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This article deals with the structure of the fundamental group of compact anti
de Sitter spacetimes, i.e. Lorentz manifolds with constant negative curvature.
Algebraically such a manifold is the quotient of the universal cover of the ho-
mogeneous spaceSO(2, n)/SO(1, n) by a discrete groupΓ acting properly and
co-compactly on it. This exists if and only ifn is even. Indeed, as this was
observed by Kulkarni,U (1, d) is contained inSO(2, 2d), and acts properly tran-
sitively onSO(2, 2d)/SO(1, 2d). It then suffices to takeΓ as a co-compact lattice
in U (1, d). The results of the present article give evidence to the question: in
dimension> 3, are all compact anti de Sitter spacetimes constructed in this way?

Mathematics Subject Classification (1991):20H15, 53C50

1 Introduction

The “linear” anti de Sitter spacetimeH1,n of dimensionn + 1 is the connected
component of the identity in the homogeneous spaceSO(2, n)/SO(1, n), where
SO(p, q) denotes the special orthogonal group of a non degenerate quadratic
form of type (p, q) on Rp+q (see also Sect. 2 for another description).

It admits a unique (up to a constant) Lorentz metric (i.e. a pseudo-Riemannian
metric of signature−+ . . . +) invariant by the left action ofSO(2, n), which turns
out to be of constant negative curvature. Theuniversal anti de Sitter spacetime

H̃1,n is the universal cover ofH1,n. It is a Lorentz homogeneous space, with

isometry group, essentially, the universal cover group̃SO(2, n). An anti de Sit-
ter spacetimeis a quotientΓ̃ \H̃1,n, whereΓ̃ is a discrete subgroup ofIsom(H̃1,n)
acting properly and freely. We will always denote byΓ the projection ofΓ̃ in
SO(2, n). Such a manifold inherits a Lorentz metric of constant negative curva-
ture. Conversely, acomplete Lorentz manifolds of constant negative curvature
is an anti de Sitter spacetime.
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Here we are concerned with compact anti de Sitter spacetimes. Recently,
in [11], B. Klingler adapted the Carrière’s completeness proof of compact flat
Lorentz manifolds, to the general constant curvature case. In fact, in a previ-
ous version of the present article, we conjectured that Carrière’s completeness
theorem (and method) [3], may be generalized to compact locally symmetric
Lorentz manifolds (see also [15] about this question). Therefore, closed anti de
Sitter spacetimes are just closed manifolds of constant negative curvature. In the
present article, we focus attention on the algebraic structure of the fundamental
groups of such spacetimes.

As observed, for example in [14], thanks to a Gauss-Bonnet formula, even
dimensional manifolds of constant non zero curvature have non zero Euler class.
But this can not be the case of a compact Lorentz manifold (without any condition
on its curvature), as its lightlike cone determines a continuous field of directions.
Therefore compact anti de Sitter spacetimes are odd dimensional.

For odd dimensions, R. Kulkarni observed that the groupG = U (1, d) is
contained inSO(2, 2d), and thus acts isometricaly onH1,2d. This action is in
fact transitive andproper, since its isotropy group is justU (d). It then follows
that any co-compact latticeΓ in U (1, d) acts properly, discontinuously and co-
compactly onH1,2d. This action is free ifΓ is torsion free. The quotientΓ \
H1,2d is thus a compact anti de Sitter spacetime. Any spacetime, obtained, up to
finite covers, by this construction, will be calledstandard, andspecialstandard
if Γ is contained inSU(1, 2d). (See TheoremB and 8.1 for another causal
characterizations of these spaces).

These anti de Sitter spacetimes admit the following Riemannian description.
Observe that the (Riemannian) complex hyperbolic space of complex dimension
d, Hd

C = U (1, d)/S1 × U (d) is obtained as a quotient ofH1,2d, by the centerS1

of U (1, d) (the group of unitary complex multiplication), and thatIsom0(Hd
C) =

SU(1, d). Moreover H1,2d may be seen as the circle bundle associated to the
canonical (or may be the anti-canonical) bundle ofHd

C. Therefore, a special
standard anti de Sitter spacetimeΓ \ H1,2d is the canonicalS1 bundle over the
complex hyperbolic manifoldΓ \ Hd

C. Conversely the canonicalS1 bundle of
a hyperbolic complex manifold admits a structure of a special standard anti de
Sitter spacetime. For hyperbolic surfaces, this construction yields the Killing
Lorentz structure on their unit tangent bundle.

Here follows our principal result, it suggests that in dimension> 3, all anti
de Sitter spacetimes are standard !

Theorem A Let M1,n = Γ̃ \ H̃1,n be a compact anti de Sitter spacetime with
n > 2. Then up to finite covers, M is in fact a quotientΓ \ H1,n, that is in other
words, the projectionΓ of π1(M ) in SO(2, n), acts discontinously and properly
on H1,n. Moreover, exactly one of the following two possibilities holds forΓ :
i) Γ is Zariski dense in SO(2, n).
ii) Γ is conjugate to a (discrete) uniform lattice of U(1, d) (n = 2d), i.e. M is
standard.
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Some comments are in order:

The 3 dimensional case.The linear anti de sitter spacetimeH1,2 is identified
with the groupSL(2, R) endowed with its Killing form. Its isometry group is
essentially the direct productSL(2, R) × SL(2, R) acting by the left and the right.

Special standard (resp. standard) manifolds are just quotientsΓ \ SL(2, R),
whenΓ ⊂ SL(2, R) × {1} (resp.Γ is a subgroup ofSL(2, R) × S1, with the first
factor acting by left multiplication and the second by the right).

It is clear that special standard anti de Sitter spacetimes are Seifert fiber
spaces. A basic work on closed anti de Sitter spacetimes of dimension 3 is [13].
The authors proved that, as in the special standard case, all the closed anti de
Sitter spacetimes are (topologically) seifert fiber spaces. They then asked if all
of them are (geometrically) standard? This was immediately seen to be not true
by B. Goldman [10], as one can non trivially deform standard spacetimes. This
is essentially du to the non simplicity ofSO(2, 2), which is not true for higher
dimensions. The systematic question: what kind ofΓ in SO(2, 2) can occur, is
studied by F. Salein [19].

Finiteness of levels.The fact that, up to finite covers, one may obtainM as a
quotient of the “linear model”H1,n (which means that we don’t need its universal

cover H̃1,n), is expressed in [13] as a finiteness level property. Indeed for each
integerk, H1,n has ak-cover H1,n

k , and (up to orientability conditions)M is a
quotient of someH1,n

k . The level ofM is the smallestk.
The finiteness of levels (for closed anti de Sitter spacetimes) is a fundamental

property, and is by no means obvious (it may also have a physical meaning, as
a quantum number...!). The fact that the compact anti de Sitter spacetimes of
dimension 3 have finite levels, is announced in [13] (and then used to prove other
claims). Nevertheless, their proof is far from being convincing. Our method of
proof here can easily be extended to the dimension 3.

The Zariski closure. The Theorem states a dichotomy for the holonomy group
Γ : it is either Zariski dense, or a lattice inU (1, d). However, we do not know
non standard examples, that is those for whichΓ is Zariski dense.

In dimension 3, Zariski dense examples exist, and the dichotomy itself is
not true. One can check this by taking small deformations of a compact lattice
Γ ⊂ SL(2, R) in SO(2, 2) = SL(2, R) × SL(2, R).

