

are sharp enough to be modeled by discontinuities. Comgiti63) suggest that
[pv]-n = 0and[r-n— Pn] = 0 and these seem to be the conditions used in con-
vection codes. However as pointed I8ofrieu et al, 1995), the first condition is
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correct, not the second one. The problem arises from theitefim, /0= present
in the rheological law (98) that becomes infinite when the fi®asked to change
its density discontinuously. To enforce the change in stiapeoccurs locally
the normal horizontal stresses have to become infinite agr@fibre their contri-
butions to the force equilibrium of a pill-box does not cdneben the pill-box
height is decreased.

The only terms may be unbounded on the interfaceoareo,, ando,.. Be-
cause of the presence ®f, only the first two normal stress components appear
in the integral of (61). The continuity of stress is thus

0 .. € 0 .. €
[r] n— [Pn+ Cor llir(l] O dz + eya—y llir(l] e dz = 0. (66)
Usingo,, = 0,.+2udv, /0x—2udv, /0=, and assuming that the viscosity remains
uniform, we see that

€ €

lim [ 04, dz=—2plim

e—0 J_¢ e—0 J_¢

a;; dz = —2ulv,]. (67)

The same result holds for tlag, term. Sincev, is discontinuous, forcing a sudden
change in volume implies a discontinuity of the tangenti@sses. The boundary
conditions are thus

e =203 0] = (1) 2y fo] = (1= P) = 0] = (1) = [po.] = 0. (68)

When the kinetic energy is neglected, and the viscous ssesse much smaller
than the pressure term, which are two approximations valithfe mantle, the last
two boundary conditions are, assuming continuity of terapee,

v+ ) 0+ ] -0 =0,
P (69)

[pvS]-n+ %[q] -n =0.
The diffusive fluxq can be eliminated from these two equations. Sipeeas
continuous and remembering tliat P/ p is the enthalpy+, we simply recognize

the Clapeyron condition
AH =TAS, (70)

where the enthalpy and entropy jumf®,] and[S], were replaced by their tra-
ditional notations of thermochemical textbooksH{ and AS. The heat flux is
discontinuous across an interface,

AHpv-n+[q]-n=0, (71)

and the discontinuity amounts to the enthalpy released éyrass flux that has
undergone a chemical reaction.
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2.6.4 Weakly deformable surface of a convective cell

When a no slip condition is imposed at the surface, both nbaméshear stresses
are resulting. These stresses, according to the seconthogecondition (63),
must balance the forcer - n + Pn exerted by the fluid. This is reasonable for
a laboratory experiment with a fluid totally enclosed in aktangid enough to
resist the fluid traction. However in the case of free sliprmary conditions, it
may seem strange that by imposing a zero vertical velocitipi@ normal stress
results at the free surface. It is therefore discussinggbist in more detail.

The natural boundary conditions should be that both the abamd tangential
stresses applied on the free deformable surface, h(zx,y,t), of a convective
fluid are zero

(tr-n— Pn) 0, (72)

(neglecting atmospheric pressure). In this expressiontdpegraphyh is un-
known and the normah, computed at the surface of the planenis= (e, —

Vgh)/\/1+ |Vh|? wheree, is the unit vector along, opposite to gravity.
The variation of topography is related to the convective féowl satisfies

%jth-VHh—vS:O. (73)
ot

This equation expresses the fact that a material particlthersurface remains
always on it. In this expression; andv? are the horizontal and vertical velocity
components at the surface of the planet. We will see in sedtibat lateral pres-
sure and stress variations are always very small comparke taverage pressure
(this is because in most fluids, and in the mantle, the latdzakity variations
remain negligible compared to the average density). Thigies that the surface
topography is not much affected by the internal dynamics ranghins close to
horizontal, |V yzh| << 1. Boundary condition (72) and topography advection
(73) can therefore be expanded at first order to give

on z=h —

(I c€; — Pez)on =0 " —Pogohez, (74)
dh
E = ’US, (75)

where we again make use of the fact that the total stress nsnclise to hydro-
static (py andg, are the surface values of density and gravity). At first qrtter
stress boundary condition on a weakly deformable top sergtherefore a zero
shear stress and a time dependent topography related tortaeesvelocity. This
topography applies an equivalent normal stress at thearederlevek = 0.

The convection equations with these boundary conditionsddoe solved but
this is not always useful. Since the boundary conditionslverboth displacement
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h and velocityv?, the solution is akin to an eigenvalue problem. It can be show
that for an internal density structure of wavelength? goes to zero in a time of
order i/ pogor Wherefi is the typical viscosity of the underlying liquid over the
depthA (Richards and Hagerl984). For the Earth, this time is the characteristic
time of postglacial rebound and is typically a few thousaedrg for wavelengths
of a few thousand kilometers.

For convection, where the characteristic times are mucdarit is thus ap-
propriate to assume that the induced topography is in mécdlaquilibrium with
the internal density structure. A zero normal velocity charéfore be imposed
and the resulting normal stress can be used to estimatepgbgraphy generated
by the convective flow. Internal compositional interfacas te treated in a sim-
ilar manner if they are only weakly deformable (i.e., wheaithntrinsic density
jumps are much larger than the thermal density variatiom$)s is the case for
the core-mantle boundary (CMB).

For short wavelength structures and for rapid events (faga localized ther-
mal anomaly impinging the Earth’s surface), the time foraggaphic equilibra-
tion becomes comparable to the time scale of the internalgs In this case the
precise computation of a history-dependent topographgégssary and the finite
elasticity of the lithosphere, the coldest part of the n@milays an important role
(Zhong et al, 1996).

3 Thermodynamic and rheological properties

The section 2 on conservation equations is valid for all 8uidhe differences
between mantle convection and core, oceanic or atmospbenection come
from the thermodynamic and transport properties of solds are very different
from those of usual fluids. We review some basic general ptiggeof solids in
this section 3 and will be more specific in the last section 6.

3.1 Equation of State and solid properties

The equation of state of any material (EoS) relates its presslensity and tem-
perature. The equation of state of a perfect g&éis/T" =constant, is well known,
but irrelevant for solids. Unfortunately there is no eqaatfor solids based on a
simple and efficient theoretical model. In the Earth minegadal community, the
third order finite strain Birch-Murnaghan EoS seems highiyored Birch, 1952).
This equation is cumbersome and does not rest on any souscphlyasis. More
physical approaches have been useWinet et al.(1987),Poirier and Tarantola
(1998) andStacey and Davi€2004) but it seems that for each solid, the EoS has
to be obtained experimentally.
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In the simplest cases, the density varies arouwheasured at temperatuifg
and pressuré’, as

P—P())’ (76)

= 1— (T -1
p Po( o 0) + i

where the thermal expansivity and incompressibility<; have been defined in
(32). This expression is a first order expansion of any EoS.

Equation (76) can be misleading if one forgets that the patarsc and K
cannot be constant but must be related through Maxwellioglst(for example,
their definitions (32) imply thad(ap) /0P = —0(p/ K7)/0T). Some models can
be found in the geophysical literature in which assumptioiasle inconsistently
about thermodynamic parameters (either constant or dégylendent) violate the
Maxwell rules.

Equation (76) can be used for a very simple numerical eséirtzt illus-
trates an important characteristics of solid Earth geojasysTypically for sili-
catesa ~ 107° K1, K1 ~ 10! Pa, while temperature variations in the mantle,
AT, are of a few 1000 K with a pressure increase between thecgudiad the
core, AP, of order of 10!! Pa. This indicates that the overall density variations
due to temperature differences are negligible comparetidset due to pressure
differences AT << 1 but AP/Kr ~ 1). In planets, at first order, the radial
density is only a function of pressure, not of temperatut@s s opposite to most
physical common sense gained from liquid or solid labosagxperiments, where
the properties are usually controlled by temperature.

A very important quantity in the thermodynamics of solidshe Griineisen
parameter (Griineisen, 1877-1949)

%

B pCy B pCy @—T

The Gruneisen parameter is dimensionless, does not vaci thtcough the mantle
(around 1) and can reasonably be considered as indeperfdéet temperature.
An empirical law Anderson1979) relate$’ with the density,

For, (p—> (78)
P

whereq is around 1. The Grineisen parameter can also be relatdtetant-
croscopic vibrational properties of crystalStacey 1977). At high temperature,
above the Debye temperature (Debye, 1884-1966), all Sadids more or less the
same heat capacity at constant volume. This is called therguhnd Petit rule
(Dulong, 1785-1838; Petit, 1791-1820). At high each atom vibrates and the
thermal vibrational energy is equipartioned in the threedions which leads to
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Cv.» = 3R per mole of atoms, independent of the nature of the sdatids(the
gas constant). Assuming that the mantle is made of puresfitiesM @, SiO, that
contains 7 atoms for a molar mass of 140 g, its heat capaattyratant volume is
therefore close t@'y,,, = 21R = 174.56 J K- 'mol~! or Cy, = 1247 J K-'kg~!.
The approximate constancy 61, and the fact thal is only a function ofp allow
us to integrate (77)

P = F(p) + aoKX(T — Tp) (ﬁ) N (79)

wherea, and K9 are the thermal expansivity and incompressibility at stadd
conditions and wheré’(p) is a density dependent integration constant. A rather
simple but acceptable choice for the functibiip), at least for mantle dynami-
cists, is the Murnaghan Eo$(rnaghan 1951) at constarif’ that allows us to
write an EoS for solids of the form

KR[N ) o (2)
B[R e ()

with an exponent: of order of 3. This equation could easily be used to derive
any thermodynamic property like(P,T") or Ky(P,T). This equation has been
used implicitly in various models of mantle convection (g@latzmaier 1988;
Bercovici et al, 1989a, ). An important consequence of this EoS assuming

is thata K+ is more or less constant and that

Kr ~ K2, <£> , a~ ag <£> : (81)
Po Po

In the mantle, the incompressibility increases and thetthéexpansion decreases
significantly with depth. The geophysical consequenceguatieer discussed in
6.5.1.

Two other thermodynamic equalities that can also be sttfghardly de-
duced by chain rules of derivatives will be also used in tHiefang. They are

Cp KS

These equalities relate the two heat capacitipmandC'y of the energy equations
(36). Sincel' ~ 1 and sincenT” << 1, the two heat capacities are basically
equal. It seems safer to assume thiatis constant (the Dulong and Petit rule) and
infer C'p from it, but most convection papers have done the reverssrgsson of
constantUp.
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The incompressibilityi's is defined similarly toKr but at constant entropy.
The theory of elastic waves introduces this parameter thatbe obtained from
seismic observations A

Ks = p (0~ 502). 83
wherev,, anduv, are thep ands wave velocities. Through this important parameter
a bridge can be built between geodynamics and seismology.

3.2 Rheology

In the section 2.3 on momentum conservation, no assumiarade on the rhe-
ology of the fluid, i.e., on the relation between the stressdeand the flow itself.
In contrast, the discussion of energy conservation, 2.#6aged on a strong as-
sumption. It assumes that the pressure-related work isegntecoverable, (30),
and, as a consequence, the work of the deviatoric stressissugnentirely as a
dissipative term, a source of entropy. In a real fluid, thig/rha wrong for two
reasons: part of the deviatoric stresses may be recovantlpart of the isotropic
work may not be recoverable. In the first case, elasticity m@ayresent, in the
second case, bulk viscosity.

3.2.1 Elasticity

On a very short time scale, the mantle is an elastic solid iithvbompressional
and shear waves propagate (eKgnnett(2001)). In an elastic solid, the strain
tensor,

€ — %(Vu + [V, (84)

whereu is the displacement vector (this is valid for small deforioas, see e.g.,
Landau and Lifchit12000) for the large deformation case) is linearly related t
the stress tensor,

Ufj = A?jkzeifl' (85)
where A€ is the rank four stiffness tensor. Since both the stress hadtrain
tensors are symmetric and because of the Maxwell thermaign@lationships,
O*U | De;j0er, = O*U [ e;;0¢y, the elastic tensor is invariant by permutations of
¢ andj, k andl, 75 andkl. This leaves in the most general case of anisotropy,
21 independent stiffness coefficients. In crystals, thimiper decreases with the
number of symmetries of the unit cell. For isotropic elasttids, only two param-
eters are needed, the incompressibility (we assume here, that the deformation
is isothermal) and the rigidity z and the elastic behavior satisfaies

o = Krtr(e)I + 2uup (ge - %tr(ge)l) : (86)
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wheretr(e?) = V - u. (This expression assumes that the displacement vector
is computed from an initial situation where the solid is petly stress-free, i.e.,

o’ = 0 whene® = 0. In practical problems, only incremental displacements
with respect to an initial situation where internal prees existed are known
ando® has to be undertood as a variation of the stress tensor). fiee elastic
parameters that are often introduced, Poisson’s rationdsumodulus (Young,
1773-1829), Lamé’s parameters (Lamé, 1795-1870), anplsifunctions of in-
compressibility and rigidity. Since the term proportiot@}: is traceless, equa-
tion (86) leads totr(o°) = 3Krtr(e°), the rheology law can also be written in
terms of compliance (i.e., gettirgj as a function oz°),

1 1
€ tr(a®) I + — (

1
— ¢ “te(a)). 7
9Ky 2\ ~3hie )—) 87)

In these equations, the trace of the stress tensor can aleplaeed by the pres-
sure definition
tr(c®) = —3P. (88)

The momentum equation (15) remains valid in a purely elasild (except
that the advective transport is generally neglectedDt ~ 9/0t), but the dis-
cussion of energy conservation and thermodynamics isrdiffefor elastic and
viscous bodies. The work of the elastic stresses is entredtpverable: a de-
formed elastic body returns to its undeformed shape wherexternal forces
are turned off. The work of the elastic stressesli8 = Vo, : de® instead of
oW = —PdV and, as a consequence, no dissipative entropy sourceddtate
deformation remains in the final temperature or entropy #gquonaFor an elastic
body, the temperature equations (36) and the entropy equgdy) hold when the
T : Vv source term is removed.

3.2.2 Viscous Newtonian rheology

On a very long time scale, it is reasonable to assume thanteenal deviatoric
stresses become eventually relaxed and dissipated as Haiatis the assump-
tion that we have implicitly made and that is usual in fluid im@aics. Since the
dissipative term ig- : Vv = 2 7 : ¢ and must be positive according to the sec-
ond law, this suggests a relationship between velocitgteel stresses and velocity
derivatives such that the total stress tensor has the form

0i; = —Poi; + A€ (89)
0;; being the Kronecker symbol (Kronecker, 1823-1891). Exdepthe time

derivative, the only formal difference between this expres and (85), if that
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pressure exists in a motionless fluid but disappears in aafonded elastic solid
(with no pre-stress).

Using the same arguments as for the elastic case, the vidoeol®gy in the
isotropic case can therefore be written in term of stiffness

o = (=P + (@) T+ 2u (& = Su(e)1) (90)

wheretr(€’) = V - v. Usingtr(a’) = 3(—P + (tr(¢")), the rheology can also
be expressed in term of compliance

1 1

= e3P+ e o (
The two parametens and( are positive according to the second law and are called
the shear and bulk viscosities. When they are intrinsic natproperties (i.e.,
independent of the flow itself), the fluid is called linear oeWwtonian (Newton,
1642-1727). The hypothesis of isotropy of the rheology @bably wrong for a
mantle composed of highly anisotropic materials (Kaeato, 1998) but only a
few papers have tried to tackle the problem of anisotrogcasity Christensen
1997a;Muhlhaus et al.2004).

Since t{g"”)/3 = —P + ¢V - v, the isotropic average of the total stress is not
the pressure term, unles¥ - v = 0. Therefore, part of the stress wotkz : €,
during isotropic compaction could be dissipated in the faihe heat source
2¢(V - v)2. A density-independent bulk viscosity allows an infinitergmession
under a finite isotropic stress. The elusive bulk viscos#isgmeter is generally
only introduced to be immediately omitted and we will do tlzeng. However,
using (90) with{ = 0 butV - v # 0 does not seem valid since it would remove all
resistance to compaction. We will see that considegirg 0 in (90) is formally
correct although the real physical explanation is more dempelastic stresses
must be present to provide a resistance to isotropic viscoogaction. The bulk
viscosity, or some equivalent concept, is however necgdsdrandle two phase
compaction problems{cKenzie 1984;Bercovici et al, 2001a)(see section 5.2).

o’ — %tr(gv)l) ) (92)

EU

3.2.3 Maxwellian Visco-elasticity

To account for the fact that the Earth behaves elasticallghamt time constants
and viscously at long times, it is often assumed that undeisdme stress, the
deformation has both elastic and viscous components. Byrsagithe viscous

compliance equation (91) with the time derivative of thesetacompliance equa-
tion, (87) and in the case of an infinite bulk viscosjtyve get

. . 1 1 1 /. 1 .
e= g tr@Lt o (o su@)l) + o (o gu@)l). (92
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whereo = o¥ = o€ ande = €' + €°. This time-dependent rheological law is the
constitutive law of a linear Maxwell solid.