For d > 1, SO(2, 2d) is simple, and it is not clear how to deform (non
trivially) inside it, a latticeΓ ⊂ U (1, d).

In general, lattices in simple groups are locally rigid, but those of our inter-
esting groupSU(1, d) (together with those ofSO(1, n)) appear as exceptional
cases. More precisely, by classical rigidity theorems [18], a lattice in a simple
group G, except forG = SO(1, n) or G = SU(1, d) is locally rigid for any non
trivial representation ofG (in any SL(N , R)).
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On the other hand, as exceptional case for rigidity, there are in fact lattices
of SU(1, d) which may be deformed (outsideU (1, d)) in someSL(N , R) [16].
Nevertheless, it is not obvious how to do this insideSO(2, 2d) for 2d > 2. We
therefore dare ask:

Question 1.1 Are all anti de Sitter spacetimes of dimension> 3, standard?

1.1 Related results

The question we are asking above, may be posed in the general context of com-
pact quotients of homogeneous spaces, and may be expressed as aBieberbach
rigidity for these spaces (because it is somewhat reminiscent to the Bieberbach
Theorem for cristalographic groups).

Consider a homogeneous spaceI /H , quotient of aconnectedLie groupI by
a connectedLie subgroupH . We are researching for discrete subgroupsΓ ⊂ I
acting properly co-compactly and freely onI /H (so that the quotientΓ \ I /H
is a compact manifold, locally modeled onI /H ).

As in the definition of standard anti de Sitter spacetimes, one may start
by consider a radically simpler problem which is, first, find a connected Lie
subgroupG ⊂ I acting co-compactly (or say, transitively) andproperly on
I /H , and next takeΓ to be a co-compact lattice inG. One says thatI /H
satisfies the Bieberbach rigidity, if all its compact quotients are of this type. As
example, after many works during the last decade, the structure of compact flat
Lorentz manifolds, was elucidated, as in the following Theorem, by proving a
completeness result and a Bieberbach rigidity.

Theorem 1.2 ([3], [7], [8], [9],...) Let M 1,n be a compact lorentz flat manifold.
Then there is a solvable group G acting isometrically and simply transitively on
the Minkowski spaceR1,n and a latticeΓ in G such that up to finite covers,
M = Γ \ R1,n (= Γ \ G).

There are many examples of such solvable Lie groups [9]. In contrary, in
our question (above), we are hoping for a unique Bieberbach rigidity, because
we suppose that only the Lie groupG = U (1, d) is possible. It seems that this
uniqueness phenomenon is a consequence of the presence of reductive (or say
semi-simple) groups.

Notice finally that the compact de Sitter spacetimes, i.e. Lorentz manifolds of
constant positive curvature, are easy to understand: they do not exist at all! (see
[2] and [12]). Modulo the completeness (which is now proved by [11]), the non
existence of compact anti de sitter spacetimes is known as the Calabi-Markus
phenomenon [2] (see also [12]).

1.2 Further results

In dimension 3, the beauty of anti de Sitter spacetimes is amplified by the iso-
metric dynamical systems that they support.
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For M = Γ \ H1,n, its isometry groupIsom(M ) is identified toNor(Γ )/Γ ,
where Nor(Γ ) is the normalizer ofΓ in SO(2, n) = Isom(H1,n). The neutral
componentIsom0(M ) corresponds toCentralizer(Γ )/Γ . This component is easy
to understand from the Theorem above. Nevertheless, the normalizer is typically
a non algebraic group and is “difficult” to detect algebraically in the case of
Zariski dense subgroups ofSO(2, n). Our result is:

Theorem BThe isometry group of a compact anti de Sitter spacetime M1,n, n > 2,
is compact. More precisely, Isom(M ) is finite, unless M is standard, in which case,
the identity component Isom0(M ) is isomorphic to S1.

It will be explained in Sect. 10, how to deduce the Theorem above from the
following one.

Theorem C A compact anti de Sitter spacetime of dimension> 3, has no C0

lightlike geodesic foliation of codimension one.

2 Geometric and algebraic preliminaries

The linear model of H1,n. We denote byR2,n the spaceR2+n equipped with a
(non degenerate) quadratic formq of signature− − + . . . +. Any such a form is
equivalent to the standard one:q0 = −x2

0 −x2
1 +x2

2 +. . .+x2
n+1. A subspaceP ⊂ R2+n

is calleddegenerateor lightlike if the restriction ofq on P is degenerate (i.e.
P ∩ P⊥ /= 0). It is calledisotropic if q vanishes onP (i.e. P ⊂ P⊥ ). Such an
isotropic space has at most dimension 2.

Let SO(2, n) be the special orthogonal group ofq0. From the equivalence
of quadratic forms of the same signature asq0, we deduce thatSO(2, n) acts
transitively on each connected component of each levelq−1

0 (c), in R2+n − {0},
for c ∈ R.

The anti de Sitter spaceH1,n is identified with q−1
0 (−1), since the last

space is a homogeneous space of the groupSO(2, n) with isotropy group ex-
actly SO(1, n), at (1, 0, . . . , 0). The Lorentz metric onH1,n is induced from the
pseudo-riemannian metric onR2,n (defined byq0 ).

From our (mathematical) point of view, neither the value−1, nor the normal
form q0 have particular importance. Any sheet of a levelq−1(c) for c < 0 andq
having the same signature asq0 may serve as a model of the anti de Sitter space.

Notice thatSO(2, n) acts transitively on the space of isotropic directions, as
well as on the space of isotropic 2-spaces.

Lightlike geodesic hypersurfaces and foliations.A geodesic submanifoldH
of H1,n is obtained as a connected component of an intersectionE ∩ H1,n, where
E is a vector subspace ofRn+2, with dimE = dimH + 1 (see [20]). In particular,
a geodesic hypersurface is obtained asHu = u⊥ ∩ H1,n for some vectoru. One
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verifies thatHu is lightlike, i.e. the restriction of the metric to it is degenerate, ex-
actly whenu is isotropic. Observe that in factHu has two connected component,
and thus any connected lightlike geodesic hypersurface equals some connected
component of someHu. However, to simplify notation, we shall argue below as
if Hu was connected, one in fact easily sees this does not matter in what follows.

Fact 2.1 A ( C0) lightlike geodesic foliation ofH1,n is obtained as follows. There
is an isotropic2-vector space P such that the leaves are the traces inH1,n of the

hyperplanes u⊥, for u ∈ P. A lightlike geodesic foliation of̃H1,n is a lift of such
a foliation in H1,n.

Proof. Consider two lightlike geodesic hypersurfaces ofH1,n, Hu and Hv (u
and v are defined up to multiplicative constants). LetP be the 2- vector space
generated byu andv. Since bothu andv are isotropic,P must be isotropic or
Lorentzian (i.e. with restricted metric of signature−+ ). In this last case, the
metric onP⊥ = u⊥ ∩ v⊥ has a signature− + . . . +. ThusP⊥ meetsH1,n. Hence
Hu ∩ Hv = u⊥ ∩ v⊥ ∩ H1,n is not empty. Hence the two geodesic subspacesHu

andHv have a trivial intersection (insideH1,n ) exactly if u andv are orthogonal
(and of course non collinear).