A few simple illustrations of the behavior of a Maxwelliandyowill illustrate
the physical meaning of equation (92). First, we can coms$igecase where stress
and strain are simple time-dependent sinusoidal functiatisfrequencyw (i.e.,

o = oy exp(iwt) ande = €, exp(iwt)). The solution to this problem can then be
used to solve other time-dependent problems by Fourier ptace transforms.
The equation (92) becomes

]

1 1
(el + (1 - ) (a0~ 5trtent). (93)

€ =

wherer = pu/ug is the Maxwell time, (1). This equation can be compared to
(87), and shows that the solution of a visco-elastic probtefarmally equivalent
to that of an elastic problem with a complex elastic rigidifyhis is called the
correspondence principle.

We can also solve the problem of a purely 1D Maxwellian bodyly(@ ..
ande,, are non zero), submitted to a sudden lead = oH(t) (Wwhere H is
the Heaviside distribution, (Heaviside, 1850-1925)),matsudden strain,, =
eoH(t). The solutions are, far> 0,

1 1
= — — oot 94
€0 37€MRUO + 3MJO ) (94)
and .
To = 3kpg exp(—k—)eo, (95)
T

respectively, witht = 3Kr/(3Kr + pg). In the first case, a finite elastic de-
formation occurs instantaneously, followed by a perfebigwtonian flow. In the
second case, the initial deformation is immediately resgigly the elastic stresses,
that are then, dissipated by viscous relaxation over a tiomstant,7/k. This
time constant is different from the Maxwell time constanbash deviatoric and
non-deviatoric stresses are present. For mantle matbadirher /& would how-
ever be of the same order as the Maxwell time constafibh the mid-mantle,
KT ~ Q,UR ~ 200 GPa)

From equation (92), we can now understand what rheology beugsed for a
compressible viscous mantle. For phenomena that occun@ndonstants much
larger than the Maxwell time, the deviatoric stresses cdy lom supported by the
viscosity. As atypical viscosity for the deep mantle is ia tangel0'° —10%* Pa s
(see sections 4 and 6), the appropriate Maxwell times afresireinge 30 yr-30 kyr,
much shorter than those of convection. By constrast, theogi@ stress remains
only supported by elasticity in the approximation where Ik viscosity( is
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infinitely large. The appropriate rheology for mantle cociven is therefore given
by

€

S @+ i (- sut@). (96)

This equation is simultaneously a rheology equation fordénaatoric stress and
an EoS for the isotropic stress. Usiilg= —tr(a)/3, the stress tensor verifies

P
=—-Pl+2ule——1]). 97
o I+ 2p (é 3 Kf) (97)
This equation is intrinsically a visco-elastic equatidmattcan be replaced by a
purely viscous equation plus an EoS

o =PIt 2 (e- %tr(§)1> , (98)

P
=
The equation (98) is therefore the appropriate limit of tqaaion (90) for slow
deformation, wherf = +oo and when isotropic compaction is resisted by the
elastic stresses.

The use of a Maxwell visco-elastic body to represent the laaheology on
short time scale remains however rather arbitrary. Instdadimming the elastic
and viscous deformations for the same stress tensor, anlotbar viscoelastic
body could be obtained by partitioning the total stress eltstic and viscous
components for the same strain rate. Basically instead whfahe elasticity
and the viscosity added like a spring and a dashpot in sévlagwell rheology),
this Kelvin-Voigt rheology would connect in parallel a viacs dashpot with an
elastic spring (Kelvin, 1824-1907; Voigt, 1850-1919). @licse further degrees
of complexity could be reached by summing Maxwell and Voiodies, in series
or in parallel. Such models have sometimes be used for thé Bar the data that
could support or dismiss them is scard@én et al.1986).

tr(e) (99)

3.2.4 Non-linear rheologies

Even without elasticity and bulk viscosity, the assumptd@ linear Newtonian
rheology for the mantle is problematic. The shear viscos@égnot be a direct
function of velocity since this would contradict the ne@gGalilean invariance
of material properties. However the shear viscosity co@dby function of the
invariants of the strain rate tensor. There are three iawsi of the strain rate
tensor; its trace (but tt-) = 0, in the absence of bulk viscosity), its determinant
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and the second invariaiy = /€ : € (where as in (28), the double dots denote
tensor contraction). The viscosity could therefore be afiom of defé) and /.

The main mechanisms of solid state deformation pertineninfantle condi-
tions (the lithosphere with brittle and plastic deformasas excluded) are either
diffusion creep or dislocation creep (s@eirier, 1991). In the first case, finite de-
formation is obtained by summing the migrations of indiatlatoms exchanging
their positions with crystalline lattice vacancies. Instals, the average number
of lattice vacancie§’ varies with pressure? and temperaturel], according to a
Boltzmann statistics (Boltzmann, 1844-1906),

PV

C x exp( RT), (100)
(V is the atomic volumeR the gas constant). A mineral is composed of grains
of sized with an average concentration of lattice vacandigs Submitted to a
deviatoric stress, a gradient of vacancies of ordéVC| « (Cy/d)(7V/RT)
appears due to the difference in stress regime between ¢ks fa compression
and the faces in extension( << RT). This induces the flux of atoms (number
of atoms per unit surface and unit time)

Co T
Jx D R (101)

where D is a diffusion coefficient. This flux of atoms goes from theigraces
in compression to the grain faces in extension. Along theation of maximum
compression, each crystal grain shortens by a quanfityhich corresponds to a
total transport ofi?dd/V atoms. These atoms can be transported in a fitrigy
the flux.J;, across the grain of sectiaff (with volume diffusionD,,). They can
also be transported by grain boundary flx(with grain boundary diffusior},)
along the grains interfaces through a surfad€h being the thickness of the grain
boundary), according to

d*od d*d

~ Jpd2st, ~ Judht. (102)

Asé = (4d/dt)/d, the previous equations lead to the stress-strain ratéameip

. V h

This diffusion mechanisms lead to a Newtonian rheology biti & grain-size
dependence of the viscosity; oc d* for Nabarro-Herring creep with diffusion
inside the grain (Nabarro, 1916-2006; Herring, 1914) gnd< d* for Coble

grain-boundary creep (Coble, 1928-1992). The viscositgl$® very strongly
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T-dependent not so much because of the explicit fa€tar (103), but because
diffusion is a thermally activated process, o« exp(Eys/RT), whereEy;; is an
activation enthalpy of diffusion.

In the case of dislocation creep, lines or planar imperbedtiare present in the
crystalline lattice and macroscopic deformation occursligymotion along these
imperfections, called dislocations. Instead of the grae & for diffusion creep,
the mean spacing; between dislocations provides the length-scale. Thisdest
is often found to vary a$/I,. Therefore, instead of a diffusion creep with a vis-
cosity ind™ the resulting rheology is rather il " and is also thermally activated
with an activation energy,;,. Dislocation creep leads to a non-linear regime
where the equivalent viscosity varies with the second iavawith a power—n,
wheren is typically of order 2,

€~ 13 exp(Eys/RT)T, (104)

(this relationship is often written, in shoé, ~ 7™ with a stress exponent of
order 3 butr™ really meand;* 7).

In general, for a given stress and a given temperature, trehamesm with
the smallest viscosity (largest strain rate) prevails. Weelinear (grain size de-
pendent), or non-linear (stress dependent), viscositeealao strongly dependent
upon temperature, pressure, melt content, water contengéraiogical phase and
oxygen fugacity (e.gHirth and Kolhsted{(1996)). In section 6.3 we will further
discuss the rheological mechanisms appropriate for théhEar

4 Physics of convection

4.1 Convection experiments

The complex and very general system of equations that we tdaeeissed in
sections 2 and 3, can be used to model an infinite number ofeflow situations.
Mantle flow can sometimes be simply modeled as driven by thigomof plates
(some examples are discussed in Chapter 5 and Chapter & dirdatise). It can
also be induced by compositional density anomalies (somepbes are discussed
in Chapter 5 and Chapter 12 of this Treatise). However, adorehtal cause of
motion is due to the interplay between density and temperatnd this is called
thermal convection.

The phenomenon of thermal convection is common to all flugds ( liquid
and creeping solids) and it can be illustrated by simple expts (see also
Chapter 4). The simplest can be done using water and an engreal setup
called the shadowgraph method. Parallel light enters aspanent fluid put in a
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glass tank and is deflected where there are refractive inclkients due to tem-
perature variations in the fluid. A pattern of bright regiarsd dark shadows is
formed on a screen put on the other side of the tank. From tiadavgraph the
structure of the temperature pattern can be qualitativedgssed (see examples of
shadowgraphs iffiritton (1988)).

Using the shadowgraph method, itis easy to perform a fewrexpats. When
a liquid is heated or cooled from its side (as in a glass of @@ter with a hand
holding one side of the glass), motion always occurs. Theyldottes in the
fluid pg are different on the sides of the fluid because of the densityperature
relationship. Motion therefore starts in the direction ogpipe tog on the heated
side of the tank with a downwelling along the coldest side.

If a homogeneous fluid is heated from the top or cooled frombibtéom, no
motion is induced. Since temperature variations are aloagity and with no
horizontal components of the gravitational forces, the myatny of this situation
seems to justify that the fluid remains motionless. What msthe contrary, un-
expected (or should be unexpected from symmetry argumests$lat, when the
fluid is heated from the bottom or cooled from the top, a spoeas motion can
occur if a strong enough temperature gradient is imposets. i$hvhat physicists
call a spontaneous symmetry breaking: the fluid propertnesthe temperature
forcing are invariant with respect to horizontal transdas, but this invariance
(that physicists call symmetry) is surprisingly lost whemeection starts.

4.2 Basic balance

From a simple thought experiment on thermal convection, avederive the basic
dynamic balance of convection. Let us consider a volume ad,flQ, of char-
acteristic sizez, in which there is a temperature exces%' with respect to the
surrounding fluid. The fluid is subject to a gravggy it has an average density
and thermal expansivity. The volume2, because of its anomalous temperature,
experiences an Archimedian force, or buoyancy (Archimedarad 287-212 BC)
given by

F = —1a®paATg, (105)

(¢1 is a constant taking into account the shap€pé.g.,c; = 47/3 for a sphere).
If the volume(2 is in a fluid of viscosityy, it will sink or rise with a velocity given
by Stokes law (Stockes, 1819-1903)

Vs = —Cio———, (106)

(co is a drag coefficient accounting for the shapéf.e.,c, = 7 /6 for a sphere).
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During its motion, the volume& exchanges heat by diffusion with the rest of
the fluid and the diffusion equation (42) tells us that a tirherder
2
t = e 2L (107)
k
Is needed before temperature equilibration with its surthigs. During this time,
the fluid parcel travels the distante- v,t,.

A natural indication of the possibility that the parcel ofilunoves can be
obtained by comparing the distanc® the characteristic size When! >> a,
i.e., when the fluid volume can be displaced by several titsesize, motion will
be possible. On the contrary whér < «, a thermal equilibration will be so rapid
that no motion will occur.

The condition >> a, whenuv, andt, are replaced by the above expressions,
depends on only one quantity, the Rayleigh nunber

_ p*PalATga’Cp  aATga®

R
“ wk KV

, (108)

in terms of which motion occurs wheRa >> 1 (assuming that,cocs ~ 1).
The Rayleigh number compares the driving mechanism (éhg. Atchimedian
buoyancy) to the two resistive mechanisms, the diffusiohest, represented by
k (see (41)), and the diffusion of momentum, represented (sgee (47)).

This simple balance suggests that a large nondimensionab@uRa favors
fluid motion. How largeRa needs to be, is a question that we cannot address at
this moment but it will be discussed in section 4.5. Conwerclifts hot fluid and
causes cold fluid to sink (assuming> 0, which is true for most fluids and for the
mantle). A convective system will rapidly reach an equilibn where all thermal
heterogeneities are swept up or downKii is large) or thermally equilibrated (if
Ra is small), unless a forcing mechanism continuously injeetw cold parcels
at the top and new hot parcels at the bottom. This can be domediing the
top surface or heating the bottom one. When a fluid is heatad the side, a
lateral temperature anomaly is constantly imposed andiglgd! lateral thermal
equilibration is prevented. The fluid remains in motion reliess of the amplitude
of the imposed temperature anomaly.

4.3 Two simple solutions
4.3.1 The diffusive solution

Trying to directly and exactly solve the mass, momentumrggnand Poisson’s
equations and accounting for a realistic EoS would cegdirla formidable task.
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This complex system of equations has however two ratherooisvibut opposite
solutions.
A steady and motionless solution is indeed possible. Thenagond /ot =
0 andv = 0 satisfies the mass equation (9), the momentum equation (i&) w
the pressure is hydrostatic,
0=—-VP+pg, (109)

and the energy equation (36) when the temperature is drf(sising the Fourier
law (40)),
V - (kVT)+pH = 0. (110)

Solving analytically for the hydrostatic pressure and tifusive temperature is
trivial when H, k andp are uniform. For example, choosiagositive downward,
we get
1

P=pgz, T=T,+ AT% + 5pHz(h - 2), (111)
across a conductive solution with = 7,, P = 0atz = 0 andT = Ty, + AT
at z = h. Computing analytically the conductive solution remaieadible, but
could be quite cumbersome if one introduces a realistic EaSamputes gravity
in agreement with the density distribution using the Paisequation (48). In
section 4.5 we will understand why the system does not naagsshoose this
solution.

4.3.2 The adiabatic solution

The previous diffusive solution was obtained for a steadyioméess situation.
However, the opposite situation where the velocities arg la&ge, also corre-
sponds to a rather simple situation. The energy equationcg@®also be written

DInT D1
pCyT o _p e =-V.q+71:Vv+pH,
Dt Dt
DInT DpP (112)
n !
CpT — =-V. 'V H.
pCPp ( Dt Cr Dt) qQ+T:VV+p

The right sides of these equations were previously showe egpal top 7' DS/ Dt

in (37). If we decrease the viscosity in a fluid in a thoughtesxpent, the con-
vective velocity will increase. With a large velocity, thevection termsy - VT,
v-VInpandv-V P, willbecome much larger than the time dependent, diffusion
and radioactive production terms. A large velocity alsoliega well-mixed fluid

in which the lateral temperature variations and thus therdhidensity variations,
will be small. The viscous stresses, related to these dedifierences, will there-
fore decrease. As a consequence, when convection is vigermaugh, the fluid
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should evolve toward a situation where
(VInT)g —T'(ViInp)g =0,

! (113)
(VInT)g oCr (VP)s =0.
Since such equations imply that the entropy is exactly awese DS/Dt = 0,
this equilibrium is called the adiabatic equilibrium. Wedad a subscript]s to
remember this conservation.

Notice that, since the Griineisen parameter is only dewgpendent, (78),
density and temperature are simply related along the adidbar exemple, if
the Gruneisen parameter is a constdit(usingg = 0 in (78)), the first of the

equations (113) implies
1)
T=T, <ﬁ> , (114)
Po
whereT;, andp, are two reference values. This equation implies that thatedic
temperature increases by a factor 1.72 (e.g., from 1300 K280 X) from the

asthenosphergy{ ~ 3200 kg m—3) to the CMB  ~ 5500 kg m™3), if we assume
[y =1.

4.3.3 Stability of the adiabatic gradient

In section 4.2 we discussed a laboratory convection exmairbut we totally
neglected the adiabatic temperature variations. When d ifucompressed, it
heats up and it cools down when decompressed. This is thesaeng physics
than explains why the atmospheric temperature decreasesiviude. Of course
this adibatic effects are vanishingly small in a tank expent.

In fact we can redo the same estimate as in section 4.2 butiactar the
adiabatic gradient with only a little change. If a parcel ofidlis rapidly moved
up or down along: by a distance, it changes its temperature adiabatically, by
the quantitya(d7'/dz)s. However the surrounding fluid will be at the temperature
a(dT'/dz) wheredT/dz is just the temperature gradient, not necessarily adiabati
of the fluid at rest. We can defin®T,,, as the non-adiabatic temperatux&,,, =
a(dT/dz — (dT/dz)s). The parcel being suddenly warmer or colder than the
surroundings will rise or sink with a Stokes velocity thathrer than (106) will be

of order
a’paAT,.g
Vg = —CiCg———————.

(115)

Since we choséz > 0 alongg, the adiabatic gradient is positive and the fluid
parcel will be locally unstable if the gradient in the sumading fluid is larger (su-
peradiabatic) than the adiabatic gradient. On the conaayb-adiabatic gradient
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will be stable with respect to convection. It is therefore the total temperature
difference between the top and bottom of the fluid that drmesion, but only its
non-adiabatic part.

To compare the Stokes velocity with the thermal equililonatime, we need
to introduce a modified Rayleigh number

aAT,.g00°
KU '

Ra = (116)
This number is based on the non-adiabatic temperatureefiite in excess of the
adiabatic variation imposed over the height

We have shown that inside a convective cell, the thermalignadhould be su-
peradiabatic. This superadiabacity being the driving s@wif convection implies
that too large a superadiabaticity would provide negaeegiback and rapidly re-
duce its excess temperature returning to adiabaticitys Techanism suggests
that an adiabatic reference background should not be sual asgsumption for a
convective fluid.