Therefore a foliation is defined by a one parameter family of isotropic and
mutually orthogonal vectors ofR2,n. Thus they generate an isotropic vector sub-
space. Since the signature is− − + . . . +, these vectors must lie in a 2-vector
space.

We now observe that our analysis for intersection of geodesic subspaces,

also holds, locally inH̃1,n. That is for any pointx, there is a neighborhoodV ,
such that, two connected components passing throughV of lifts of two geodesic
hypersurfacesHu andHv, must meet, unlessu andv are orthogonal. �

Lie subgroups ofSO(2, n). Here follows some preparing elementary facts about
actions onH1,n of subgroups ofSO(2, n). We shall use the wordrotation for a
linear mapA on a linear spaceE, to mean that it is conjugate to a multiplication
by a unit complex number on a complex space. This is equivalent to thatA is
semi-simple, with a unique (non real) eigenvalue, which furthermore has module
1. If furthermoreA ∈ SO(2, n), then the conjugacy is insideSO(2, n). One easily
proves:

Fact 2.2 The centralizer of a one parameter group of rotation of SO(2, n) is
conjugate to U(1, d), with n = 2d.

We say that a group (even non discrete) actsco-compactly on some space,
if the iterates by this group of some compact subset, cover the whole space (in
particular every continuous invariant function on that space is bounded).

Lemma 2.3 For n > 0, the subgroup G of elements of SO(2, n) preserving a non
trivial splitting Rn+2 = E1

⊕
E2 does not act co-compactly onH1,n.
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Proof. Assume the contrary. The formq1(x, x) = q0(π1(x), π1(x)), whereπ1 is
the projection ontoE1, is anotherG-invariant form. So by co-compactness,q1 is
bounded onH1,n: a ≤ q1(x, x) ≤ b, for x ∈ H1,n. Hence:aλ2 ≤ q1(y, y) ≤ bλ2,
for y ∈ q−1

0 (−λ2).
In particular the lightlike coneq−1

0 (0) is contained in that ofq1. This would
imply, if q1 is not identically 0, that the two forms have the same lightlike cones
(as both of them are connected analytic codimension 1 subsets). This is known to
imply the two forms are proportional. This is impossible sinceq1 is degenerate
(its kernel containsE2). It then follows thatq1 is trivial. The same is true forq2,
the analogous form constructed fromE2. This is impossible. �

Fact 2.4 Let G be a connected Lie subgroup of SO(2, n) acting co-compactly on
H1,n. Then, one of the following possibilities holds:

i) G is semi-simple.
ii) n = 2d, and G is conjugate to U(1, d)(= SU(1, d) × S1).
iii) G preserves an isotropic line.
iv) G preserves an isotropic2-vector space.

Proof. If G is not semi-simple, then it has a non trivial radicalR (its maximal
connected normal solvable subgroup). There is a root (i.e. a non trivial homo-
morphism)α : R → C and a maximal subspaceE ⊂ Rn+2, on which any element
A ∈ R acts as a multiplication byα(A). More precisely, ifα is real, thenA is
actually a multiplication byα(A). If α is complex, then the same is true for some
complex structure onE. FurthermoreE is preserved by the normalizer ofG (in
GL(n + 2)). In particularE is preserved byG.

A vector belonging to a characteristic space of an orthogonal matrix, associ-
ated to a non unitary eigenvalue, must be isotropic. Hence in the caseE = R2+n,
we haveα(A) ∈ S1 ⊂ C, for anyA ∈ R. Therefore,R is embedded inS1 and so
the action ofG by conjugacy is trivial. That isG centralizesR. From above,G
is conjugate to a subgroup ofU (1, 2d), with 2d = n.

If now E /= R2+n, and E is not degenerate, thenG preserves a non trivial
splitting R2+n = E

⊕
E⊥, which is impossible by the Lemma 2.3. IfE is de-

generate, then its kernelE ∩ E⊥ is G-invariant isotropic subspace which has
therefore dimension 1 or 2. �

By considering characteristic subspaces, as in the proof above, one checks:

Fact 2.5 Let At be a one parameter group of SO(2, n). Suppose that, G, the
centralizer of At , acts co-compactly onH1,n. Then, one of the following two pos-
sibilities must hold:
i) At is a one parameter rotation group, and G is conjugate to U(1, d), for n = 2d.
ii) At is unipotent, and G preserves an isotropic subspace of dimension1 or 2.

Parabolic subgroups. We say that a subgroup ofSO(2, n) is of type P1 (resp.
of typeP2) if it is the stabilizer of an isotropic line (resp. a 2-vector space). Note
the following geometric and algebraic interpretations.
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Fact 2.6 i) A subgroup of SO(2, n) is of typeP1 (resp. P2) if and only if it is
the stabilizer in SO(2, n) of a lightlike geodesic hypersurface (resp. a lightlike
geodesic foliation).

ii) A maximal parabolic subgroup of SO(2, n) is a group of typeP1 or P2.

Proof. The point (i) follows from 2.1. For the point (ii), observe firstly, that a
group of typeP1 or typeP2 is parabolic, because it may be seen as an isotropy
group of a projective action ofSO(2, n) on a projective space. Conversely, a
maximal parabolic subgroup ofSO(2, n) is not semi-simple, and is co-compact
in SO(2, n). In particular it acts co-compactly onH1,n. It follows from 2.4, that
it is of type P1 or P2. �

3 Plan of the proof of Theorems. Tools

Notations and steps.Let’s firstly precise that we will always supposen > 2.
Also we will follow the notational convention: the “operator overtilde” (on no-

tations) ensures the passage from objects iñH1,n to that inH1,n. For instance if

Ã (resp.A) is a subgroup ofIsom(H̃1,n) (resp.SO(2, n)), then A (resp.̃A) is its

projection in (resp. lift to)SO(2, n) (resp. Isom(H̃1,n)). However, if A is con-

nected,Ã will be just the identity component of its inverse image inIsom(H̃1,n).
For instance ifA is simply connected, then we identifỹA with A.

Let M = Γ̃ \ H̃1,n be a compact anti de sitter spacetime, and letG be the
algebraic closure ofΓ (the projection ofΓ̃ in SO(2, n)). It has finitely many
connected components, and after passing to a finite index subgroup ofΓ̃ , we
may suppose thatG is in fact connected. The compactness ofM implies thatG
acts co-compactly onH1,n. Here are the steps of proofs:

1) We will start in Sect. 4, by proving thatG is not contained in a group of
type P1.

2) The key technical contribution in the present article is the impossibility
of the typeP2, too, that isG is not contained in a group of typeP2. This is the
content of the Main Proposition 6.1, which proof occupies Sect. 6.

3) In view of the geometric interpretation of the typeP2 (2.6), this would
imply TheoremC, that is a compact anti de Sitter spacetime has no codimension
1 lightlike geodesic foliation.

4) From 2.4,G may be SO(2, n), conjugate toU (1, d) or a semi-simple
subgroup acting co-compactly onH1,n. It is the aim of Sect. 7 to show that such
a subgroup is conjugate toSU(1, d). This would prove half of TheoremA, that
about Zariski closures.

5) The compactness of the isometry group follows from TheoremC, because
a compact Lorentz manifold admitting a non compact isometry group, possesses
a lightlike geodesic foliation, see [5], and [22]. Using this, we prove in the last
section of the article the first part of TheoremA (i.e. finiteness of levels), and
the last part of TheoremB.
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Tools. The content of the steps 1 and 2, is that the homogeneous spaceH̃1,n,
endowed with a restricted isometry group, corresponding to a group of typeP1

or type P2, has no compact quotient. There is no general method of proving
that some homogeneous space does not have a compact quotient. Our tools here
consist of the two following unimodularity and nilpotency facts.

Unimodularity. The following proposition summarizes classical facts about in-
variant measures on locally homogeneous spaces.

Proposition 3.1 Let G be a Lie group and H a closed connected subgroup, with
Lie algebras respectivelyG andH . Define, forg ∈ G, the modular distortion:
∆G(g) = det(Ad(g)/G ), and for g normalizing H : ∆H (g) = det(Ad(g)/H ).
Then:
i) If G/H admits a non trivial G (left) invariant measure, then: for h∈ H ,
∆G(h) = ∆H (h).
ii) If furthermore G/H admits a left quotientΓ \ G/H , of finite measure (withΓ
discrete), then, for anyg normalizing H :∆G(g) = ∆H (g).

Proof. A detailed proof may be deduced following the developments of ([18],
Chapter 2). Let ¯ω be ap-form on G , with p = dimH , which is a volume form
on H . It defines ap-form ω on G, invariant by the left action.

Let µ be the given measure onG/H . Define onG, the measureν by:
∫

fdν =∫
(
∫

xH f ω)dµ, wheref is a continuous function with compact support inG. This
is a Haar measure onG since it is G-invariant by the left. In particular the
measureµ is defined by means of a volume formα on G/H . Its pull-back inG,
is a formβ which is G-invariant by the left, and alsoH -invariant by the right
(because it comes fromG/H ). That is, the action ofAd(H ) on G /H preserves
a volume form. This exactly means equality of modular distortions.

For the point (ii), notice that ifg normalizesH , then it acts onΓ \ G/H .
Moreover,g∗µ = cµ for some positive constantc. But if µ is finite, then nec-
essarilyc = 1, that isg preservesµ. As above,g must have the same distortion
alongH andG . �

Nilpotency. In the proof of the Main Proposition 6.1, we will meet groups which
are neither discrete, nor closed. For this purpose, let us formulate the following
notion.

Definition 3.2 Let B be a subgroup of a Lie group C . The non-discrete part of

B is Bnd = B ∩ B
0
, whereB

0
is the identity component of the closure of B. It is

a normal subgroup of B, characterized as being the minimal subgroup B′ of B
such that, B projects onto a discrete subset of the coset space C/B′.

From the definition, we get:

Fact 3.3 Suppose that Bnd is contained and is co-compact in a closed normal
subgroup E of C . Then the projection of B on C/E is a discrete subgroup.
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The following Lemma will be a fundamental ingredient in proofs. It is a
straightforward consequence of the Margulis Lemma, and seems to be presented
with (essentially) the following general form, at the first time in [4].

Lemma 3.4 Let G be a connected Lie group which is a semi-direct product G=
N o A, where N is a nilpotent normal subgroup. Suppose that the adjoint action
of A commutes with a non trivial homothety of N , that is a strictly contracting
or a strictly expanding automorphism of N . (This is for instance the case if A
contains a central element which induces a contraction on N ).

Letπ : G → A be the projection andΦ ⊂ G a discrete subgroup. Setφ′ = π(φ)
andφ′′ = φ′

nd its non discrete part. Thenφ′′ is nilpotent.
In fact, also therelative non discrete part ofφ, defined byΦnd,A = φ∩π−1(φ′′),

is nilpotent (relative here means that it is associated to the factor A).

4 Algebraic structure of groups of type P1

Here we show that the groupΓ can not preserve an isotropic line, i.e.Γ is not
contained in a subgroup of typeP1. Consider the quadratic form:q = x0xn+1 −
x2

1 + x2
2 + · · · + x2

n . Let P1 be the group of transformations preservingq and the
line Re0, wheree0 = (1, 0 . . . , 0). One verifies thatP1 is a semi-direct product of
the following subgroups:

1) A semi-simple groupS1 isomorphic toSO(1, n−1), consisting of matrices:

(1 0 0
0 A 0
0 0 1

)
, A ∈ SO(1, n − 1).

2) A diagonal groupD1 isomorphic toR∗:

(λ 0 0
0 I 0
0 0 λ−1

)
, λ ∈ R∗.

3) An unipotent subgroupN1 isomorphic toRn:


1 2a1 · · · 2an −(−a2

1 + a2
2 + · · · + a2

n)
0 1 · · · 0 −a1

· · · . .
0 · · · 1 −an

0 · · · 0 1

 , (a1, . . . , an) ∈ Rn.

Moreover, one verifies that:S1 andD1 commute,N1 is normal, the adjoint ac-
tion of S1 on N1 ∼ Rn, is the usual one, and finally thatD1 acts by multiplication
on N1(∼ Rn).
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Action of P1 on H1,n. Observe thatP1 has exactly two orbits inH1,n: an open
dense one:O = P1e, for e = (1, 0, . . . , 0,−1), and its complementary:O ′ =
(Re0)⊥ ∩H1,n. Note that the isotropy group ofe is S1 which is in fact centralized
by D1. Hence, the modular distortion ofAd(D1) on S1 is trivial, but obviously
not that onP1 = N1 o (S1.D1). We deduce from 3.1 that the universal cover of
O has no finite volume quotient.

The geometry of a lightlike geodesic hypersurface.Any lightlike geodesic
hypersurface is congruent toH = e⊥

0 ∩ H1,n, and its stabilizer inSO(2, n) is
conjugate toP1.

The directione0 determines a 1-dimensional foliationD of H , Dx = {x +
re0, r ∈ R}. Observe that the set{(0, x1, . . . , xn, 0) / − x2

1 + x2
2 + · · · + x2

n =
−1}, which may be identified toHn−1, is a global cross section ofD . In fact
D is a transversally Riemannian foliation in the sense that the groupP1 acts
isometrically onHn−1. IndeedP1 acts via its factorS1 which acts onHn−1 via
its identification withSO(1, n − 1).

5 Algebraic structure of groups of type P2

Consider onRn+2 the quadratic form of index 2:q = x0xn +x1xn+1+. . .+x2
2 +x2

n−1.
Let P be the vectorial 2-plane generated by the elements of the canonical basis
e0 ande1, andP2 its isotropy group in the orthogonal group ofq. To understand
P2, we shall first observe that it contains the following four subgroups, and then,
P2 is a semi-direct product of them:

1) A semi-simple of non compact type subgroup:S ∼ SL(2, R). We have the
following representation ofSL(2, R) in P2:

A =

(
a b
c d

)
∈ SL(2, R) → RA =


a b
c d

I
d −c

−b a

 ∈ S ⊂ P2.

2) A semi-simple compact subgroupR isomorphic toSO(n − 2). We have
the following representation ofSO(n − 2) in P2:

A ∈ SO(n − 2) → RA =


1 0
0 1

A
1 0
0 1

 ∈ R ⊂ P2.

3) A diagonal subgroupD isomorphic to R∗:
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λ ∈ R∗ → Rλ =


λ 0
0 λ

I
λ−1 0

0 λ−1

 ∈ D ⊂ P2.