This adiabaticity hypothesis should however not be takeriterally (Jean-
loz and Morris 1987). In most numerical simulations the resulting avedag
geotherm can be far (a few hundred K) from adiaba®iar(ge et al.2001). First,
radioactive heating, dissipation and diffusion are negtally negligible, second,
even if each fluid parcel follows its own adiabatic geothetm,average geotherm
may not correspond to any particular adiabat.

4.4 Approximate equations
4.4.1 Depth dependent reference profiles

Since we guessed that the thermodynamic state should natobiart from an
hydrostatic adiabat, we are going to choose this state dsr@nee and rewrite the
equations of fluid dynamics in term of perturbations. We deratl the reference
variables with an overbar. We choose a reference hydrogiegssure

VP = pg, (117)

and adiabatic temperature and densities according to (113)

vT :%gT
P (118)
Vi =5op
c,r’”

where all the parameters are computed along the referertbegen and wherg
has been solved using Poisson’s equation (48) with thearedéerdensity.
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The reference parameters are depth-dependent and usvaltyfor a simple
EoS cannot be analytically obtained. They can however bgabted numerically
from (113) assuming that the Griineisen parameter is palgpendent. Using the
EoS (80), all the thermodynamic quantities become funstioindepth only, so
that the reference profile can be obtained by quadratures.

4.4.2 Nondimensionalization

As a principle, the validity of equations cannot depend anuthits in which the
quantities are expressed. The laws of physics can onlyerdiaiensionless com-
binations of parameters (e.@arenblatt 1996). This is fundamental in fluid dy-
namics where a large number of quantities appears in theieqaaA necessary
starting point is therefore to rephrase any fluid dynamiadb@m involving N
dimensional parameters in term &f dimensionless quantitiesV(— M < 0 is
the number of independent physical dimensions of the prople

It is not very convenient to perform the nondimensional@abf the convec-
tion equations using the variable reference profiles. Wettiesefore introduce
constant parameters, with indicek, corresponding to some typical or mantle-
averaged values of the depth dependent reference valueastidduce for exam-
ple g, po, go OF Cy).

The adiabatic equations (118) impose the natural scalefopérature varia-
tion,C,/(al|g||). This scale varies with depth but should not be too diffefienh
the value computed with the constant parameters (with @sd). We therefore
introduce a nondimensional number, the dissipation number

Qpgoa

0 )
Op

Dy = (119)

that compares the natural scale of temperature variatidthske layer thickness,
a. The dissipation numbeb, is around 0.5 for the Earth’s mantle. For any
laboratory experiment this number would be infinitely smalhly geophysical
or astrophysical problems have large dissipation numbé&he hydrostatic and
adiabatic reference profiles satisfy approximately
‘;—Z ~ DO%, and % ~ [F)—sg. (120)

A zero dissipation number leads to uniform reference teatpee and pressure,
as the adiabatic compression effects are not large enowgjfetts these quantities.

From top to bottom, the reference temperature increasebatically byATs
while a total temperature jumpTs + AT, is imposed. Only the excess non
adiabatic temperatur@T,,, is really useful to drive convection. The term driving
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convective instability is thus the dimensionless quarity
€ = apAT,,, (121)

which is always a small number (all the necessary numer@lales are listed in
Table 1).

All these preliminaries have been somewhat lengthy but veenamv ready
to nondimensionalize the various equations. Then, we willthe approximate
equations by simply taking into account that < 1 (anelastic equations) or more
crudely that bote << 1 and Dy << 1 (Boussinesq equations)Jarvis and
Mckenzige 1980). The mathematical formulation is heavy becauseehtimber
of symbols with or without overbars, tildes or indices, ustraightforward. The
reader may jump directly to the results 4.4.3.

To nondimensionalize the equations we can use the quanti@ad AT,,,;
we also need a characteristic velocity and pressure. Folpaur discussion of
the basic force balance in section 4.2, we use a typical Stok®city, V, =
a’gopooAT ./ 1o, time a/Vy, and pressuré, = 14V, /a. Using the definitions
of Dy, (119),['y, (77) ande, (121), we perform the following change of variables

aK9% Dy CY _

v po Lo OXO/V’
Dy C%
Lo CY
oo =T + €T, (122)

P=P+e¢K) P,

1~
vV =-V,
a
0 _ KEDCh o

The EoS (76) can then be expanded at first order for a thernamdirstate close
to the hydrostatic adiabatic reference

p=p+-L(P—P)—apT-T). (123)
Kr
After nondimensionalization, the EoS becomes
K3DyC% -~  a -
— 51 T2 Pp Y. 124
p=o(1+e Gl R r- 20) (124)

AsC% ~ CY, Kr ~ K% a ~ ag, P ~ T ~ 1 ande << 1 it shows that
the density remains close to the reference profile withimgeof ordere, p =
p(1+0(e)).
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4.4.3 Anelastic approximation

To approximate the equations of convection we perform ttengh of variables,
(122), and use the fact thats small. The choice of the reference state leads to
the cancelation of the ternt3(1) of the mass, momentum and energy equations,
(9), (16) and (36).

At orderO(e), the first terms that remain in each equation are

DV os g KOD,CY - g a
@_V:_vp+v.i+ﬁ§4_oc_g _reay
Pr Dt po 9o Kr T'y Cy Po Jo Qo (125)
p Cp DT 1 = [k = T - p g B
Lt el R )+ 229 p T
£o O% Dt Ra/ ko Aj_yna, + * o Po Go 0 Ug
p 1 poHa? - -
R DotV
oo Ra koAT 0T VY

In the last equationy, is the component of the velocity field is along the radial
reference gravitg-v = gv,. This new set of equations constitutes the equation of
fluid dynamics in the anelastic approximation. The term fasi&c” comes from
the fact that the propagation of sound waves is impossibteshe term idp /ot
is neglected.

In equations (125), we introduced the Raylei@fla, and PrandltPr, numbers

OzoATnap%goa?’C?a N AT, qg00°

Hoko VoK

Ra = (126)

_mCh
B ko B Ko
The physical meaning of the Rayleigh number as a measurenvkective vigor
has already been discussed. The Prandtl number (Prandh;1963) compares
the two diffusive processes: namely the diffusion of moraeménd heat.

In the momentum equation, the nondimensionalized stresstésT = Ta/ (Vo)
which, in the Newtonian case (without bulk viscosity), bees

Pr (127)

~ ~ 2
— Lo - v s (128)
Ho 3 Ho

RE

The formalismis already so heavy that we have not includedéif-gravitational
term. This term is not negligible at long wavelengths (sestiee 2.5.2). To ac-
count for this term we should have added on the right side obrs& equation
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of (125) a term—p/py Vb, where the perturbed gravitational potential due to the
departure of the density from the reference profile, saigfi@isson’s equation

v =3-7L (ﬁﬁc—fjp - ﬁT) , (129)

where< p > is the average density of the Earth.

4.4.4 Dimensionless numbers

TheratioRa/ Pr is also called the Grashof numb@&r = agAT,,a’/v? (Grashof,
1826-1893). This number can also be writtenlgs/v and could be called the
Reynolds numbeie, of the flow (Reynolds, 1842-1912). Using one or the other
names depends on the quantities that are best known. Fompéxairinthe ve-
locity V' is a parameter imposed by a boundary condition, using it ttopa
the nondimensionalization and speaking in terms of Reygoldnber would be
more natural than using the Grashof number. If a thermaktsira is imposed
by a velocity boundary condition (for example by the thickenof the oceanic
lithosphere with age), it would seem natural to introducetal& numbet a/x
(Péclet, 1973-1857), which is nothing else than the Rgkl@eumber of the flow
if the velocity is imposed by the internal dynamics.

The Rayleigh and Prandlt numbers can be estimated in diffevays. In fact
the only difficult parameter to know is the viscosity. In mussttbooks the value
of 10%! Pa s, first proposed biaskell (1937), is given with a unanimity that
hides very large uncertainties and most probably a larggrgghical variability.
The mantle viscosity and its depth dependence can be coestriay post-glacial
rebound, geoid, true polar wander, change of flattening efEarth, and plate
force balance models or extrapolated from laboratory measents. An increase
of viscosity with depth, between one or two orders of magtesiis likely, with an
asthenosphere significantly less viscols'{ Pa s) at least under oceanic plates
and a lower mantle probably around?? Pa s (see details in section 6.1). It is
impossible to give justice to all the papers on this subjettsome geodynamic
estimates of mantle viscosity can be found in eRgltier (1989); Sabadini and
Yuen(1989); Lambeck and Johnstai1998) orRicard et al.(1993a). Whatever
the value of the real viscosity, the rati¢u/Pr is so small that inertia plays no
role in the mantle and the left side of the momentum equatiotiné anelastic
approximation (125) can safely be set to zero (see numesadaés in Table 1).

We can also introduce the Rayleigh and PrandIt number in d&(E24) and
define a new numben/,

K9 . a .
p=7p (1 + - RaPra’P — ﬁTe,) . (130)

T &%)
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This number is the Mach numbéf = vp /vy, ratio of the velocity of thermal
diffusion, ¢ /a, to the velocityv,, = /Kr/p (Mach, 1838-1916). This last

velocity is very close to the bulk velocity, = /Kgs/p (see (83)). The anelas-
tic approximation is sometimes called small Mach number@aamation. The
Earth’'s Mach number is indeed of order 10 since thermal diffusion is much
slower than the sound speed. However the anelastic appatiginreally requires
a smallRaPrM? and this quantity is justD,C% /T,CY,, i.e., of ordere = 1072,

A planet could have a very low Mach number but so large a Ptamathber that
the anelastic approximation would not be valid. Similarlplanet can have a
low Reynolds number (creeping convection) with a very ladRgyleigh number
(chaotic convection).

4.4.5 Boussinesq approximation

As was expected from section 2.5.3, where we had shown tealigisipation and
the adiabatic terms balance each other in a statisticall\tstate regime, these
terms are proportional to the same dissipation nuniberAlthough Dy is not so
small, most of the physics of mantle convection, exceptferadditional adiabatic
temperature gradient, is captured with models wheges arbitrarily set to zero.

In the approximatio, = 0, the so-called Boussinesq approximation (Boussi-
nesq, 1842-1929), the reference density and temperate@ri®se constants ac-
cording to (120) (when the reference temperature is unifaercan also choose
Cp = Cy = Cp = Cy). The non adiabatic temperature increasg,, becomes
simply the total temperature increadd’. This approximation is of course excel-
lent for laboratory scale experiments where effectivBly<< 1. The EoS (124)
indicates that the density is only a function of temperaturé the fluid dynamics
equations become

V v =0,
Ra Dv ~ -~ = [T ~ g a -
——=-VP+V.|[—(V vyl | - =2>—T
Pr Dt * <M0( v+IvYl )> goog (131)
DT 1 - [k~- 1 poHa?
—=—V .| —=VT — )
Dt Ra [ko ] + Ra koAT

Here again as in the mantlé; = Ra/Pr << 1, the inertia in the momentum
equation (131) can be neglected. The self-gravitationmah te;?/poﬁzﬂ should
be added to the momentum equation (second equation of (&@1lgrge scale
simulations, the gravitational potential being solutidn(b29) where only the
thermal part of the density variation needs to be taken intoant.

The physical behavior of a large Rayleigh number is obvioud81). When
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Ra — oo, the temperature becomes a purely advected and conseraetityu
DT /Dt = 0.

4.4.6 Internal heating

In the nondimensionalization, we assumed that the norbat@temperature
AT,, and the radioactive sources are two independent quan@@issourse, in the
case where the mantle is only heated from within, the exeasperature is not
anymore a free parameter but must result from the propesfidse flow itself. In
the nondimensionalization, we can replase,, by poHa?/k, in such a way that
the radioactive heat source of the anelastic or Boussinesg equations, (125)
or (131), are simplyl /Ra. This choice requires the introduction of a somewhat
different Rayleigh number (internally heated Rayleigh ioem)

aoH pigoa®C'%

RGH =
1ok

(132)

4.47 Alternative forms

Using the formulation of internal energy in terms@jf,, we would have reached
the equivalent anelastic energy equation

5CvDT 1= [hefT -
PV G| [t T
W DI Ra' |k \ar )T
apghr
+—T—TD TUZ+—
ao po go Ks po Ra ko AT

p 1 poHa? = (139)
— 4 Dy 1 V¥,

where the reference incompressibiliti is the incompressibility measured along
the reference adiabatic profile

KS:p(é‘_P) :ﬁHVpH: P
o)s IVl Vol

(134)

This relationship is given here as a definition/gf, and this incompressibility
is built from a theoretical hydrostatic and adiabatic moddbwever if the real
Earth is indeed hydrostatic and adiabatic, then this m@tatip (134) connects
a seismological observatiaiis(r)/p(r) to the density gradient of the real Earth
p(r)g(r)/||V p(r)||. This is the important Bullen hypothesBullen, 1940) used
to build the reference density of the Earth (el@zjewonski and Andersph981).
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Table 1: Typical parameter values for numerical models ohtheaconvection.
To emphasize the drastic differences between the highlyous mantle and a
real liquid (in which shear waves do not propagate), we addtidnates for the
core assuming that core convection is so efficient that ordydE non-adiabatic
temperature difference can be maintained across it. Nitigewith only 1 K of

temperature difference, the Rayleigh number of the fluie @oould already reach
10°71.

Mantle Core

size a 310 310 m
dyn. viscosity Lo 10% 103 Pas
heat capacity CY ouCy, 1000 700 JKlkg!
density 00 4000 11000 kg m3
heat cond. ko 3 50 WnrtK-!
expansivity o 210° 10°° K-t
temperature excess AT, 1500 1? K
radiactivity prod. H 7101 0? W kg
gravity 90 9.8 5 m s2
incompressibility K% 101 10t Pa
kin. viscosity v = o/ po 25107 9.110° m? s!
thermal diff. k=ko/(ppC%) 75107 6.510° m? S

€ 3.010° 1.0°°
dissip. number Dy 0.59 0.21
Gruneisen par. r 0.50 1.3
Rayleigh Ra 4210 22107
Intern. Rayleigh Ray 2.410° 0?
PrandIt Pr 3.310% 1.410°?
Reynolds Re = Ra/Pr 1310% 1.610°
Mach M 5.010% 2.310716

RaPrM? 35102 1610°
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4.4.8 Change of nondimensionalization

We thought after the discussion of the basic balance of atiorein section 4.2,
that it was logical to use a Stokes veloclty, to normalize the equations. We
have therefore introduced a velocity and a time of order df 80yr! and of
a/Vy=10000 yr (see Table 1). This is certainly very fast or shornpared with
geological scales. Most physical and geophysical textbgelg.,Schubert et aJ.
2001) use instead a diffusive timg = pCpa?/ko and velocitya/tp. This is
perfectly valid but Table 1, shows that the diffusive timelalocity amount to
tp = 400 byr andVp = 7 107 m yr—!. This is even less Earth-like which means
that the nondimensionalized values using a diffusive tirag have rather unequal
orders of magnitude. Using this approach, we would haveiddathe anelastic
equations

v (2% =0.
Po
1 Dv ~ - = 0 & K% Dy,C% -~ 0 g O ~
VP4V LEDL0EEp P B by
Pr Dt po 9o K T’y CY Po o G (135)
pCpDT =~ [ke(T -
——— =V |-V |—+T
£o 0103 Dt |j€0 T + +
apg, s ppH® Do o
— L2 DpyT 2.V
&0 Po Yo 0H s po ko AT * RGI M
and the Boussinesq equations,
V-0 =0,
LDV $py v (L (o499 - B L Rat
S TAT T -l —(Vv v — =—Ra
Pr Dt Lo go Qo ’ (136)
DT - k=~ 1 poHa?
- =V . |—VT — .
D7 [ko ] * Ra koAT

Notice that theRa number appears in different places than in (125) or (131). Of
course after their appropriate changes of variables thatieak back with real
dimensions are the same.

4.5 Linear stability analysis for basally heated convectio

Using the Boussinesqg approximation, it is easy to undedstany the diffusive
solution is not necessarily the solution chosen by the flliide standard way to
test the stability of a solution is what physicists call adgtef marginal stability
(see also Chapter 5). It consists of substituing into théckeguations a known
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solution plus an infinitely small perturbation and checkimgether or not this
perturbation amplifies, decreases or propagates. Its i ibmhe perturbation
decreases in amplitude, that the tested solution is stable.

Since we benefit from the assumption that the perturbatienimgally an
infinitely small amplitude, computing its time evolutionsgnpler than solving
the general equations since the nonlinear products cangbeated. The marginal
stability study is therefore powerful for mapping the sti#ypdomain of a solution
and describing its destabilization. At the same time its®@aomewhat frustrating
as the real unstable solution cannot be obtained.

This approach can be employed to understand the destébitisd the diffu-
sive solution. We use the Boussinesq approximation, witistant viscosity and
conductivity, neglecting inertia and without internal tieg. The nondimension-
alized equations (131) (the tilde sign has been omittedifoplcity) write

V v =0,

—VP+ VQV - Tez :0, (137)

aT 1,
5 +V-VT—RCLV T,
(e. is a normal vector directed alorg). The steady diffusive nondimensional
temperature solution i = z with z directed alongg, and we test a solution of the
formT = 2+4-6T. The temperature boundary conditidh= 0 ontop and’ = 1 at
the bottom requires thafl’ vanishes for = 0 andz = 1. As in the diffusive case
the velocity is zero, the velocity induced by’ will be infinitely smalldv. In the
nonlinear term, we can do the approximatioitW 1" = 6v-V (z+T) ~ dv, = v,.
With this approximation, the equations are linear and wefireha solution in the
form of a plane wave.

For a fluid confined between = 0 andz = 1 and unbounded in the-
direction, a solutiony7T" = 6(t) sin(rz) sin(kx) is appropriate and satisfies the
boundary conditions. This solution is 2D, has a single madiae z-direction,
and is periodic inz with wavelength\ = 27 /k. More complex patterns could
be tried but the mode we have chosen would destabilize fiest Ghapter 5).
It is then straightforward to deduce that for such a thernmalnaaly, the energy
equation imposes a vertical velocity

s TN .
v, = («9 + Ra 0) sin(7z) sin(kx). (138)

From mass conservation thecomponent of the velocity must be

™

k

(e

. (k2 +7?) ]
(8 + TQ) cos(mz) cos(kx). (139)
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This flow has a vertical component that vanishes on the tofbattdm surfaces
where the horizontal component is maximum. The choice ofténeperature
structure corresponds to free-slip velocity conditionshaf' the velocity and the
temperature are introduced in the momentum equation, e évolution of the
temperature perturbation is found

- k2 (7% + k?)
9_9<(W2+k2)2— — ) (140)

For any wavenumbet, a small enough Rayleigh number corresponds to a
stable solutiond/# < 0. When the Rayleigh number is increased, the temperature
component of wavenumbérbecomes unstable at the threshold Rayleigh

(72 + k2)?

Ra =3 (141)
This Ra(k) curve is plotted in Fig 3. This curve has a minimum when
T 27
L= _ 2l 65T 142
ek Ra, 1" 657 (142)

What can be interpreted as the size of one convective cejlissince one wave-
length corresponds to two contrarotating cells. The @altell has an aspect ratio,
width over height, of/2.

A Rayleigh number of 657 is the critical Rayleigh number faneection
heated from below with free-slip boundary conditions. Asis@sRa > Ra.
there is a wavenumber interval over which convection begdtcourse, when
convection grows in amplitude, the marginal stability $@no becomes less and
less pertinent as the assumption that Vo7 << dv - Vz becomes invalid.

4.6 Road tochaos

Following the same approach, but with some additional cexipés, the criti-
cal Rayleigh number for convection between no-slip sudaoexed free-slip/no-
slip, with internal heating in Cartesian and spherical getras could be obtained
(e.g., seesSchubert et al(2001)). In all cases, critical Rayleigh numbers of order
of 10° are found.

In Cartesian geometry, when the Rayleigh number reachesititsal value,
convection starts, and forms rolls. When the Rayleigh nunsfarther increased,
complex series of convection patterns can be obtained statibnary, then peri-
odic, anf finally, chaotic. Using the values of Table 1, thécal Rayleigh num-
ber of the mantle would be attained for a non-adiabatic teatpee difference
between the surface and the CMB of only 0.025 K! The mantlddigly number
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Figure 3: Critical Rayleigh number as a function of the hadfnelengthr /% (the
size of the convection cells). Above this curve, convecboours with a whole
range of unstable wavelengths. Below this curve, the caindutemperature is
stable since temperature perturbations of any wavelergtirease. When the
Rayleigh number is increased, the first unstable wavelecwtiesponds to a con-
vection cell of aspect ratig/2 and a critical Rayleigh number of 657.
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is orders of magnitude higher than critical and the mantie & chaotic state of
convection.

Figure 4 shows a stationary convection patterizat= 105 and three snap-
shots of numerical simulation of convection at higher Reyl@wumber. The color
scale has been chosen differently in each panel to emphhbsi#ggermal structures
that decrease in length scale wiila. This view is somewhat misleading since all
the thermal anomalies become confined in a top cold boundgey nd in a hot
bottom one at large Rayleigh numbers. Most of the interiathefcell becomes
justisothermal (or adiabatic when anelastic equationsiseel). The various tran-
sitions of convection as the Rayleigh number increasesbeilliscussed in other
chapters of this Treatise (see e.g., Chapter 4).

5 Introduction to physics of multicomponent and mul-
tiphase flows

The mantle is not a simple homogeneous material. It is madeadrs of variable
bulk composition and mineralogy and contains fluids, magn@é gases. Dis-
cussion of multicomponent and multiphase flows could de#t wolids, liquids
or gases, include compressibility or not, and considertielagiscous or more
complex rheology. For each combination of these charatiesia geophysical
application is possible. Here we will restrict the presé@ntato viscous creep
models (i.e., without inertia), where the various compdsane treated with con-
tinuous variables (i.e., each component is implicitly preseverywhere). We do
not consider approaches where the various components jgaieased by moving
and deformable interfaces. Our presentation excludesaakere the problem
is to match properties at macroscopic interfaces betwegione of different but
homogeneous compositions.

We will focus on two cases. First, when all the componentpartectly mixed
in variable proportions. This corresponds to the classibamical approach of
multiple components in a solution. This will provide someltoto understand
mantle phase transitions and the physics of chemical dnfuand mixing. We
will be rather formal and refer the applications and illasions to other chapters
of this Treatise (e.g., Chapter 11 and Chapter 12). Our gdal @xplain why and
when the advection diffusion equation can be used in magtiamics. The irre-
versible thermodynamics of multicomponent flows is disedss various classi-
cal books (e.g.Haase 1990;de Groot and Mazurl984). However as usual with
geophysical flows, the mantle has many simplifications anemadomplexities
that are not necessarily well documented in these clageixtidooks.

The second case will be for two phase flows in which the two ghase sepa-
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Figure 4: Convection patterns of a fluid heated from below al&gh number
10°, 1¢°, 107, 10°. The temperature color bars range from 0 (top boundary) to 1
(bottom boundary). The Boussinesq approximation was usaaé€rical simula-
tions by F. Dubuffet). The increase in Rayleigh number gponds to a decrease
of the boundary layer thicknesses and the width of plume$y @nhe case of the
lowest Rayleigh number (top left) is the convection stadigrwith cells of aspect
ratio ~ /2 as predicted by marginal stability. For higher Rayleigh iem the
patterns are highly time-dependent.
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rated by physical interfaces which are highly convolvedwaitt spatial character-
istics much smaller than the typical size of geodynamic rnisodkhis is typically

the case where magma can percolate through a compacting.nidtis approach
was used to model melt extraction and core-mantle intenaqiicKenzie 1984;
Scott and Stevensph984). Magma migration has also been treated in a large
number of publications where solid and magma are consderedarated (e.g.,

in studies of dike propagation through hydraulic fractgjinor where fusion is
parameterized in some way. We do not discuss these appsache

5.1 Fluid dynamics of multicomponent flows in solution
5.1.1 Mass conservation in a multicomponent solution

If we want to study the evolution of major or trace elementaaniration in the
convecting mantle, we can consider the mantle, instead ofreolgeneous fluid, as
a solution of various component#n volumetric proportions; (with >, ¢; = 1)
having the densitieg; and velocitiesy; (and later, thermal expansivities, heat
capacities””...).

Using a mass balance very similar to what we had discussed fimmoge-
neous fluid, we obtain a mass conservation equation of time for

a(¢iﬂi)
ot

wherel’; is the rate of mass production of compongénrthis rate of mass produc-
tion is zero if no reactions produce the component
In the fluid, the average density is

p=Y_ bipi, (144)

and various average velocities can be defined (weightedeéogntiss, the volume,
the number of moles... of each componéntin this section, we introduce the
barycentric velocityy, (velocity of the center of mass), defined by

_ > Gipivi
F;

The average mass conservation can be obtained by summirggtiaions of
component conservation (143),

+ V- (pipivs) =T, (143)

(145)

Vi

95
PN - (vy) = 0, (146)
ot

since the sum of the rates of mass production is zero

ST =0, (147)

2

53



In equation (143), instead of the various component ve&xit;, we can intro-
duce the barycentric velocity, and the diffusive flux of the componenwith
respect to this average flow,

a(¢ipi)
ot

where we define the diffusive flud,, by
Ji = ¢ZpZ(V1 — Vb). (149)

By definition of the barycentric velocity (145), the sum oéttiiffusive flows just
cancels out,

+ V- (pipivy) = =V I; + 17, (148)

S Ji =0 (150)

A diffusive transport is nothing else than an advectivesfanwith respect to the
average barycentric velocity. We will show later in simpéses, that the diffusive
transports are driven by concentration gradients.

If we introduce the mass fractiafl; = ¢;p;/p (in kg of i per kg of mixture),
we can easily show from (146) and (148) that

DC;
D =-VJ,+ T, 151
"Dt * (151)
where the Lagrangian derivative is defined with the baryoerelocity,
D 0
5=tV (152)

5.1.2 Momentum and energy in a multicomponent solution

In our multicomponent solution, all constituents are présg each point and they
are all locally submitted to the same pressure and stre8§esassume that the
viscous stress is simply relatedtg and we neglect inertia as appropriate for the
mantle. Newton’s second law (here, simply the balance @y can be applied
to the barycenter and implies

V.- VP+pg=0, (153)

where the only force is due to the (constant) gravity. The moimm equation
thus remains identical to that of a fluid with uniform compgmsi and without
inertia (16).

Since there is only one momentum equationifoomponents thé — 1 other
velocity equations will be found by using the constraintshaf laws of thermody-
namics and in particular the positivity of the entropy s@urto derive the energy
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conservation, we perform the standard balance to accoutlfthe energy ex-
changes in a volumg and across its surface. Instead of the one component
equation (28), we have to sum up various contributions andete

ZM - V. <Z¢¢piuivi + P v +q—z~vb>
- i i (154)

+g‘z¢iPin’+ﬁﬁ-

In this expression, we recognize the temporal changes igeife; is the compo-
nent internal energy per unit mass, the kinetic energiesegéected), the energy
advection, the pressure work, the thermal diffusion, treeeus stress work, the
gravity work and the radioactivity productiopfl = 3" ¢;p;H;). The variousp;
come from the fact that each componeéig present in proportiom;, in the vol-
ume (2 and on its surfac&. We assume that thermal diffusion acts equally for
each component and that the surface work of the stress tenealy related to
the barycentric velocity.

Using the definition of the barycentric velocity (145), oetdiffusive fluxes,
(149), of the momentum conservation, (153), and usih@; = 1, the energy
expression can be simplified to

DH,; DP .
> dipi D =-V-q—> J;-VH;+— > I'/H;+7: Vv, +pH, (155)

Dt

whereH; are the component enthalpies

P
Hi = U; + —. (156)

Pi
The enthalpy variation for each componeétan be expressed as a function of
the state variable® and7T. FromdH,; = 0Q); + V;dP and the expression of the
exchanged heat (29), we can write

DH; DT DpP

—— = piC— + (1 — a,T)— 157
Pi Dt pch Dt +( Q; )Dta ( S )
Finally, the expression for the temperature evolution is

_ DT DP _
ﬁcpﬁ = _V'q_ZJi'VHi+@T§—ZFiHi+I : VVb+ﬁH, (158)

where the average heat capacity and thermal expansivitgare 3, ¢Z-pl-0; /p
anda = >, ;.

Compared to the homogeneous case (36), two new heat sounse &ee
present, the enthalpy exchange through chemical reacttonis;H;, and the en-
thalpy redistribution by component diffusiom,; J; - V'H,.
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5.1.3 Entropy conservation in a multicomponent solution

Entropy conservation is essential for deriving the expaess of the diffusive
fluxes. The general expression of entropy conservatiors(7) i
0(¢ipiSi)

Y =V s+ Hs, (159)

whereJ s andHs are the yet unknown entropy flux and source. The entropy of the
various components take into account their specific erggput also their con-
figurational entropies or mixing entropies due to the disjer of the component

¢ in the solution. Introducing the barycentric velocitiesiahe diffusive fluxes,
this equation can be recast as

DS;
Z ¢ipiﬁ =V <Z GipiSivy + ZSiJi — Js) +Hs—-851,—J,-VS,;. (160)

However a second expression of the entropy conservatiorearbtained from
the enthalpy conservation, (155), usiity; = T7'dS; + V;dP which, in our case

can be expressed as

DH, DS, DP
Z. _ 2o PP 161
Pitpr =P T (161)

we derive

DS; _

A comparison of the two expressions for the entropy consiema(160) and (162)
allows us to identify the total entropy flux

and the entropy sources
THg = —(%+Z&«L)-VT—ZJi'VMi—ZFiMi+I3 Vv, +pH. (164)

where we introduced the chemical potentials= H; — T'S;. The total entropy
flux, (163), is related to thermal diffusion and to advectol chemical diffusion
of component entropies.

In (164), the two gradients of chemical potential and terapge are not in-
dependent as the chemical potential gradients impliaityude the temperature
gradient, so that alternative expressions can be foundexXample, using

vT

Hi
=T 165
Vi Vo A+ iy (165)

56



andyu; = H; — T'S;, the entropy source (164) can be written as

vT

We can also introduce the gradient;oft constant temperatufép. as

which leads to

1 _
THSZ_TqVT_ZJZVT/J/Z_ZF’LIJ/Z_'_Iva+pH (168)
This last equation has the advantage of separating the tatnpe contribution,
VT, from the compositional contributio®N rp; (Vrpu; varies mostly with com-
position as composition can change over very short disgre@avever this term
is also related to pressure variations).

5.1.4 Advection-diffusion equation and reaction rates

Among the entropy sources, only terms involving similarstemal ranks can be
coupled in an isotropic medium, according to Curie’s pohei The positivity of
the entropy production imposes three conditions, couplmgors, vectors, and
scalars.

7: Vv, >0, _Q'g_zJi'VT,uiZO = Tip; >0.  (169)
The first term relates tensors and we have already discussedplications for
the rheology in section 3.2.

The second term relates vectors and we assume, in agreertietteweneral
principle of non-equilibrium thermodynamicd€ Groot and Mazyr1984), that
a matrix a phenomenological matri¥ relates the thermodynamic fluxds =
Ji...J;...q to the thermodynamic forcéS = -V ru;..—Vru,... — VT/T

Ji mipz Miz ... Mg Vo
Jo —_ _ | Mar M2 ... Mg A\ (170)
q Mg1 Mgz ... Mg vT/T

This linear relationship implies that the term of vectomahk (with upperscript
v), in the entropy sourcd?Hf;”) appears as

M+ M
THY — X' MX — XtJ“TX. (171)
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According to the second law of thermodynamics, the symmp#it of the matrix
M, (M + M")/2 must be positive definite, i.e., the right hand side of equmti
(171) must be positive for any vectoks

Thermodynamic equilibrium is always dynamic on a microsceale. To
maintain equilibrium, a process and its reverse must oddhessame microscopic
rate. A consequence, known as the Onsager reciprocalamesatis the existence
of symmetry or antisymmetry between,; andm;; (Onsager, 1903-1976). A
general discussion can be found in edp, Groot and Mazu1984) orWoods
(1975). When the forces are even functions of the velocétresin the absence of
magnetic field, the matrid/ must be symmetric. A¥ T/T, andV ru; are even
functions, as independent of the velocities; = m;;.

In the general case, the transport of heat by concentratadients (Dufour
effect, (Dufour, 1832-1892)) or the transport of conceimraby temperature gra-
dients (Soret effect, (Soret, 1827-1890)) are possiblem#my situations these
cross-effects are small and we will assume that the matfixloes not couple
thermal and compositional effects (the last row and coluimi/care zero except
for m,,/T = k, the thermal conductivity).

Even without coupling between thermal and compositionigot$, chemical
diffusion in a multicomponent system remains difficult tealiss in the most gen-
eral case (the definite positivity of a symmetiiby i matrix is not a very strong
constraint). We therefore restrict our study to a simple-t@mponent system

where
Jy mip M2 Vru
= — 172
< Jo ) ( Moy M2 ) ( Vi ) (172)

For such a simple case, the sum of the flux must cancel, seg @idsince the
Onsager relations impose the symmetry of the matrix, théficamants m,; must

verify

mip + Moy = Mg + Moy = Mz — Mgy = 0. (173)

Only one coefficient, for examplg:;; can be freely chosen, the fluxes can be
written

J1=muVr(pe — p), (174)

Jo =muVr(p — p2), (175)
and the second law requires;; > 0. If the component 1 is in small quantity (the
solute) and the component 2 is in large quantity (the so)usith ;o = 0), we

can easily track the evolution of solute concentratign Its chemical diffusion
flux is J; = —my; Vi, and according to (151), its concentration satisfies

aC
gy +V-VC) =V (mVoru) + T, (176)

where the subscriptshave been omitted.
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For a solute the chemical potential is a standard chemidainpial .o plus a
mixing term expressing the entropy gain (configuration @pyrassociated with
the increased disorder) made by dispersing the solutehetedlvent, of the form
RT log a(C) (for crystalline solids, the activity(C') of the mixing term can be
complex since it depends on the number and multiplicity gétallographic sites
(Spear 1993), but we just need to know that it is related’tp In a domain where
the average density remains uniform, the advection-ddfusquation is obtained

%—f+vb~vczv-(DVC)+F (177)
with a diffusion coefficientD = m/p(0u/0C), most likely T-dependent. The
negative linear relationship between chemical diffusiod aoncentration gradi-
ent is called the first Fick’s law (Fick, 1829-1901).