4) We finally have a unipotent subgroupN isomorphic to the Heisenberg
group of dimension 2(n − 2) + 1.

(a2, . . . , an−1; b2, . . . , bn−1, c) → R(a2,...,an−1;b2,...,bn−1,c)

=



1 0 2a2 · · · 2an−1 −Σa2
i −c − 2Σai bi

0 1 2b2 · · · 2bn−1 c −Σb2
i

0 0 1· · · −a2 −b2

· · · . . .
· · · . . .
· · · . . .
· · · 1 −an−1 −bn−1

· · · 1 0
· · · 0 1



The adjoint action on N . One verifies thatN is a normal subgroup, and that
the action by conjugacy on it is given as follows:

1. The action ofS: represent an elementR(a2,...,an−1;b2,...,bn−1,c) ∈ N by
R((a2,b2),...,(an−1,bn−1);c). Then, forA ∈ SL(2, R):

RAR((a2,b2),...,(an−1,bn−1);c)R
−1
A = R(A(a2,b2),...,A(an−1,bn−1);c)

2. The action ofR: if A ∈ SO(n − 2), then

RAR(a2,...,an−1;b2,...,bn−1,c)R
−1
A = R(A(a2,...,an−1);A(b2,...,bn−1),c)

3. The action ofD :

RλR(a2,...,an−1;b2,...,bn−1,c)Rλ
−1 = R(λa2,...,λan−1;λb2,...,λbn−1,λ2c)

Fact 5.1 P2 is a semi-direct product: P2 = N o (S.D .R), where the factors S, D
and R commute and act on N as above. Furthermore D.N (resp. N ) is the radical
(resp. nilpotent radical) of P2.

Action on H1,n: P2 acts transitively onH1,n, which therefore may be seen as
a homogeneous spaceP2/Ie, where we choose the base pointe ∈ H1,n to be
e = (0, 1, 0, . . . , 0,−1). To compute the isotropy groupIe, let us introduce the
following notations:

i) N0, the center ofN : N0 = {R(0,...,0;0,...,0;c), c ∈ R}.
ii) N1 (resp. N2) the “upper” (resp. “lower”) “half” of N , isomorphic

to the abelian groupRn−2: N1 = {R(a2,...,an−1;0,...,0;0), ai ∈ R}, and N2 =
{R(0,...,0;b2,...,bn−1,0), bi ∈ R}
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iii) Observe thatN0o(S.D) is a subgroup ofP2. It is in fact just the stabilizer
in P2 of the 4-space generated bye0, e1, en anden+1. Notice also thatN0 o (S.D)
is a direct productS × (D .N0).

Let U + ⊂ SL(2, R) be the subgroup of upper triangular matrices. BothU +

andD .N0 are canonically isomorphic toAG, the group of affine transformations
of the line. LetDiag be the diagonal ofU + × (N0 o D):

Diag = {RARλR(0,...,0;0,...,0;c)/ A =

(
λ −cλ
0 λ−1

)
, c ∈ R, λ ∈ R+}

Fact 5.2 Ie = N1 o (Diag.R)

6 Main Proposition

Main Proposition 6.1 The homogeneous space(P2, H̃1,n) has no compact quo-

tient (that is there is no compact quotientΓ̃ \ H̃1,n, with Γ̃ ⊂ P̃2).

Remark 6.2 In geometric terms, the Main Proposition is equivalent to TheoremC,
that is a compact anti de Sitter spacetime has no codimension 1 lightlike geodesic
foliation. In algebraic terms, it means that the homogeneous spaceP̃2/Ĩe has no
compact quotient (notation of Sect. 5 ).

6.1 Preliminaries

Notations. P̃2, S̃, R̃, D̃ and Ñ are respectively, the identity components of the

inverse images inIsom(H̃1,n), of the groupsP2, S, R, D and N . However, we
omit the tilde overD and N , because these later groups are simply connected.
For the same reason we denotẽDiag, simply by Diag. As for P2, we have a
semi direct productP̃2 = N o (S̃.R̃.D).

If A is a group which is a factor in the semi-direct product structure ofP2 or
P̃2, then the projection ontoA, will be denoted byProjA.

Application of the Lemma 3.4. The adjoint action ofD on N yields non trivial
homotheties commuting with the action ofA = S̃.R̃.D . Thus the lemma 3.4 is
applicable toP̃2.

Lie subgroups of N . Let I = (i2, . . . , id), ij ∈ {2, . . . , n − 1} be an ordered
multi-index, andαI = (αi2, . . . , αid ), αij real, /= 0. Consider∆αI the 3- dimen-
sional Heisenberg subgroup ofN generated by the centerN0 together with the
“diagonal” elements of the form (0, . . . , αi2x, . . . , αid x, . . . , 0) ∈ N , for x ∈ R2.

Consider also the 2(d − 1) + 1 Heisenberg subgroupHeisI (which does not
depend onαI but only onI ), generated by theR2 factors corresponding to the
coordinatesxi2, . . . , xid .
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One proves the following lemma in a standard way by considering irreducible
invariant subspaces of the diagonal representation ofSL(2, R) in (R2)n−2.

Lemma 6.3 A connected subgroup of N , invariant by the SL(2, R)-adjoint action,
is a (direct) product of some subgroups of type∆I or HeisI , associated to disjoint
multi-indices. In particular such a subgroup is normal in N , contains N0, and is
non abelian unless it equals N0.

6.2 Steps

Suppose by contradiction that such a quotientM = Γ̃ \ H̃1,n exists. Thus the
projectionΓ of Γ̃ is contained inP2.

Step 1 L = projS(Γ ) ⊂ S is not solvable.

Proof. Assume the contrary. Suppose firstly thatL is not precompact. Every non
precompact solvable subgroup ofSL(2, R) is conjugate to a subgroup ofU +,
the group of upper triangular matrices (notation of the previous section). It then
follows that, after conjugacy:Γ ⊂ N o (U +.D .R). But this last group preserves
the lineRe0, which is impossible by Sect. 4.

Suppose now thatL is precompact. Then after conjugacy,Γ is contained in

G′ = N o (K .D .R), whereK is the rotation group{
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
}. One

verifies thatG′ acts transitively onH1,n, and that the isotropy group of the base
point e = (0, 1, 0, . . . , 0, 1) is now N1 o R. In particularD normalizes this last
isotropy group, and hence acts naturally by the right onH1,n = N o(K .D .R)/N1o

R̃. We now conclude with the help of Proposition 3.1, by observing thatD has
not the same modular distortion alongN o (K .D .R̃) and alongN1 o R̃. �

Step 2 L̃ = projS̃(Γ̃ ) ⊂ S̃ is discrete.

Proof. Let L̃′ = projS̃.D.R̃(Γ̃ ), so L̃ = projS̃.D.R̃(L̃′). We argue by contradiction
and consider many cases and subcases:

Case 1:L̃′ is discrete.
Subcase 1:̃R is compact, i.e. n− 2 /= 2: SinceR̃ is compact,projS̃.D (L̃′) is

also discrete. We apply Lemma 3.4, to this last projection, forA = S̃ andN = D .
The projection ontoS̃ is exactly L̃. So, if non discrete,̃L would have a non

trivial normal nilpotent subgroup. However, a subgroup of̃SL(2, R) (or SL(2, R))
which has a normal non central nilpotent subgroup, is solvable. This contradicts
the previous step.