When a component is present in two domains separated by aosiiopal in-
terface, its standard chemical potenjiglis generally discontinuous. In this case
the gradient of the chemical potential at constin¥V rp. is a mathematical dis-
tribution that contains a terW ., infinite on the compositional interface. This
discontinuity drives an infinitely fast diffusion of the s¢&¢ component across the
interface until the equilibriun] = [uo + RT'loga(C)] = 0. The concentration
ratio of C' (or partition coefficient of”), must therefore verify

alC)* + _ -

o e (M, (178)
where[ ]* and|[ |~ denote the values on the two sides of the discontinuity. This
equation corresponds to the general rule of chemical daxjiali

The last entropy source in (169) relates two scalars (priiglugates and

chemical potentials). In a mixture efcomponents involving: stable atomic
species, the conservation of these atomic species impke®nlyr = ¢ — & lin-
early independent reactions exist. Létbe the stoichiometric coefficient of the
component in the j = (1...r) chemical reaction with reaction ratg;. We can
expresd’; as

Ti= Y nlly, (179)
j=1l..r
and the second law imposes

— T el 20, (180)

j=Ll..r i

The positivity of the entropy source is satisfied if the kioettes of thej!" =
1...r chemical reaction are proportional to the their chemicéihgies, AG; =
>, nl i, With positive reaction rate factof®;

T; = —R,AG,. (181)
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Chemical reaction rates are very rarely simply proportieméhe affinities and the
R; are likely some complex, but positive, functions®f 7' and concentrations
C;. In the case of exact thermodynamic equilibriumy,n! 1i; = 0, the second law
is of course satisfied.

In the same way as we defined the affinity~; of the reactionj, we can
define its enthalpy\H,; = >, nlH,;. The enthalpy exchange term of the energy
equation (158)y_, I'/H; can also be writteiy,; I'; AH;, products of the reaction
rates by the reaction enthalpies. Various phase changegptake in the mantle,
most notably at 410 and 660 km depth. Their effects on maotheexrtion have
been studied by various authors and will be discussed ifose616.

5.1.5 Conservation properties of the advection-diffusiorequation

We now make the hypothesis that the evolution of conceptratf a solute in
the convective fluid is controlled by the advection-diffusiequation (177), and
that this solute is not involved in any chemical reactibns= 0. For simplicity,
we assume that the barycentric flow is incompressibledn therefore be a con-
centration per unit volume or per unit mass) and the diffasioefficientD is a
constant. The fluid and the solute cannot escape the ddmalme normal veloc-
ity and normal diffusive flux are thus zero on the boundariethe domain, i.e.,
v-n=0andVC -n = 0 on the surfac& with normal vectom.

First, it is obvious that when integrated over the total donfaand with the
divergence theorem, the advection diffusion equation Yiviplies

d
d _ _ DVC)-dS = 0. 182
dt/QCdV /Z(cv V() -dS =0 (182)

The initial heterogeneity does not disappear, it is jusisteithuted through time.
To understand how the heterogeneity is redistributed weeganess the evo-
lution of the concentration variance. Multiplying (177) b¢', we get after some

algebra

2
% LV - (vyC?) = DV2C? — 2D|VC2. (183)

This expression when integrated over the closed voltnmaplies that
i/ O Qv = —QD/ IVC|?dv. (184)
dtJa Q

Since the right side is always negative, the variance mustiraously decrease
until [V C| = 0 which corresponds to a state of complete homogenization.
The concept of mixing is associated with the idea that theeotnation vari-
ance decreases with time. Since the average mixing rateogogronal to the
diffusion D, (184), we note however, that a non-diffusive flow does not ati
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Figure 5: An initial heterogeneity (top) is introduced tat= 0 into a time-
dependent convection cell. Without diffusiof), = 0, (bottom left), the het-
erogeneity is stirred by convection and then stretched eridim of thin ribbons.
However the variance of the heterogeneity concentratioranes constant. It is
only with diffusion, D # 0, (bottom right), that a real mixing occurs with a de-
crease of the heterogeneity variance.

all. A diffusive flow just stirs the heterogeneities. In athierms, if the initial
concentration is eithet' = 1 or C' = 0, a perfect mixing is achieved after a time

if the concentration is everywhefg¢ = C, the average concentration. When there
is no diffusion, the initial heterogeneity is stirred ancesthed, but the local con-
centrations remain, for all time, eithér= 1 or C' = 0, but never an intermediate
value (see Figure 5)

In the case of the Earth’s mantle, the solid state diffusioefficients are all
very low (D = 1071 m? s~ for uranium,D = 103 m? s~ for helium (see Table
2)) and many studies have totally neglected chemical ddfusWe see, at face
value, that these models are not really mixing, only stgrine heterogeneities.
Without diffusion a chemical heterogeneity (e.g., a pietsubducted oceanic
crust) will forever remain the same petrological heteragsnonly its shape will
change.

Since the mixing rate is related to the compositional gnatdi#84) we should
discuss the evolution of this gradient. We multiply (177)bg operatoeVC -V
to obtain

EhZelk
ot

+V - (vi|VCP) +2VC - VO =2D (V- (V2CVC = (VXC)?)
(185)
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which can be integrated as
d 2 . 2,1\2
J— pry —2 M M —2D . 1
dt/Q\VC\ dv /QVC & VCdv /Q(v C)? dv (186)

The rate of gradient production is related to the flow prapsrthrough the strain
rate tensok and to the diffusion. The diffusion term is negative and dases the
sharpness of compositional gradients.

The term related to the flow properties through the straisdeffirst term of
the right side of (186)), could in principle be either postor negative. However
as time evolves, this term must become positive. The steantensor has locally
three principal axes and three principal strain rates, thm ef them being zero
since the flow is incompressible. The stretched heterogeadecomes elongated
along the direction of the maximum principal strain rate &nel concentration
gradients reorient themselves along the minimum, and iegadrincipal strain
rate. The term under the first integral on the right side o6{18 thus of order
Of —émin| VC|? (é.in IS the local, negative eigenvalue of the strain rate tensor)
Stirring is thus the source of production of concentraticadient.

We can now understand the interplay between advection dhusidin. Even
when the diffusion coefficienb is vanishingly small in (186), the stirring of the
flow by convection will enhanced the concentration gradiemtil the average dif-
fusion term, proportional to the concentration gradiewii, become large enough
(see (184)), for a rapid decrease of the concentration megiaWe illustrate this
behavior in the next two paragraphs by choosing a simplesssjpon for the strain
rate and computing the evolution of concentration throuigiet

5.1.6 Laminar and turbulent stirring

The efficiency of mixing, mostly controlled by stirring, ikdrefore related to
the ability of the flow to rapidly reduce the thickness of metgneities Qlson

et al, 1984). In this section we set aside diffusion and discugtabit more the
stirring properties of a flow. Let us consider a vertical gied heterogeneity of
width 2dy, height2L (L << dy) in a simple shear flow (or Couette flow, (Couette,
1858-1943))u, = éz. Its top and bottom ends are @ L), (0, —Ly) and they
will be advected tdét Lo, Lo), (—étLo, — L) after a timet. As the heterogeneity
length increases a&.y(1 + ¢*t*), mass conservation implies that its half width

d(t) decreases as
do
d(t) = ——. 187
Y (187)
Such flows, in which heterogeneities are stretched at~até¢t, are called flows
with laminar stirring. They are not very efficient in enhamgithe diffusion be-
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cause they do not increase the concentration gradienisatiypof order1/d(t),
fast enough.

On the contrary, in a pure shear flow, = z¢, the length of the heterogeneity
would increase ag = L exp(ét) and its width would shrink as

d(t) = dop exp(—ét). (188)

Such a flow is called flow with turbulent stirring. This usuacabulary is very
poorly chosen because turbulent stirring can occur in goongdlow with Re = 0.
Mantle convection is not turbulent but it generates turbugtirring.

Chaotic mixing flows have globally turbulent stirring propes and the qual-
itative idea that highly time-dependent convection witgrhRa number mixes
more efficiently than low Ra number convection is often trGehmalzl et al.
1996). However steady 3D flows can also induce turbulentmgixT his surpris-
ing phenomenon called Lagrangian chaos is well illustrédedome theoretical
flows (Dombre et al. 1986) and for various simple flow©f{tino, 1989;Toussaint
et al, 2000). For example, in a steady flow under an oceanic ridtgetby a
transform fault, the mixing is turbulenEérrachat and Ricard1998).

5.1.7 Diffusion in Lagrangian coordinates

In section 5.1.5 we discussed the mixing properties from aleran viewpoint.
We can also understand the interplay between diffusion @atthing (stirring) by
adopting a Lagrangian viewpoirK¢llogg and Turcottel987;Ricard and Coltice
2004), i.e., by solving the advection-diffusion equationa coordinate frame that
follows the deformation.

Let us consider a strip of thickne&%, with an initial concentratiort’, em-
bedded in a infinite matrix of concentrati@n,. In the absence of motion, the
solution of the advection-diffusion equation (177) can kpressed using the er-
ror function and the time dependent concentratitin, ¢) is given by

—C(Cgfo’?;:” — % lerf (%) + erf (;‘]jﬁi) , (189)
wherez is a coordinate perpendicular to the strip and is zero atitser.
The concentration at the center of the sttip= 0) is
% — erf (2\%_) : (190)
and the concentration decreases by a factor of about 2 inffiaside time
to ~ 5. (191)
D
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(erf(1/2) is not far from1/2). The time needed to homogenize a 7 km thick piece
of oceanic crust introduced into a motionless mantle iseemély long (see Table
2). In a motionless mantle, even the relatively mobile haliwould be frozen
since the Earth formed since it would only have migrated ado&0 cm.

However, this idea of a/¢ diffusion is totally wrong since the flow stirs the
heterogeneity and increases the quantity of compositigraalients (186) which
in turn accelerates the mixing process (184). Assumingttieproblem remains
two-dimensional enough so that diffusion only occurs pedieular to the de-
forming heterogeneity, l€{t) be the thickness of the strip containing a chemical
heterogeneity. The velocity perpendicular to the strip Mdocally be at first

order
r d

Vye = m% l(t),

(each side of the stripe, at= +[(¢) moves attdl(t)/dt).
We can choose as a new space variable- xl,/I(t), in such a way that

the Lagrangian coordinate will vary between the fixed value$,-and/,. The

diffusion equation becomes

oC L\ o2C
(ﬂ ‘D%) 57 (199)

z

(192)

where the partial time derivative is now computed at coristaiWe see that the
advection diffusion equation has been turned into a pufagiife equation where
the diffusivity D has been replaced by (Io/1(t))*. This equivalent diffusivity is
larger than D and increases with timel&g decreases.

To solve analytically equation (193) it is appropriate tea&e the time vari-
able by defining = F(t) with

F(t) = [ (/1)) . (194)

and the resulting advection-diffusion equation in Lagiangoordinates becomes
the simple diffusion equation with constant diffusivityts lsolution is given by
(189) where andz are replaced byandz. For example, the concentration at the
center of the deformable strip varies like

C(0,t) — Cx lo
AL L 195
Co—Co © (2,/017@))’ (195)

and the concentration diminishes in amplitude by a factdt after a timef that
satisfies

o (196)
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Table 2: Homogenization times for helium and uranium assgran heterogene-
ity of initial thickness2/, = 7 km and a strain rate df x 10716 s71.

Uranium Helium
Dm?’s! 10~% 10713
to ma 3.88 x 103 3.88 x 107
t;, ma 3.60 x 10°  3.60 x 103
tr ma 1920 1490

To perform a numerical application let us consider that tbe ik either a simple
shear (187), or a pure shear deformation, (188). Compufifig from equation
(194) is easy and, assumiidg >> 1, we get from (196), the homogenization
times

31/3[(2)/3
tr ~ e2/3D1/3’ (197)
and 2
1 2[5€

respectively. For the same oceanic crust of initial thideie km, we get homoge-
nization times of about 1.49 byr for He and 1.92 byr for U if weeuhe pure shear
mechanism and assume rather arbitrary that5 x 1071 s7! (this corresponds
to a typical plate velocity of 7 cm yr over a plate length of 5000 km). Although
He and U have diffusion coefficients 6 orders of magnitudetafzeir residence
times in a piece of subducted oceanic crust may be comparable

The use of tracers to simulate the evolution of chemical @riogs in the man-
tle, is our best method since solid state diffusion is toovdio be efficiently ac-
counted for in a numerical simulations (e.gan Keken et al.2002; Tackley and
Xie, 2002). However, by using tracers, we do not necessariyitel account that
some of them may represent points that have been stretcheddothat their ini-
tial concentration anomalies have diffused totally inte ttackground. In other
words, even if diffusion seems negligible, diffusion witbse all heterogeneities
after a finite time mostly controlled by the stirring propestof the flow.

5.2 Fluid dynamics of two phase flows

Up to now, in all of section 5.1, all components were mixed isirggle phase.
However, another important geophysical application cgeunen the multicom-
ponents belong to different phases. This case can be dtestwith the dynamics
of partial melt in a deformable compacting matrix. Partiadlta are obviously
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present under ridges and hotspots, but they may also bernpriesthe middle

and deep mantléXilliams and Garnerp1996;Bercovici and Karatp2003) and

they were certainly more frequent when the Earth was youngér discuss the
situation where two phases, fluid and matrix, each havingémee composition,
can interact. In contrast to section 5.1, where the propoind velocity of each
component in solution was defined everywhere at a microsdepel, in a partial

melt aggregate, the local velocity at a microscopic leveitiser the velocity of a
matrix grain,v,,, or the interstitial velocity of the melf;;.

We assume that the two phases are individually homogenemasnpressible
and with densitieg; andp,,. They have Newtonian rheologies with viscosities
pr andpu,,. They are isotropically mixed and connected. Their volunaetfons
are ¢ (the porosity) and — ¢. The rate of magma melting or freezingAd" (in
kg m—3 s71). Although the two phases have very different physical prtips we
will require the equations to be material invariant until meed to use numerical
values. This means that swappihgndm, ¢ and1 — ¢, AT and—ATI", must leave
the equations unchanged. This rule is both a physical reouent and a strong
guidance in establishing the general equations.

We make the hypothesis that there is a mesoscopic size aneal” which
includes enough grains and interstitial fluid that averaged continuous quanti-
ties can be defined. Classical fluid dynamics also has itsd¢rhpleraging vol-
umedV that must contain enough atoms that quantum effects aregri#g| but
what is needed here is a much larger volume. This averagipgaph remains
meaningful because the geophysical macroscopic phenantéab we want to
understand (say, melting under ridges) has charactesiztss large compared to
those of the averaging volume (say, a few’gm

To do the averaging, we define at microscopic level a fundtitmat takes the
value 1 in the interstitial fluid and the value 0 in the matnaig. Mathematically,
this function is rather a distribution and it has a very cdwed topology. From
it, we can define first, the porosity (volume fraction of fluig)then, the fluid and
matrix averaged velocities;; andv,,, by

1
¢n:gVAV6dV, (199)
1 1
= — v 1— = — [ (1-6)% . 2
ovi =5 [0 dV. (1=0)vu == [ (1=0)FmdV. (200

5.2.1 Mass conservation for matrix and fluid

Having defined the average quantities, the derivation oftleanass conservation
equations is fairly standard/cKenzie 1984;Bercovici et al, 2001a). They are
0¢ AT

GtV lovil = (201)
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0p AT
—— V1=V, = ——. 202
5tV L= )va] = —— (202)
We get the same equations as in (143) except that we retgr to- ¢, Al in-
stead ofp,, ¢, andI';. When averaged, the mass conservation equations of two
separated phase takes the same form as the mass conseecataiions of two
components in a solution.

We define an average and a difference quantity for any geuearalbleq, by

q= ¢Qf + (1 - ¢)Qma Aq =d4m — (qy. (203)

The velocityv is volume averaged and is different from the barycentrioogy
(145),v, = (¢ppsvs + (1 — @) pmVin)/p- By combining the fluid and matrix mass
conservation equations we get the total mass conservajigation

95

a_i +V - (pvy) =0, (204)

(as before, (146)), and the time rate of change in volumendurielting

A
V.¥=Ar22 (205)
PfPm

5.2.2 Momentum conservation of matrix and fluid

Total momentum conservation, i.e., the balance of the foagplied to the mix-
ture is B
V.-1-VP+pg=0. (206)

We have considered that the only force is due to gravitypaitim surface tension
between the two phases could also be introduBeuidpvici et al, 2001a). In this
equation,P, T andp are the average pressure, stress and density. The equgtion i
not surprising and looks identical to its counterpart for@tmomponent solution
(153). However the average pressure and stres3es, ¢ P; + (1 — ¢)P,, and
T = ¢7; + (1 — ¢)7,, are now the sum of two separate contributions, from
two separate phases having most likely very different rbgiels and different
pressures. Hypothesizing that the two phases may feel the paessure does
not rest on any physical justification and certainly canrathf surface tension
is present. We will show later that their pressure diffeeegontrols the rate of
porosity change.

We split the total momentum equation into two equations onée fluid and
one for the matrix

—V I[Pl + ¢psg+ V - [¢7;] + hy = 0, (207)
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—VI[1=¢)Pn] + (1 = ¢)pmg + V - [(1 = ¢)7,,] + Dy = 0. (208)

whereh, andh,, satisfyh; + h,, = 0 and represent the interaction forces acting
on the fluid and on the matrix, across the interfaces sepgraie two phases.
Because of the complexities of the interfaces, these tvepantion forces must be
parametrized in some way.

The simplest contribution to the interfacial forces thaggarves Galilean in-
variance is a Darcy-like terAv = ¢(v,,, — v¢) (Drew and Segell971) (Darcy,
1803-1858). In the absence of gravity and when the pressuwesaniform and
equal, no motion should occur even in the presence of noioumiporosity. In
this situationwheré\v = 7, = 7,, = 0 and whereP is uniform, P = P; = P,
the force balances arePV¢ + hy = —PV(1 — ¢) + h,, = 0. Therefore, the
interface forcesh; andh,,, must also include-PV¢ and —PV (1 — ¢) when
the two pressures are equal. This Bdrcovici and Ricard2003) to write the
interaction terms

hy =cAv + P;V¢+wAPV ¢,

h, =—cAv+ P, V(1 —-¢)+ (1 —w)APV¢. (209)

These expressions verity; + h,, = 0, are Galilean and material invariant and
allow equilibrium of a mixture with non uniform porosity bunhiform and equal
pressures.

The interaction coefficientis related to permeability which is itself a function
of porosity. A symmetrical form compatible with the usualrbaterm is (see
Bercovici et al, 2001a)

_ Hof o 210
T R (210)

where the permeability of the forry¢™ was used (usually ~ 2-3). Assuming
n = 2 andu,, > (i, the interaction coefficient becomes a constant, 17/ k.

At microscopic level, the matrix-melt interfaces are noaghdiscontinuities
but correspond to layers (called “selvage” layers) of dismized atom distribu-
tions. The coefficiend < w < 1 controls the partitioning of the pressure jump
(and potentially of the surface tension) between the twosebdercovici and
Ricard, 2003) and represents the fraction of the volume-averagddce force
exerted on the fluid phase. The exact valuevat related to the microscopic
behavior of the two phases (molecular bond strengths actlrtess of the inter-
facial selvage layers) and measures the extent to which ttr@saopic interface
layer is embedded in one phase more than the other. The onbraephysical
constraints that we have are thamust be zero when the fluid phase disappears
(wheng = 0) and when the fluid phase becomes unable to sustain stregses (
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pr = 0). A symmetrical form like
Y Pig
Gpg + (1= @) pim

satisfies these conditions.
To summarize, general expressions for the equations of dlngmatrix mo-
mentum conservation ar8ércovici and Ricard2003)

—¢[V Py — psgl +V - [¢T4] + cAV + WAPV ¢ = 0, (212)

—(1=9¢)[VP, — pmgl+V - [(1—-9¢)1,,] —cAv+ (1 —w)APV¢$ = 0. (213)

The relationship between stress and velocities does nloida@n explicit bulk
viscosity term Bercovici et al, 2001a), and for each phagéhe deviatoric stress
is simply

(211)

2
7=y (Vv + (Vi) = SV v 1)) (214)

where; stands forf or m. There is no difference between the expression of the
rheology for the isolated component and for the componetitarmixture.

5.2.3 Energy conservation for two-phase flows

In the case where surface energy and entropy exist on inegfdne conservation
of energy deserves more caferémek et a).2006). Otherwise the global conser-
vation is straightforward and can be expressed by the fatigvequation where
the left side represents the temporal change of energy bime fixed control
volume and the right side represents the different contiolbg to this change,
namely internal heat sources, loss of energy due to diffysidvection of energy,
and rate of work of both surface and body forces,

0
BN [PpsUs + (1 — @) prulhm]
=pH =V - q =V - [6phsvy + (1 = ¢) punlhnVir] (215)

The last equation is manipulated in the standard way usegi#ss and momen-
tum equations. Because the two phases are incompreshlenternal energies
are simplydi; = CydT anddi4,, = C,,d1. After some algebra we get

D.T D,T
¢Pfcfﬁ + (1 - ¢)pmcmﬁ
Do (216)
=-V.-q—-AP 51& + AHAT +V + pH,
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whereV is the rate of deformational work
U=0¢Vv:7T;+ (1= @)V, i T + c(Av)* (217)

It contains the dissipation terms of each phase plus a tdateckto the friction
between the two phases. The fundamental derivatives areddsy
D; 0
= _ 2 A v4 218
Di o VY (218)
wherev; is to be substituted with the appropriate veloaity v,, or v,, with
Vv, =wvi+ (1 —w)vp, (219)

In contrast to section 5.1 it would not make much sense tootikeep the equa-
tions in terms of an average velocity likg plus some diffusion terms. Here the
two components may have very different velocities and weshiadefine various
substantial derivatives.

Sincew represents a partitioning of pressure jump, it is not ssmpg to find
the velocityv,, (included inD,,/Dt) in the work term related to this pressure
jump. Associated with this partitioning factor, we can aistroduce interface
valuesg“, that we will use later. Any quantithq = ¢,, — ¢y can also be written
(gm —q“) —(qr —q*). When the property jump is embedded entirely in the matrix
(w = 0), there should be no jump within the fluid and we must hgve= ¢;.
Reciprocally, whenv = 1, we should have” = ¢,. This prompts to define
interface values by

¢* = (1 —w)gs + W (220)

Notice by comparing the expressions of the interface valogi, (219), and in-
terface valueg” (220), thatv swaps withl — w.

The right side of (216) contains two new expressions in aoldio the usual
terms (heat production, diffusion and deformational woil)e first term includes
the changes in porosit# ¢/ Dt times the difference in pressures between phases,
AP. The other term contains the difference in the specific dptbaalAH =
H,, —H ¢ where the enthalpy of phages defined byH; = U; + P;/p;. A similar
term was found for components reacting in a solution (155).

5.2.4 Phenomenological laws

Entropy conservation is needed to constrain the the pregsonp between phases
and the melting rate. Starting from entropy conservation

O 16068y + (1= 0)puSyl =~V s + I (221)
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whereJs is the total entropy flux and/s is the internal entropy production, we
compare the energy and the entropy equations (216) and {aRihg into ac-
count that, for each incompressible phagg, = C;dT'/T = du;/T. After some
algebra, one gets

Js = opsSvi+ (1 — ) pmSmVm + %, (222)
Dy,¢
Dt
where we have introduced the difference in chemical paénbetween the two

phases

1 )
THs=—7q- VT — AP+ AuAT + ¥ + pH, (223)

Ap=AH —TAS (224)

andAS = S, — Sy is the change in specific entropies.

Following the standard procedure of non-equilibrium thedynamics, we
chooseq = —kVT and we assume that there is a linear relationship between
the two thermodynamic fluxed),¢/Dt and AT', and the two thermodynamic
forces— AP and Ay since they have the same tensorial rank. We write

D,¢/Dt \ [ my1 myo —AP
()=o) (50) e

The matrix of phenomenological coefficients; is positive definite and symmet-
rical by Onsager’s theoremn 5, = moy, as the two thermodynamic forces A P
andAyu) are even in velocity. For a 2x2 matrix, it is rather simplestmw that the
positivity implies,mqy; > 0, my; > 0 andmy;mae — m3, > 0 (positivity of the
determinant).

The form of the phenomenological coefficients; can be constrained through

thought experiments. First using mass conservations @@dY202) and the def-
initions of v, andp®, (219) and (220), we can combine equations (225) to get

mag

AP = —

2
mi1Mmeog — My9

w m (226)
(1—w)(1—¢)V~vm—w¢V-vf—|—<p —£>AF].
PfPm M2z

In the limiting case where the two phases have the same densit p,,, = p“,
melting can occur with no motiory,,, = vy = 0, (226) should therefore predict
the equality of pressure between phas&#, = 0. In this case we must choose
miz/mes = 1/ps = 1/p,. Let us consider now a situation of homogeneous
isotropic melting where the melt has such a low viscosity theannot sustain
viscous stresses and cannot interact with the solid by Diarcgs. For such an
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inviscid melt,w = 0, p¥ = p; andv,, = v,,. In this case, since the melt can
escape instantaneously, the matrix should not difste,v,, = 0, and thus the
two pressures should also be the sath®, = 0. In this situation all the terms in
equation (226) are 0 except for the term proportionahid. This suggests in the

general case, that

e R (227)

Ma2 B prm'

Using this condition and introducing two positive coeffiti® { = mas /(m11mas—
m2,), andR = my,, We can recast equations (225) as

AP = — lD‘““) _ 7’ AF} , (228)
Dt pppm

AT =R |Ap— L AP} (229)
PfPm

The first equation establishes a general relation contigoline pressure drop
between phases. The coefficiénthat links the pressure jump between the two
phases to the porosity changes in excess of the meltingisate,fact equiva-
lent to a bulk viscosity as introduced in section 3.2 (see #ile summary section
5.2.5). The physical requirement that the two phase mixtmild have the in-
compressible properties of either the matrix or the fluid whe= 0 or ¢ = 1
imposes a porosity dependencectovith lim, .o ((¢) = limy_1 ((¢) = +o0.
Simple micromechanical models (e.blye 1953;Bercovici et al, 2001a) allow
us to evaluate the bulk viscosity as

e (g + )
C= KL (230)

The dimensionless constaht, accounts for grain/pore geometry and ia(fl).

A more general, but more hypothetical, interpretation eféntropy positivity
could argue that some deformational wovk, might affect the pressure drop of
(228). This hypothesis led to a damage theory develope@ancpvici et al,
2001b;Ricard and Bercovii2003;Bercovici and Ricargd2005). Here we assume
that the system remains close enough to mechanical equitithat damage does
not occur.

The second equation (229) controls the kinetics of the ngglieezing and by
consequence, defines the equilibrium condition. In the oaseechanical equi-
librium, when there is no pressure drop between the two halse melting rate
cancels when there is equality of the chemical potentiale@fwo single phases.
In case of mechanical disequilibriumf # 0), the chemical equilibrium does
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not occur when the two chemical potentials are equal. We elefinew effective
chemical potential,

w

py =U + - TS;, (231)

)

wherei stands forf or m and write the kinetic equation (229),
Al =RAp". (232)

Chemical equilibrium imposes the equality of the effecfpaentials on the inter-
face, at the pressur@” at which the phase change effectively occurs.
Using (228) and (229), we can show that the entropy prodonagsandeed
positive and given by
1 AP?  (Ap*)? _
THS:kT|VT\2+ C +( 7’;) + U+ pH. (233)

Chemical relaxation and bulk compression are associatdddigsipative terms.

5.2.5 Summary equations

For convenience we summarize the governing equations wigematrix is much
more viscous than the fluid phase;(< p.,) as typical for melting scenarios,
which implies thatr; = 0, w = 0, p* = py, P¥ = Py, andv,, = v,.

The mass conservations equations are (201) and (202). Tiatieq| of con-
servation of momentum for the fluid phase is

—¢V[Pr + prgz] + cAv =0, (234)

(assumingz positive upward). This is a typical Darcy equilibrium with =
urd?/k(¢), wherek is the permeability (often varying ds¢"™ with n = 2 or
3). The second momentum equation could be the matrix monme(08) or a
combined force-difference (or action-reaction) equation

cAV
—VI1-¢)AP]+ (1 -¢)Apg+V - [(1-9)T,] - 5 0 (@39
where the deviatoric stress in the matrix is given by
T = <va + [Vt — gV . vml> : (236)

and the pressure jump between phases, (228), becomes

AP =—-((1—-¢)V v, (237)
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if an equivalent bulk viscosity is used, or
V. .v,
¢ )
from the micromechanical model, (230), Bércovici et al(2001a).

The action-reaction equation (235) can also be written iiffardnt way for
example by elimination oAAv taken from the Darcy equilibrium (234),

AP = _KO,LLm

(238)

~VP;+V-[(1-9¢)T,]+pg=0, (239)

wherer * includes theA P term and is defined by
2
T = <va Vv, [T -2V va> 1=V vl (240)

This shows that if the pressure is defined everywhere as tliegftessure, then
it is equivalent to use for the matrix a rheology, (see (9%j)h a bulk viscosity
(1 —¢)¢ ~ ¢ (McKenzie 1984). This analogy only holds without surface tension
between phases.
The rate of melting is controlled by

1 1
Al=TR (Au + 0 (— - —) - TAs> : (241)
Pm Pf
and the energy equation is
DT D, T
prdCr—L 4 p(l = ¢)Cp =2 — AHAT =
Dt Dt
- AT2 1— ¢ (242)
ﬁH_V'Q‘FT +K0,Um7(V~Vm)2—l—\I/,

where we have assumed the relation (238).

These equations have been used by many authors with vaaeels lof ap-
proximation. The most benign have been to replaees by 1. Most authors have
also considered the bulk viscosifyas a porosity independent parameter, (e.g.,
McKenzie 1984;Scott and Stevensph984;Richter and Mckenzjel984;Ribe
1985a,bScott and Stevensph986, 1989Stevensonl989;Kelemen et a).1997;
Choblet and Parmentie2001;Spiegelman et gl2001;Spiegelman and Kelemen
2003;Katz et al, 2004). This overestimates the possibilities of matrix pastion
at low porosity. Porosity dependent parameters have beditigly accounted for
in other papers (e.gFowler, 1985;Connolly and Podladchikgw998;Schmeling
2000;Bercovici et al, 2001a;Ricard et al, 2001;Rabinowicz et a).2002). The
melting rates are sometimes imposed instead of solvingrtbagg equation (e.g.,
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Turcotte and Morgan1992) or solved for assuming univariant transitiéowler,
1989; Sramek et a).2006). Surface tension is addedRiley et al.(1990) and
(Hier-Majumder et al. 2006). Similar equations have also been used to describe
the interaction between iron and silicates near the CR&ffett et al, 2000), the
formation of dendritesRoirier, 1991) or the compaction of lava flowbéssol

et al, 2001).

6 Specifics of Earth’s mantle convection

In this last section we discuss various aspects of largke-gnantle convection.
We leave the problems of partial melting to Chapter 9 and @hapl of this

Treatise. We are aware of the impossibility to be exhaudtitemost of the im-
portant points are more deeply developed in other chapfetiseoTreatise (see
also the books bgchubert et al(2001) andDavies(1999)).

6.1 A mantle without inertia

The most striking difference between mantle convectionraondt other convec-
tion experiments is that inertia is totally negligible. $hs because the Prandlt
number is infinitly larger than the (already very large) Ragh number. This
implies than the mantle velocity field obeys

V.- (pv) =0,
—VP+V . -1+dpg+ pég =0,
V) = 47Gép,

og = -V,

(243)

in agreement with (125). In this set of equation we kept thieggavitation term
as appropriate at long wavelengths. If the internal Igaaie knowns, the flow can
be computed independently of the temperature equatiors fithe-independent
system has been used by many authors to try to infer the mauatperties.

6.1.1 Dynamic models

The system of equation (243) can been solved analyticallg fitepth-dependent
viscosity, when variables are expressed on the basis ofisphbarmonics (see
Hager and Claytor{1989) and also Chapter 5 and Chapter 8). Various possible
surface observables (geoid height or gravity free air ai@savelocity diver-
gence, amplitude of deviatoric stress at the surface, seidgnamic topography,
CMB topography...) can be expressed on the basis of sphacaonics with

75



components);,,,. Through (243), they are related to the spherical harmauos-
ponents of the internal density variatiofis,,, () by various degree-dependent
Green’s functions (Green, 1793-1841)

Oy = / GO ()0 pum () dr (244)

(see Chapter 5 for analytical details). The Green’s fumsti@ () can be com-
puted from the averaged density and viscosity profiles.

Before seismic imaging gave us a proxy of the 3D density sireof the man-
tle, various theoretical attempts have tried to connectetsoof mantle convection
to plate velocitiesilager and Oconnell1979;Hager and O’Connell1981), to
the Earth gravity field (or to the geoid, proportionakt} to the lithospheric stress
regime or to the topographyrncorn 1964;Parsons and Daly1983;Lago and
Rabinowicz 1984;Richards and Hagerl984;Ricard et al, 1984).

An internal load of negative buoyancy induces a downwelfiog that de-
flects the Earth’s surface, the CMB and any other internalpmmsitional bound-
aries, if they exist. The amount of deflection correspondshéusual isostatic
rule for a load close to an interface: the weight of the indutmgography equals
at first order the mass of the internal load. The total graaitpmaly resulting
from a given internal load is affected by the mass anomabkss@ated with the
flow-induced boundary deflections as well as by the loadfitd@le to the de-
flection of the Earth’s surface, the geoid perturbation getiiby a dense sinking
anomaly is generally negative (e.g., free air gravity hasrmum above a dense
load). However, when the mantle viscosity increases siganfiy with depth, by
1-2 orders of magnitude, a mass anomaly close to the vigdositease, induces
a larger CMB deformation and a lower surface deformatiore fdsulting gravity
anomaly corresponds to a geoid high. The fact that cold sttlmiuzones corre-
spond to a relative geoid high suggests a fact@0 viscosity increase around the
upper-lower mantle interfacd.4go and RabinowiGz1984;Hager et al, 1985).
Shallow anomalies and anomalies near the CMB, being localtypensated, do
not contribute to the long-wavelength gravity field. Thédspheric stress field,
like the geoid, is affected by mid-mantle density heter@i@ss. The surface de-
flection induced by a deep seated density anomaly decreaseshe depth of
this anomaly but even lower mantle loads should signifigaatfiect the surface
topography.