Subcase 2: n− 2 = 2, i.e.R̃ = R. We apply the same previous argument to
S̃.D .R̃, which is now isomorphic tõS × R2.

Case 2:L̃′ is not discrete.
Subcase 1:̃R is compact. If the non-discrete partL̃′

nd which is nilpotent by
3.4, projects non trivially oñS, then it is as in the case 1, solvable.
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If in contrary L̃′
nd is contained inR̃, then by compactness of̃R and 3.3,L̃′

projects discretely oñS.D . So, we are able to use 3.4, withA = S̃; N = D , and
conclude that̃L is discrete, since it is not solvable.

If now L̃′
nd is contained inD .R̃ but not in R̃, then it is co-compact in the

“cylinder” D .R̃. From 3.3, we get that the projection ofL̃′ on S̃ is discrete.
Subcase 2: n− 2 = 2, i.e,R̃ = R. ThusS̃.D .R̃ ∼ S̃× R2. The same argument

as above works ifL̃′
nd is not contained inR2, or also, in contrary if it is co-

compact inR2. The remaining case is wheñL′
nd ⊂ R2 is isomorphic toR. In

that case, we divide by it (since it is normal) and get a discrete projection onto
S̃ × R. Again as above, we apply 3.4 to this last discrete group. �

Step 3 Up to a change ofΓ̃ by a subgroup of finite index, the projectionL̃′′ =
projD.R̃(Γ̃ ) is abelian.

Proof. In the casen − 2 = 2, i.e. R̃ = R, there is nothing to prove, because
D .R̃ itself is abelian. Now, letn − 2 /= 2, that is R̃ = R is compact. By the
previous step, the non discrete partL̃′′

nd is nilpotent, because it coincides with
the non discrete part of̃L′ = projS̃.D.R̃(Γ̃ ) itself (sinceL̃ = projS̃(Γ̃ ) is discrete).
ThereforeL̃′′

nd is abelian, because any nilpotent, or even solvable subgroup of
D .R̃ (which is isomorphic toR × SO(n − 2)) is abelian.

The intersectioñL′′ ∩ R̃ is of finite index inL̃′′
nd ∩ R̃ (becausẽR is compact).

In order to have equality between these last subgroups, and in particular, to
ensure that̃L′′ ∩ R̃ is abelian, we just replacẽΓ by its finite index subgroup
proj −1

R̃
(L̃′′

nd ∩ R̃).
Observe that the derivative group [L̃′′, L̃′′] is contained inL̃′′ ∩R̃ and is hence

abelian. ThereforẽL′′ is solvable and hence abelian. �

Step 4 i) L is Zariski dense in SL(2, R) and after conjugacy, the Zariski closure
G of Γ contains SL(2, R) (we shall suppose that it is the case in what follows).

ii) Γ̃ ∩ (N o (D .R̃)) is infinite.

Proof. For the first point, observe that a non-solvable subgroup ofSL(2, R) is
Zariski dense. Therefore, the algebraic closure ofG projects surjectively on
SL(2, R). Thus it contains a semi-simple subgroup isomorphic toSL(2, R). But
all such subgroups are conjugate inP2 = N o (S.D .R), as maximal semi-simple
subgroups of non-compact type [1].

The last point follows from a standard cohomological dimension argument.
Assume thatΓ̃ ∩ (N o D .R̃) is finite. After passing to a finite index subgroup we
may suppose that̃Γ ∩ (N o D .R̃) is trivial, that isΓ̃ injects intoS̃ (as a discrete
group by the previous steps). SinceS̃ is homeomorphic toR3, this implies that
the cohomological dimension of̃Γ is ≤ 3. HencedimM ≤ 3 (becauseM̃ is
contractible). But the present article deals only with higher dimensions! �

Step 5 Let G (resp. GN ) be the algebraic closure ofΓ (resp.Γ ∩ N ). Then
(i) Γ ∩ N is a lattice in GN , and GN is normalized by SL(2, R). In particular

GN has the form described in Lemma 6.3.
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(ii) G contains N .

Proof. It is a general fact that a discrete subgroup of an unipotent group is a
lattice in its algebraic closure. ThusΓ ∩N is a lattice inGN . SinceΓ normalizes
the algebraic groupGN , then also the algebraic closureG normalizesGN and
hence also does soSL(2, R) because it is contained inG.

The point (ii), that isG containsN , follows from the co-compactness of
the action ofG on H1,n. The unipotent radical ofG is a non trivial subgroup
N ′ ⊂ N ; as described in Lemma 6.3. So, at “most”, after conjugacy,G equals
N ′ o (S.D .R). It acts co-compactly onH1,n = N o (S.D .R)/N1 o (Diag.R), if
and only if N1 o (Diag.R) acts co-compactly onN ′ o (S.D .R) \ N o (S.D .R).
This is easily seen to imply thatN1 acts co-compactly onN/N ′. But from the
“symmetric” form of N ′ (Lemma 6.3), this happens only ifN ′ = N . �

Step 6 Γ̃ ∩ N is trivial.

Proof. By contradiction, suppose that̃Γ ∩ N is not trivial. Notice thus that
Γ ∩ N intersects non triviallyN0. Indeed if not, it projects injectively inN/N0 =
(R2)n−2, and is in particular abelian. But this implies that alsoGN is abelian,
which contradicts Lemma 6.3.

Now we check thatΓ̃ is contained inN o S̃.R̃ (without D). Suppose that an
elementγ = sdrn ∈ Γ̃ . Then the action ofAd(γ) on N0, is reduced to that of
Ad(d). HenceΓ̃ ∩N0, which is non trivial, is invariant byAd(d). By discreteness,
this impliesd is trivial.

Therefore we can restrict our group toN o (S̃.R̃), and sinceΓ̃ ∩ N0 is co-
compact inN0, we can furthermore divide byN0, to get a lower dimensional
manifold. So the Heisenberg groupN is now replaced byN ′ = (R2)n−2. Our
homogeneous space becomes:N ′ o (S̃.R̃)/N1 o (U .R̃), where U is the one
parameter group of unipotent upper triangular matrices inSL(2, R).

Observe that the one parameter group of diagonal matrices

(
et 0
0 e−t

)
nor-

malizesN1 o (U .R̃). Nevertheless, this one parameter group acts unimodularly
on N ′ o (S̃.R̃), but obviously non-unimodularly onN1 o U .R̃. This leads to a
contradiction with Proposition 3.1, since our homogeneous space is supposed to
have a (left) compact quotient. �

End. It follows from the previous steps thatprojD.R̃ maps injectively the infinite
groupΓ̃ ∩(N oD .R̃) into an abelian subgroup ofD .R̃. In particularΓ ∩(N oD .R),
and hence also its algebraic closureH , are abelian. ButH is normalized byΓ
and hence also by its algebraic closureG, that is H is a normal subgroup of
G. The abelian algebraic groupH has a Jordan decompositionH = T.U , where
T is diagonal, andU is unipotent. In factT is contained in some conjugate of
D .R (in N o D .R) and U is contained inN . Of courseT is not trivial, since
otherwiseΓ̃ ∩ (N o D .R̃) should be contained inN .
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The Zariski closure G normalizes each of the factorsT and U . Since it is
contained inG, N also normalizesT andU . In fact N centralizesT becauseN
is normal inN o D .R. However, it follows from Sect. 5, that the adjoint action
of D .R on N . is faithful. This finishes the proof of the Main Proposition.�

7 Semi-simple groups acting co-compactly on H1,n

The aim of this section is to prove the following proposition. The proof might
be viewed so long by a specialist of Lie group theory. But, we believe that
“geometrical” proofs are always interesting.