6.1.2 Mantle flow and post-glacial models

As soon as seismic tomography started to image the mantietstes, these seis-
mic velocity anomalies have been used to further constr@mtantle viscosity.
The fact that the geoid and seismic velocity anomalies as#ipely correlated
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around the transition zone but negatively in the deep mémglerogeneities sug-
gests a viscosity larger than 10 but not too large (less tB@pdtherwise the man-
tle would be everywhere positively correlated with graviiyager et al, 1985;
Hager and Clayton1989;King and Hager 1994). The same modeling approach,
assuming a proportionality between seismic velocity a@sand density vari-
ations, was also used to match the observed plate diverdéade and Peltier
1987), the plate velocitieRfcard and Vigny1989;Ricard et al, 1991) and the
lithospheric stresse86i et al, 1992;Lithgow-Bertelloni and Guynr2004). The
initial Boussinesq models were extended to account for cesgibility (Forte and
Peltier, 1991).

Joint inversions of gravity with postglacial rebound wetsoaperformed to
further constrain the mantle viscosity profile. The vistpsicrease required by
subduction was initially thought to be too large to recomaitith post glacial
rebound Peltier, 1996). The various approaches (time-dependent for the pos
glacial models and time-independent for the geoid modeasjnsto have con-
verged to a standard viscosity profile with a significant&ase with depth\itro-
vica and Forte 1997). Whether this viscosity increase occurs acrosscouis
nuity (at the upper-lower mantle interface, or deeper) oa @gadual increase is
probably beyond the resolution of these approaches.

Although these dynamic models explain the observed geloay, tequire the
presence of a kilometric surface topography, induced bytlmaonvection and
called dynamic topography (by opposition with the isostagpography related to
crustal and lithospheric density variations). Its dirdaservation, from the Earth’s
topography corrected from isostatic crustal contribusiaa difficult and remains
controversial (e.g.Colin and Fleitout 1990;Kido and Senp1994;Lestunff and
Ricard, 1995;Lithgow-Bertelloni and Silver1998).

6.1.3 Time dependent models

The thermal diffusion in the mantle is so slow that even o\3£-200 myrs it can
be neglected in some long wavelength global models. Thetieqsa243) can
thus be solved by imposing the known paleo-plate velociélse surface and ad-
vect the mass anomalies with the flow without solving expiliche energy equa-
tion. This forced-convection approach has shown that tlep ageantle structure
is mostly inherited from the Cenozoic and Mesozoic plateiomofRichards and
Engebretson1992; Lithgow-Bertelloni and Richardsl998). From plate paleo-
slab reconstructions only, a density models can be obtatmegdgives a striking
fit to the observed geoid and is in relative agreement witly{aavelength to-
mography Ricard et al, 1989). This approach was also used to study the hotspot
fixity (Richards 1991;Steinberger and O’Connglll998), the sea level changes
(Lithgow-Bertelloni and Gurnis1997) or the polar wander of the EartBpada
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Figure 6: Correlations between gravity and the synthetrndgraphic Smean
model Becker and Bosch2002) as a function of degrdeand normalized ra-
dius (top). The seismic velocities, proxy of the densityiataons, are positively
correlated with gravity around the upper-lower mantleifstee (warm colors) but
negatively correlated, near the surface and in the deeprlmaetle (cold colors).
Geoid Green functions for degree 2 (bottom left) and degfe¢bbttom right)
and three possible viscosity increases between upper amd tbantle. The geoid
Green function for a uniform viscosity (dashed line) is gvanere negative and
all the anomalies around the upper-lower mantle would iedugravity signal op-
posite to that observed. A too large viscosity increase ¢fal00 for the dotted
lines) cannot explain the rather good negative correlabietwveen lower mantle
anomalies and the geoid at long wavelength. A moderateaser factor 30 for
the solid line) leads to the best fit as the sign of the Greectfoms is everywhere
that of the observed density-gravity correlations. Théedént Green functions
are computed for an incompressible mantle, with a lithosph#0 times more
viscous than the upper mantle.
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et al, 1992;Richards et al.1997).

6.2 A mantle with internal heating

When the top and bottom boundary conditions are the samgl(@th free-slip or

both no-slip), purely basally heated convection in a Catebox leads to a per-
fectly symmetric system. We could simultaneously revelngeviertical axis and
the color scale of Figure 4 and get temperature patternsatieadlso convective
solutions. The convective fluid has a near adiabatic cordfatemperature vari-
ations are confined into two boundary layers, a hot bottorarlayd a cold top
layer. The thicknesses of these two boundary layers andethpdrature drops
across them, are the same. The mid-depth temperature idysingpaverage of

the top and bottom temperatures. Instabilities develomfitee bottom layer (hot
rising plumes) and the cold layer (cold downwelling plumeB)ey have a tem-
perature hotter or colder than the depth-dependent aveeagperature. They
are active structures driven by their intrinsic positivenegative buoyancy. The
Earth’s mantle has however a large number of charactesittat break the sym-
metry between upwellings and downwellings.

What is probably the major difference between mantle caime@nd purely
basally heated convection is that the Earth is largely ped/éy radiogenic heat-
ing from the decay of uranium, thorium and potassium. Cotiwegurely heated
from within is depicted in Figure 7. In the extreme case wiikesfluid is entirely
heated from within, the fluid has no hot bottom boundary layérere are only
concentrated downwelling currents sinking from the togldmundary layer. The
downwellings are active as they are moved by their own negduoyancy. To
compensate for the resulting downwelling flow, the backgubis rising passively,
i.e., without being pushed up by a positive buoyar@Bgr¢ovici et al, 2000). In
the case of basal heating, any plume leaving the top or bditamdary layer trav-
els adiabatically (neglecting diffusion and shear heatikipwever, in the case of
internal heating, while the rapid downwellings remain elés adiabatic, the ra-
dioactive decay can accumulate heat during the slow upvgslli This heating
is opposite to the adiabatic cooling and the average teriyeran an internally
heated system remains more homogeneous and with a sighifobadiabatic
gradient Parmentier et al.1994).

The Earth’s mantle is however not in such an extreme sitoat®ome heat
flow is extracted across the CMB from the molten iron outeecdihis basal heat
flux drives active upwellings (hotspots). The ratio of theemal radioactive heat
to the total heat extracted at the Earth’s surface is calledJrey numberrey,
1951). Geochemical models of primitive mantle composi(gicDonough and
Sun 1995;Rudnick and Fountairl995) imply that about 50% of the surface heat
flux is due to radioactive decay and 50% to mantle and cordrapolGenerally
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Figure 7: Convection patterns of a fluid entirely heated fioside at Rayleigh
number 16, 107, 1¢%, 1@ (simulations ran by Fabien Dubuffet). Cold finger-like
instabilities are sinking from the top boundary layer, apdead on the bottom
boundary layer. No active upwellings are present (compatie @onvection pat-
terns for a fluid heated from below, 4).

geophysicists have difficulties with these numbers as tleeynsto imply a too
large mantle temperature in the paSafies 1980;Schubert et a).1980). From
convection modeling of the Earth’s secular cooling, thegwoffavor ratios of or-
der of 80% radioactive and 20% cooling (see Chapter 2). Tlsalldeeat flux at
the CMB represents the core cooling component, part of tta¢ tooling rate of
the Earth. The secular cooling and the presence of intematss tends to de-
crease the thickness of the hot bottom layer compared tothia¢ cold top layer,
increase the active role of downwellings (the subductia@s), and decrease the
number or the strength of the active upwellings (the hotgpot

6.3 A complex rheology

We have shown that the rheological laws of crystalline satichy be linear or non-
linear, depending on temperature, grain size and stresk Marious deformation
mechanisms (grain diffusion, grain boundary diffusiorslacation creep...) act
simultaneously. The equivalent viscosity of each indigidmechanism can be
written in the form

E* + PV*

=Al}d™™
H 2 exp RT

(245)
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Figure 8: Creep regime map for dry olivine. High deviatotiess or temperature
favor a dislocation mechanism. A decrease in the grain sizer$§ diffusion. In
the upper mantle the stress and temperature conditionstéehdng the creep
regime from dislocation to diffusion at depth & 2.5, m = 0 and E* = 540 kJ
mol~! for dislocation creepp = 0, m = 2.5 andE£* = 300 kJ mol! for diffusion
creep).

where E* and V* are the activation energy and volume,and 7" the pressure
and temperatureR the perfect gas constant,the grain sizeyn the grain size
exponent,/, the second stress invariant anda stress exponent\eertman and
Weertman 1975;Ranalli, 1995). The multiplicative factoA varies with water
content, melt content and mineralogy. In general the coitgdseology is dom-
inated by the mechanism leading to the lowest viscosity.

In Figure 8, we plot as a function of temperature, and foroasipossible
grain sizes (0.1 mm, 1 mm, 1 cm) the stress rate at which thanstaite predicted
for the dislocation and diffusios mechanisms are the saes® (804) and (103)).
The data corresponds to dry upper manarato and Wy 1993). Low stress
and temperature favor diffusion creep while high stresslagt temperature fa-
vor dislocation creep. Below the lithosphere, in the uppantie or at least in
its shallowest part, non-linear creep is likely to occur. depth increase, the de-
crease in the average deviatoric stress favors a diffusiyene with a Newtonian
viscosity. The observation of rheological parameters @elomantle conditions
are more difficult but the lower mantle should mostly be ifdifve linear regime
except the zones of intense shear around subductcNdmara et al.2001).
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The lateral variations of viscosity due to each separatarpater, stress ex-
ponent, temperature, water content or grain size can patignbe very large.
Surprisingly, attempts to deduce these variations diydaim geodynamic obser-
vations have not be very successful. Attempts to explairktrgh’s gravity from
internal loads do not seem to require lateral viscosityatamns in the deep mantle
(Zhang and Christense993). Near the surface, viscosity variations are present
at least between continental and oceanic lithospHeiea(d et al, 1991;Cadek
and Fleitout 2003). The gain in fitting the Earth’s gravity or post glaeebound
data with 3D viscosity models remains rather moderate coegp@ the complex-
ities added to the modelings@sperini et al. 2004) and most models of mantle
viscosity are restricted to radial profileSlitrovica and Forte 1997). Even the
modeling of slabs, their curvatures and their stress pattdo not really require
that they are much stiffer than the surrounding mankso(and Oconnell1993).

6.3.1 Temperature dependence of viscosity

The viscosity is a strong function of temperature and thd tdflosphere seems to
have a viscosity of order ¥dPa s Beaumont1978), 4 to 6 orders of magnitude
stiffer than the asthenosphere. The activation enérgyys typically from 300 to
600 kJ motl! (Drury and FitzGerald 1998) the lowest values being for diffusion
creep. This implies a factor10 in viscosity decrease for a 100 K temperature
increase (using’ ~ 1600 K). The effect of temperature dependence of viscosity
on the planform of convection was recognized experimentading oils or syrups
(Booker 1976;Richter, 1978;Nataf and Richter1982). In the case of a strongly
temperature dependent viscosity, the definition of the &gkl number is rather
arbitrary as the maximum, the minimum or some average viscoan be cho-
sen in its definition. Another nondimensional number (gtge,ratio of viscosity
variations ti,,... / ttmin) Must be known to characterize the convection.

Not surprisingly, two extreme regimes are found. For a s&gyoratio lower
than about 100, the convection pattern remains quite sitalaonvection with
uniform viscosity. On the other hand, if the viscosity of twd boundary layer
(the lithosphere) is more than 3000 times that of the undeglasthenosphere,
the surface becomes stagnaBiblomatoy 1995). Below this immobile lid, the
flow resembles convection below a rigid top surfadayaille and Jaupart1993).

In between, when the viscosity ratios are in the range 1@B3the lithosphere
deforms slowly and in this sluggish regime, the convectigiisthave large aspect
ratios.

Convection with temperature-dependent viscosity has beestigated by
various authorsRarmentier et al.1976;Christensen1984b;Tackley et al.1993;
Trompert and Hansen1998b; Kameyama and Ogaw&000). Since the top
boundary layer is stiffer than the bottom boundary layeg, tibp boundary layer
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is also thicker than the bottom one. This impedes surfacerbesval, eases the
heat flux across the bottom boundary layer, and raises thagevenantle temper-
ature. Convection patterns computed witidependent viscosity remain however
quite far from Earth-like convection. The major differenisethat when ther-
dependence is too strong, the surface freezes and becomebita while on the
real Earth, the lithosphere is highly viscous but brokei teictonic plates sepa-
rated by weak boundaries. Without mechanisms other than@ai’-dependence
of viscosity, the Earth would be in a stagnant-lid regime.

Various modelers have thus tried to uSalependent rheologies but have im-
posed a plate-like surface velocity. This has been veryulisefunderstand the
initiation of subductionToth and Gurnis1998), the interaction of slabs with the
phase changes in the transition zo@#i(stensen1996, 1997b) and the relation-
ship between subduction and graviiig and Hageyr 1994). These numerical
experiments, mostly intended to model slabs, comparefaetasily with labora-
tory experimentsKincaid and Olson1987;Guilloufrottier et al, 1995).

To conclude this brief section on temperature dependenesadsity we dis-
cuss the general concept of self-regulation of planetasriors Tozer(1972). If
a planet were convecting too vigorously it would lose morathtean radioac-
tively produced. It would therefore cool down until the sty is large enough
to reduce the heat transfer. On the contrary, a too slowlyecimg planet would
not extract its radioactive energy, and would heat up unéiscosity is reduced
sufficiently (see also Chapter 2). The internal temperatidirglanets is mostly
controled to the activation energy (or rather enthalpy)haf viscosity (assuming
that planets have similar amount of heat sources). To fid#mpfarge and small
terrestrial rocky planets probably have the same inteeraperatures.

6.3.2 Depth-dependence of viscosity

The activation volume of the viscosity is typically around~1 m* mol~!. Ex-
trapolating to CMB conditions, this suggests a large viggascrease throughout
the mantle. However measurements of viscosity at both higind P conditions
are very difficult. The viscosity increase by a factor 30 t® Bdggested by geo-
dynamics (see paragraph 6.1 and Chapter 7) is probably @raonas robust as
what could be deduced from mineralogic experiments.

The effect of a depth dependent viscosity on the planformoaf/ection has
been studied by e.ggurnis and Davie$1986);Cserepe$1993) orDubuffet et al.
(2000). At least two important geodynamic observationslmaexplained by an
increase of viscosity with depth. One is the relative sigbdf hotspots. A slug-
gish lower mantle where convection is decreased in intgbgita larger viscosity
(and also by a smaller expansivity and a potentially largerrmal conductivity
as discussed in section 6.5.3) favors the relative hotspity {iRichards 1991,
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Steinberger and O’Connegll998). A second consequence is a depth dependence
of the wavelengths of the thermal heterogeneities. A visgascrease (together
with the existence of plates and continents that impose te1 wavelengths, see
6.7), induces the existence of large-scale thermal anesati depthBunge and
Richards 1996). A slab crossing a factor 30-100 viscosity incre&seikl thicken

by a factor of order 3-Burnis and Hage 1988). This thickening is observed in
tomographic modelsv@n der Hilst et al. 1997) and can be inferred from geoid
modeling Ricard et al, 1993a).

6.3.3 Stress-dependence of viscosity

Starting fromParmentier et al(1976) the effect of a stress-dependent viscosity
has been studied b@hristenser(1984a);Malevsky and Yue(lL992);van Keken

et al.(1992);Larsen et al(1993), assuming either entirely non-linear or compos-
ite rheologies (where deformation is accommodated by bo#atl and non-linear
mechanisms). At moderate Rayleigh number, the effect ofralinear rheology

IS not very significant. In fact, the non-linearity in the dhegy is somewhat op-
posed to the temperature-dependence of the rheology. AensbypChristensen
(1984a), ar-dependent, non-linear rheology with an exponent 3 leads to
convection cells rather similar to what would be obtainethvai linear rheology
and an activation energy divided by n. Convection with both non-linear and
T-dependent rheology looks more isoviscous than conveetitim only stress-
dependent or onl¥’-dependent, rheologies.

At large Rayleigh number, however, non-linear convectieadimes more un-
stable Malevsky and Yuerl992) and the combination of non-linear rheology,
T-dependent rheology and viscous dissipation can accel#ratrising velocity
of hot plumes by more than an order of magnitudaréen and Yuerl997).

6.3.4 Grain size dependence of viscosity

The factorA of the viscosity law (245), can also be strongly variable amslfor
example a function of the grain sizevith A oc d™ andm of order3 in the diffu-
sion regime Karato et al, 1986) (when the rheology is linear in terms of stress, it
becomes non-linear in terms of grain size). There is a cletamial feed back in-
teraction between deformation, grain size reduction byadyic recrystallization,
viscosity reduction and further localizatiodefoslow et al. 1996). Grain size re-
duction is balanced by Ostwald ripening (e.g., the fact siatace energy drives
diffusion from small grains to larger grains) which provéde healing mechanism
to increase on the long term the average size of graitige(t, 1965). This in-
crease of the average size of grains is in fact obtained byelcesase in size of
small grains by dissolution into larger ones.
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A grain size-dependent viscosity has been introduced iebalgnamic models
(e.g.,Braun et al, 1999;Kameyama et al1997). The effect is potentially impor-
tant in the mantle and even more important in the lithosphétewever, up to
now, the basic physics remains problematic since the geoenaervation equa-
tions and the empirical laws of grain size evolution are redt sonsistent. The
changes in surface energy cannot be easily accounted foeitotal energy con-
servation and the experimental laws of grain reductioni{endislocation regime)
and viscosity reduction and healing (in the diffusion regjrhave been obtained
in mutually exclusive conditions.

6.4 Importance of sphericity

An obvious difference between the convection planform insa@t and in an ex-
perimental tank is due to the sphericity of the former. In¢hee of purely heated
from below convection, the same heat flux (in a statisticatsg has to be trans-
ported through the bottom boundary layer and the top boynldser. However
as the CMB surface is about 4 times smaller than the top syrthts implies a 4
times larger thermal gradient through the bottom boundayei than across the
lithosphere. A bottom boundary layer thicker than the toprmtary layer rein-
forces the upwelling hot instabilities with respect to tlwewgoing cold instabil-
ities. Sphericity affects the average temperature andofh@nd bottom boundary
layer thicknesses in a way totally opposite to the effectmtarnal sources (see
6.2) or’T-dependent viscosity (see 6.3). Although numerically nabffecult to
handle, spherical convection models are more and more confid@vcovici et al,
1989b;Tackley et al.1993;Bunge et al.1997;Zhong et al.2000). Figure 9 is an
example of the complex patterns that can be obtained withemtion in a sphere.

6.5 Other depth-dependent parameters
6.5.1 Thermal expansivity variations

The thermal expansivity varies with depth, as predictedhsyEoS (80), from
which we can easily deduce that

Qg
(p/po) 114 (T — T)

It decreases with both temperature and density, and thinsdepth. The expan-
sivity varies from~ 4 x 107° K1 near the surface te- 8 x 1075 K~! near
the CMB (Chopelas and Boehled992). This diminishes the buoyancy forces

(246)

o =
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Figure 9: Isothermal surfaces in a spherical convection ehlmulations by
Marc Monnereau, cold=blue, yellow and orange=hot). ColdesHike down-
wellings are sinking from the surface. Large-scale upwghiare reaching the
upper-lower mantle interface. The presence of a phase eh@eg below 6.6),
impedes the large hotspot penetration but generates sagoswhaller plumes in

the upper mantle.

86



and slows down the deep mantle convectibiarfsen et al.1993). Like the in-

crease of viscosity with depth, a depth-dependent thermpdresivity broadens
the thermal structures of the lower mantle, and suppressas $iot instabilities
at the CMB. On the other hand, hot instabilities gain buoyascthey rises in the
mantle which favors their relative lateral stationarityr dddition to its average
depth dependence, the temperature dependence of the exyaaiso affects the

buoyancy of slabs3chmeling et al.2003).

6.5.2 Increase in average density with depth

To take into account the depth dependence of density, thedwesq approxi-
mation has be replaced by the anelastic approximation. fvestigations have
been carried out bgercovici et al(1992) and since extended to higher Rayleigh
numbers (e.gBalachandar et a].1992, 1993Zhang and YuerL996).

One of the difficulties with compressible fluids is that thedbcriterion for
instability, (see 4.3.3), is related to the adiabatic gratliDepending on assump-
tions about the curvature of the reference geotherm withihdépe slope of the
adiabatic gradient), part of the fluid can be unstable wihikedther part is stable.
Assuming a uniform adiabatic gradient does not favor thésgpeatial destabiliza-
tion of either the upper or the lower mantle. On the other hasduming that the
reference temperature increases exponentially with dggthtaking the order of
magnitude equations (120) as real equalities) would leachteasier destabiliza-
tion of the top of the mantle than of its bottom as a much langat flux would be
carried along the lower mantle adiabat. In the real Earthatiabatic gradient, (in
K km~1), should decrease with depth (due to the decrease in exjtgnsiwith
depth insufficiently balanced by the density increase, $&8)J. Since less heat
can be carried out along the deep mantle adiabat, compilggshould favor the
destabilization of the deep mantle.

Compressible convection models generally predict dowmgsheets and cylin-
drical upwellings reminiscent of slabs and hotspd&isgng and Yuerl996). Vis-
cous dissipation is positive (as an entropy-related sgurosemaximum just be-
low the cold boundary layer and just above the hot boundamgr]avhere rising
or sinking instabilitities interact with the layered sttuees of the boundary lay-
ers. On the contrary the adiabatic source heats the dowinggland cools the
upwellings. On average, it reaches a maximum absolute valtire mid-mantle.
Locally, viscous dissipation and adiabatic heatings calatgger than radiogenic
heat production although integrated other the whole maantld averaged over
time, the adiabatic and dissipative sources cancel out($s9e
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6.5.3 Thermal conductivity variations

The thermal conductivity of a solid is due to two differenteets. First, a hot
material produces blackbody radiation that can be absdipeéighboring atoms.
This radiative transport of heat is probably a minor compursence the mean
free path of photons in mantle materials is very small. Sdc@honons, which
are collective vibrations of atoms, are excited and canigh$s their energies
by interacting with other phonons, with defects and withigtaoundaries. The
free paths of phonons being larger, they are the main caninib to the thermal
conductivity.

According toHofmeister(1999), thermal conductivity should increase with
depth by a factor-2-3. The recent observations of phase transitions in theimot
of the lower mantle should also be associated with anothedwttivity increase
(Badro et al, 2004). This is one more effect (with the viscosity increase
the thermal expansivity decrease) that should decreaseeiye mantle convec-
tive vigor. It also broadens the thermal anomalies, in@edke average mantle
temperature and thins the bottom boundary lajriquffet et al. 1999).

6.6 Thermo-chemical convection

Except in section 5, a simple negative relationship wasraegubetween den-
sity variations and temperature variations, through tleerttal expansivityAp =
—aAT. However, in the mantle several sources of density anomale present.
The density in the mantle varies with the temperatliror a given mineralogi-
cal composition, or phase content, symbolized by the symlfelg., for a given
proportion of oxides and perovskite in the lower mantle).e Thineralogy for a
given bulk elemental compositiop(e.g., the proportion of Mg, Fe, O... atoms),
evolves with pressure and temperature to maintain the Ggblesgy minimum.
The variations of density in the mantle at a given pressuaee Ipotentially three
contributions that can be summarized as

~(ar) 2+ (), () 2 (35), (50)

Ap = AT + AT + A 247
p(@Td) 96),\0T ) 96), \ay ), 2 @40
The first term on the right side is the intrinsic thermal effeemputed assuming
a fixed mineralogy. We have already discussed this term. €bersl term is a
thermochemical effect. The density is a function of the matmgical composi-
tion contoled at uniform pressure and elemental compaosiby the temperature
variations. This term is responsible for a rise of the 410 leptt interface and

deepens the 660 km depth interface in the presence of coldwlelings (rifune
and Ringwood1987). The last term is the intrinsic chemical effect (fethto
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variations of the mineralogy due to changes in the elemeotalposition at con-
stant temperature). The three contributions have verylaimmplitudes and none
of them is negligibleRicard et al, 2005).

The effect of the second term has been rather well studsetiubert et al.
1975; Christensen and Yuei984;Machetel and Weberl 991, Peltier and Sol-
heim 1992;Tackley et al.1993;Tackley 1995;Christensen1996). Phase changes
in cold downgoing slabs occur at shallower depth in the chsgathermic phase
changes and at greater depth for endothermic phase chahgam@gwoodite to
oxides plus perovskite phase change at 660 km depth is esrdaitt) all the im-
portant other phase changes of the transition zone areexwit). These sources
of anomalies and their signs are related to the Clapeyrgrestd the phase tran-
sitions. The existence of latent heat release during phzaege (see (158)) is a
secondary and minor effect. The recent discovery of a plrassformation in the
deep lower mantleMurakami et al, 2004) (the post-perovskite phases) suggests
that part of the complexities of the D” layer are related te ithteraction between
a phase change and the hot boundary layer of the masdleagawa and Tackley
2006).

The fact that below the normal 660 km depth interface theseregyion where
slabs remain in a low density upper-mantle phase insteaciofyidransformed
into the dense lower mantle phase is potentially a strongdnpent to slab pen-
etration. The idea that this effect induces a layering ofvegtion at 660 km
depth or a situation where layered convection is punctulayddrge "avalanche”
events dates back Ringwood and Irifun€1988) and was supported by numerical
simulations in the nineties. It seems however that the itapoe of this poten-
tial effect has been reduced in recent simulations with neadistic Clapeyron
slopes, phase diagrams (taking into account both the pgeoaed garnet phases),
thermodynamic reference values (the phase change effetd ba compared with
thermal effects and thus an accurate choice for the therrpalrsivity is neces-
sary), and viscosity profiles.

The last contribution to the density anomalies are relaie@tiations in chem-
ical composition. There are indications of large-scaletidemd lateral variations
of Fe or Si contents in the mantiBglton and Masters2001;Saltzer et al.2004).
A large well-documented elemental differentiation is bedw the oceanic crust
(poor in Mg, rich in Al and Si) and the mantle. The density eliinces between a
normal pyrolitic mantle and an oceanic basalt, both at lawantle pressure (and
appropriate mineralogical phases) is larger than the thkbdensity variations that
can be expected in the mantle. The oceanic crust in its higéspre eclogitic fa-
cies, is~ 5% denser that the average mantle density in most of the enextlept
in the shallowest 100 kilometers of the lower mantle wheiis lighter (rifune
and Ringwood1993). In the deepest mantle it is not yet totally clear \whethe
eclogite remains denser, neutrally buoyant or even skdighter than the average
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mantle (e.g.Ricolleau et al.2004). Since the thermal expansivity decreases with
depth the compositional density variations, though smathain important in the
lower mantle. Thermochemical simulations starting witl gioneering paper of
Christensen and Hofmand994) show the possibility of a partial segregation of
oceanic crust during subduction, forming pyramidal pilestee CMB. These re-
sults have been confirmed by e.Gackley(2000) andDavies(2002). These com-
positional pyramids may anchor the hotspdellfnek and Manga2002;Davaille

et al, 2002). The presence of a petrologically dense componetiteofource

of hotspots also seems necessary to explain their excepetatare Farnetani
1997).

Not only present-day subductions can generate compoait@momalies in the
mantle. Geochemists have often argued for a deep layemoftpre material. This
layer should be intrinsically denser to resist entrainni®ntonvection. The sta-
bility of such a layer has been discussed by various autlizasdille, 1999;Kel-
logg et al, 1999;Tackley and Xig2002;LeBars and Davaille2002;Samuel and
Farnetanj 2003). Depending of the ratio between the intrinsic dgnsitrease
to the thermal density variations, a deep layer may be staldely eroded, may
undergo large oscillating motions (the so-called lavaganode of thermochem-
ical convection), or be rapidly mixed. Numerical simulatsoof thermo-chemical
convection are certainly going to replace the thermal cotiwe models in the
next years. They will help to bridge the gap between geoct@&nobservations
and convection modelin@ltice and Ricard1999;van Keken et al2002).

6.7 A complex lithosphere: plates and continents

The lithosphere is part of the convection cell and plateoteics and mantle con-
vection cannot be separated. The role and specifics of tiusfihere are complex
and are more deeply discussed in Chapter 8.

The fact that the cold lithosphere is much more viscous andetrates most
of the mass heterogeneities of the mantle, makes it behdyirspme aspect as
a membrane on top of a less viscous fluid. This suggests soaheggrbetween
mantle convection and what is called Marangoni convectidaréngoni, 1840-
1925). Marangoni convectiomM(eld, 1964) is controlled by temperature depen-
dent surface tension on top of thin layers of fluids.

The Earth’s mantle is certainly not controlled by surfagesten. Marangoni
convection, strictly speaking has nothing to do with mantavection. However
the equations of thermal convection with cooling from the &md with a highly
viscous lithosphere can be shown to be mathematically ¢tbssugh a change of
variables) to those of Marangoni convectidrefnery et al.2000). This analogy
has been advocated as a "top-down” view of the mantle dyraicderson
2001). More classically, the interpretation of plate coglin terms of ridge-push
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force (Turcotte and Schuber1982), or the analysis of tectonic stresses using thin
sheet approximationg&fgland and Mckenzjd982) belong to the same approach.

Due to the complexities of the lithosphere properties, thenolary condition
at the surface of the Earth is far from being a uniform frap-sbndition. Both
continents and tectonic plates impose their own wavelengpial specific bound-
ary conditions on the underlying convecting asthenospl@teourse the position
of the continents and the number and shape of the plates eresétves, conse-
guences of mantle convection. The plates obviously orgathi large scale flow
in the mantle Hager and Oconnell1979;Ricard and Vigny1989). They impose
a complex boundary condition where the angular velocityiese@-wise constant.
The continents with their reduced heat flodagpart and Mareschall999) also
impose a laterally variable heat flux boundary condition.

Convection models with continents have been studied nwairi(Gurnis
and Hager 1988;Grigné and Labrosse2001) and experimentallyGuillou and
Jaupart 1995). Continents with their thick lithosphere tend torgase the thick-
ness of the top boundary layer and the temperature below (keenFigure 10).
Hot rising currents are predicted under continents and eellimgs are localized
along continental edges. The existence of a thick and staipieénental root must
be due to a chemically lighter and more viscous subcontatéittiosphere Doin
et al, 1997). The ratio of the heat flux extracted across cont;eampared to
that extracted across oceans increases with the Rayleigieru This suggests
that the continental geotherms were not much different engast when the ra-
diogenic sources were larger; it is mostly the oceanic heattthat was larger
(Lenardic 1998). Simulating organized plates self-consistentlypted with a
convective mantle has been a very difficult quest. The attetopgyenerate plates
using7'-dependent or simple non-linear rheologies have failedh&gh in 2D
some successes can be obtained in localizing deformatiplaie-like domains,
(Schmeling and Jacob$981;Weinstein and Olsqri992;Weinstein 1996), they
are obtained with stress exponents (eng> 7) that are larger than what can be
expected from laboratory experimenis{ 2). The problems are however worst
in 3D. Generally these early models do not predict the ingrdrshear motions
between plates that we observ@hfistensen and Harderl991; Ogawa et al.
1991).

Some authors have tried to mimic the presence of plates bgsing plate-
like surface boundary conditions. These studies have bedarmed in 2D and
3D (Ricard and Vigny1989;Gable et al, 1991;King et al, 1992;Monnereau and
Quére, 2001). Although they have confirmed the profound effectlatgs on the
wavelengths of convection, on its time-dependence and ®sulface heat flux,
these approaches cannot predict the evolution of surfadte geometry. Figure
11 illustrates the organizing effect of plates in spherigaternally heated com-
pressible convection with depth dependent visco8tynge and Richard4.996).

91



WA

(@) @é) ]
L1
T 1

Bottom heated

Figure 10: Convection patterns in the presence of 4 contsnerhe total aspect
ratio is 7, the continents are defined by a viscosity incrégsa factor 10 over

the depth 1/10. The viscosity is otherwise constant. ThddRgty number based
on the total temperature drop (bottom panels) or on thenateadioactivity (top
panels) is 10. The downwellings are localized near the continent margias
large difference in heat flux is predicted between oceanscantinents. In the
case of bottom heating, hotspots tend to be preferentialthared below conti-
nents where they bring an excess heat. This tends to redecitface heat flux

variations.
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To obtain a self-consistent generation of surface plateseroomplex rheologies
that include brittle failure, strain-softening and damagechanisms must be in-
troduced (e.g.Moresi and Solomatqv1998;Auth et al, 2003). The existence
of plates seems also to require the existence of a weak gwisfiheric astheno-
sphere Richards et al.2001). In the last years, the first successes in computing
3D models that spontaneously organize their top boundgeyr iato plates have
been reachedrackley 1998;Trompert and Hanseri998a;Stein et al.2004). Al-
though the topological characteristics of the predictedgd and their time evolu-
tion may be still far from the observed characteristics at@ltectonics, and often
too episodic (stagnant-lid convection punctuated by gdi&teevents), a very im-
portant breakthrough has been made by modelers (see Figure 1

The Earth’s plate boundaries keep the memory of their wesskoeer geologi-
cal times Gurnis et al, 2000). This implies that the rheological properties cdnno
be a simple time-independent function of stress or tempexdiut has a long term
memory. The rheologies that have been used to predict pfatesvective mod-
els remain empirical and their interpretation in terms ofrascopic behavior and
damage theory remains largely to be doBercovici and Ricargd2005).
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