Proposition 7.1 Let G be a proper semi-simple subgroup of SO(2, n) acting co-
compactly onH1,n. Then G is conjugate to SU(1, d), for n = 2d.

7.1 Subgroups of SO(1, n)

We prove the following fact in a standard way:

Fact 7.2 Let H be a subgroup of SO(1, n).
i) Assume that H acts co-compactly on the hyperbolic spaceHn. Then H is

SO(1, n) itself or is, up to a compact subgroup, a parabolic subgroup, fixing a
point at infinity ofHn, acting in fact transitively onHn.

ii) Assume that H is self-adjoint, i.e. it is invariant under the transposition:
A → A∗. Then it is reductive (this is a general fact, valid for self-adjoint subgroups
of SL(N , R)). Up to switching of coordinates (in(0)×Rn+1), the non compact part
of H is SO(1, p) for some p≤ n.

Sketch of proof.It is a general fact, that if a reductive subgroupH of a semi-
simple groupI of non compact type, acts co-compactly on the (Riemannian)
symmetric space associated toI , thenH = I .

(i) It suffices to consider the case whereH has a non compact radical, which
therefore has exactly one or two fixed point at infinity, because it contains at
least a parabolic or a hyperbolic element. ThusH fixes a point at infinity, and
hence it is contained in a parabolic subgroup. In factH , up to a compact factor,
equals this parabolic group.

(ii) In the case whereH is self-adjoint, it has one orbit (inHn) which is
totally geodesic and may be thus identified to a subspaceHp. We then apply the
point (i).

�
We can assume thatG has no compact factor, sinceG will still act co-

compactly without these factors. In fact, any parabolic subgroup ofG acts co-
compactly onH1,n, because it is co-compact inG. Observe finally that the
problem is invariant by conjugacy.

Step 7 The action of G onH1,n is transitive.
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Proof. Let P be a parabolic subgroup ofG, it then acts co-compactly onH1,n.
Let’s show that there is a subgroupP′ of P, acting co-compactly onH1,n and
preserving a lightlike geodesic hypersurfaceH . IndeedP is contained in a max-
imal parabolic subgroup ofSO(2, n), i.e. a subgroup of typeP1 or type P2. In
the first case, we takeP′ = P. In the other case,P preserves a codimension 1
lightlike geodesic foliation, and hence it acts on its leaf spaceS1, via a homo-
morphismα : P → SL(2, R). If this action has no fixed point, then it factors
through a rotation. We then takeP′ to be the Kernel ofα which is co-compact
in P, and therefore acts co-compactly onH1,n.

Let’s show thatP′ acts transitively onH . As described in Sect. 4,H has
a natural 1-dimensional Riemannian foliationD , with quotient space the hy-
perbolic spaceHn−1, and the action ofP1 on Hn−1 factors through the usual
action of its semi-simple factorS1, which is isomorphic toSO(1, n − 1). There-
fore the analogous action ofP′ factors via the action ofP′ ∩ S1. SinceP′ acts
co-compactly onH , P′ ∩ S1 acts co-compactly onHn−1, and hence transitively,
by Fact 7.2. One easily sees this implies thatP′ itself acts transitively onH .

Let x0 ∈ H . Notice that the orbitGx0 is not contained inH since otherwise
G ⊂ P1, but any semi-simple subgroup ofP1 is conjugate to a subgroup of
SO(1, n − 1), which does not act co-compactly onH1,n. ThereforeGx0 is open,
since it is a connected submanifold containing strictly a closed codimension 1
submanifoldH . Through each point ofGx0, passes (at least) a complete geodesic
hypersurface, image ofH . These images can not foliate, since otherwiseG will
be contained in a parabolic group of typeP2, which is impossible for the same
reasons as above. This fact may be used in a standard way to deduce thatGx0

can not have boundary points. That isG acts transitively onH1,n. �

Step 8 G has rank 1.

Proof. Recall that a higher rank semi-simple group has some parabolic subgroup
P containing a non compact semi-simple group. ThisP is contained in a parabolic
subgroup ofSO(2, n) of type P1 or P2. The argument for the two possibilities
is the same, and so we will just consider the caseP of type P1, more precisely:
P ⊂ P1 (notation of Sect. 4).

As in the argument of the previous step,P projects onto a subgroup of
S1 ∼ SO(1, n − 1), which acts transitively onHn−1, and contains a non trivial
semi-simple group. Therefore, from 7.2,P projects surjectively ontoS1 and
hence, up to a conjugacy,P containsS1. Let U be the unipotent radical ofP. If
U = {1}, then up to a conjugacyP ⊂ S1.D (notation of Sect. 4). But this later
group does not act co-compactly onH1,n. ThereforeU is a non trivial subgroup
of Rn,invariant byS1. This impliesU = Rn, and soP containsL = Rn o S1.
Let M be the symmetric space determined bySO(2, n). The orbits ofL have
at most codimension 1, sinceP1 = L.D acts transitively onM (the orbits of
L are in fact horospheres) As in the transitivity argument above, the orbits of
G which contain that ofL are open, since otherwiseG coincides withL, but
by semi-simplicity, this implies:G = S1. ThereforeG acts transitively onM,
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which contradicts our hypothesis thatG is a proper semi-simple subgroup of
SO(2, n). �

Step 9 The action of G onH1,n is proper.

Proof. SinceG acts transitively, to prove that it acts properly, we have just to
prove that its intersection with the isotropy groupSO(1, n) is compact.

It is known, sinceG is semi-simple that it has a conjugate (inSO(2, n)) which
is self-adjoint, i.e., invariant under the transposition mapA ∈ GL(n + 2) → A∗ ∈
GL(n + 2). Assume by contradiction thatIG = G ∩ SO(1, n) is not compact. It
follows from 7.2, that, up to switching of coordinates,IG containsSO(1, p) for
somep. It contains in particular someR-semi-simple one parameter group. To
such a one parameter is associated a parabolic groupP of G.

It is easy to see that anyR-semi-simple one parameter group ofSO(1, n) is
conjugate to the diagonal groupD1 of the groupP1, and hence up to conjugacy,
P = G ∩P1. Let K be the centralizer ofD1 in G. It equalsS1∩P, and is compact
sinceG has rank 1. This contradicts the fact thatS1 ∩ P must act co-compactly
on the leaf space of the Riemannian foliation of the geodesic hypersurfaceH
associated toP1.

�

End of the Proof. Since G acts properly transitively onH1,n, a co-compact
lattice in G yields a compact quotient ofH1,n. Hence, as mentioned in Sect. 1,
n = 2d, that isn is even. Let us first prove thatG is isomorphic toSU(1, d).

Observe thatK = SO(2d) × S1 is a maximal compact subgroup ofSO(2, n),
and denote byK and I their respective Lie algebras, and byG that of G.
HenceI has a Cartan decompositionI = K + P .

We assume as above thatG is self-adjoint, i.e. invariant under the transpo-
sition mapA → A∗. This implies in particular thatKG = G ∩ K is a maximal
compact subgroup ofG and that the cartan decomposition above induces a sim-
ilar one onG = G ∩ K + G ∩ P . Recall thatP andP ∩ G are identified
with the tangent spaces of the corresponding symmetric spaces (at points with
isotropy, respectivelyK andKG ).

If K projects trivially on the factorS1 of K , thenK ⊂ SO(2d) ⊂ SO(1, 2d).
That isKG = IG = G ∩SO(1, n). HenceH1,n = G/KG is canonically identified to
the symmetric space associated toG. However the symmetric space determined
by a simple Lie group, without compact factor, is simply connected [20], but this
is not the case ofH1,n.

Therefore,KG projects non trivially onS1. ThusKG contains a factor isomor-
phic toS1. It is known that this implies thatG determines a Kahlerian symmetric
space [20]. This is precisely a complex hyperbolic space, sinceG has rank one.
This space has dimensiondim(H1,2d) − 1. HenceG is isomorphic toSU(1, d).

We have to prove now thatG is in fact conjugate toSU(1, d). The tangent
spaceP of the symmetric space associated toSO(2, 2d) ( at a base point with
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isotropy, exactlySO(2d) × S1 ) is identified toR2d
⊕

R2d = R2d + i R2d = C2d,
endowed with the complexified action ofSO(2d) together with the action ofS1

by complex multiplication.
The symmetric space associated toG is the geodesic subspace tangent to

P ′ = G ∩ P . Since it is isometric to the complex hyperbolic space of real
dimension 2d, P ′ is isomorphic to a 2d subspace ofP . Moreover, the action
of KG on P ′ is conjugate to the usual action ofSU(d) × S1 on Cd.

Notice that forG = SU(1, d), the correspondingP ′ is: {x + i
√−1x x ∈

R2d}, whereR2d is canonically identified withCd.
We shall prove that after conjugacy by an element ofK , P ′ = {x + i σ(x) ∈

R2d + i R2d, x ∈ R2d}, for someσ : R2d → R2d conjugate to the multiplication
by

√−1. That conjugacy sendsP ′ to {x + i
√−1x x ∈ R2d}. . This means

in geometric words that the geodesic subspace determined byG is congruent to
that determined bySU(1, d). ThusG is conjugate toSU(1, d).

Write KG = S×R, whereS is isomorphic toSU(d) ⊂ SO(2d) andR projects
one to one onS1. Notice thatP ′ is not contained in a factorR2d or i R2d, since
KG contains elements outsideSO(2d). Therefore the projection ofP ′ onto R2d

is not trivial, and in fact conjugate (bijectively) the action ofS to an action of a
subgroupS′ of SO(2d) (this follows from the equality of dimensions and the fact
that the action ofS is irreducible ). ThereforeP ′ = {x+i σ(x) ∈ R2d +i R2d, x ∈
R2d}, for someσ : R2d → i R2d, commuting with the action ofS′.

Take an element ofR of the form (f , i ). Since it preservesP ′, we get:
σf σ = −f . Both of f and σ centralizeS′, and so they commute, since the
centralizer ofS′ is abelian (becauseS′ is irreducible). Hence:σ2 = −1. That isσ
defines a complex structure, with isotropy group contained inSO(2d). Therefore
σ is conjugate inSO(2d) to the multiplication by

√−1 on R2d.
Therefore, with the notations of 4, the projection ofP′ on SO(1, n − 1) acts

co-compactly onHn−1. From 7.2, this projection acts in fact transitively onHn−1,
the quotient space ofD . It is easy to show that the stabilizer inP′ of a leaf of
D must act transitively on that leaf. That isP′ acts transitively onH .

This finishes the proof of Proposition 7.1.

8 Standard spacetimes. Proofs of Theorems A and B.

The following result gives equivalent characterizations of standard spacetimes.

Proposition 8.1 Let M = Γ̃ \ H̃1,n be a compact anti de Sitter spacetime. Then
the following conditions are equivalent:

i) M has a non trivial timelike Killing field.
ii) M has a non trivial Killing field, i.e. Isom0(M ) is not trivial.
iii) Isom0(M ) = S1.
iv) Γ is conjugate to a lattice of U(1, d) (n = 2d).
v) M is standard.

Proof. From Fact 2.5 and the Main Proposition 6.1, ifM has a Killing field, i.e.
Γ centralizes some one parameter group, then it is conjugate to a subgroup of



On closed anti de Sitter spacetimes 715

U (1, d). In fact it is Zariski dense inSU(1, d) or U (1, d) and so its centralizer
coincides with that ofU (1, d) itself, which isS1. This shows the equivalence of
the conditions i, ii and iii, whenever we observe that the Killing field determined
by S1 is timelike.

For a standard manifold,Γ has a finite index normal subgroupΓ ′ conjugate
in U (1, d). HenceΓ normalizes the algebraic closure ofΓ ′, which isU (1, d) or
SU(1, d). But the normalizer of these two groups is exactlyU (d, 1), and hence
Γ ∈ U (1, d). ThereforeΓ is centralized byS1, and soM possesses a Killing
field. That is from above:Isom0(M ) = S1.

It remains now to prove the converse, that is, ifΓ is contained inU (1, d),
then M is standard. It suffices to show thatΓ that Γ is discrete. fact: ifΓ̃ ⊂
Ũ (1, d) = SU(1, d)×R is a co-compact lattice, then its projectionΓ in U (1, d) =
SU(1, d) × S1 is discrete (and hence it is a lattice). It suffices for this to show
that Γ̃ cuts non trivially the factorR. To ensure this, we have just to check

that the projectionΓ̃0 of Γ̃ on SU(1, d) (as a factor ofŨ (1, d))) is discrete.
But if this was not the case, then this projection would have a non trivial non
discrete part, which is nilpotent by Lemma 3.4. ThusΓ̃0 normalizes a non trivial
nilpotent group, and is therefore contained in a parabolic groupP. HenceΓ̃ is
a co-compact lattice ofP × R, but this is impossible, because the later group is
not unimodular.

8.1 Proofs of Theorems A and B

Let M = Γ̃ \ H̃1,n be a compact anti de Sitter spacetime. As explained in Sect. 3,
Isom(M ) is compact. Therefore,Isom(M ) is finite, unlessM admits a non trivial
Killing field, and thusM is standard, by Proposition 8.1. By the same proposition,
Isom(M ) = S1, if M is standard. This proves TheoremB.

From 2.4, 6.1 and 7.1, the algebraic closure ofΓ is conjugate toSO(2, n),
U (1, d) or SU(1, d) (for n = 2d). From 8.1,M is standard ifΓ is contained in
U (1, d). This proves the statement about the Zariski closure ofΓ .

It remains to prove the finiteness of the level ofM . Observe that this follows
from the true definition whenM is standard. On the other hand, ifM is not
standard, thenIsom(M ) is finite. The fundamental group ofH1,n is infinite cyclic,

generated by a transformationf ∈ Isom(H̃1,n), say. Because it is central,f
induces an isometry ofM , which is of finite order sinceIsom(M ) is finite.
Therefore some power off belongs toΓ̃ . This is easily seen to be equivalent to
the finiteness of the level ofM . � �
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