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This article deals with the structure of the fundamental group of compact anti
de Sitter spacetimes, i.e. Lorentz manifolds with constant negative curvature.
Algebraically such a manifold is the quotient of the universal cover of the ho-
mogeneous spac®0(2,n)/SO(1,n) by a discrete groud” acting properly and
co-compactly on it. This exists if and only if is even. Indeed, as this was
observed by KulkarniU (1, d) is contained irSQ(2, 2d), and acts properly tran-
sitively onSO(2, 2d)/SO(1, 2d). It then suffices to také” as a co-compact lattice

in U(1,d). The results of the present article give evidence to the question: in
dimension> 3, are all compact anti de Sitter spacetimes constructed in this way?
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1 Introduction

The “linear” anti de Sitter spacetimga®" of dimensionn + 1 is the connected
component of the identity in the homogeneous sga@&2, n)/SO(1, n), where
SQO(p,q) denotes the special orthogonal group of a non degenerate quadratic
form of type ,q) on RP*9 (see also Sect. 2 for another description).

It admits a unique (up to a constant) Lorentz metric (i.e. a pseudo-Riemannian
metric of signature-+. .. +) invariant by the left action 06Q(2, n), which turns
out to be of constant negative curvature. Tumversal anti de Sitter spacetime
HL1n is the universal cover oH". It is a Lorentz homogeneous space, with
isometry group, essentially, the universal cover gr&az,/n). An anti de Sit-
ter spacetimeis a quotientf\Hlv“, where!” is a discrete subgroup tfom(HL")
acting properly and freely. We will always denote bythe projection ofl" in
SQO(2,n). Such a manifold inherits a Lorentz metric of constant negative curva-
ture. Conversely, @omplete Lorentz manifolds of constant negative curvature
is an anti de Sitter spacetime.
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Here we are concerned with compact anti de Sitter spacetimes. Recently,
in [11], B. Klingler adapted the Ca#te’'s completeness proof of compact flat
Lorentz manifolds, to the general constant curvature case. In fact, in a previ-
ous version of the present article, we conjectured that &a’s completeness
theorem (and method) [3], may be generalized to compact locally symmetric
Lorentz manifolds (see also [15] about this question). Therefore, closed anti de
Sitter spacetimes are just closed manifolds of constant negative curvature. In the
present article, we focus attention on the algebraic structure of the fundamental
groups of such spacetimes.

As observed, for example in [14], thanks to a Gauss-Bonnet formula, even
dimensional manifolds of constant non zero curvature have non zero Euler class.
But this can not be the case of a compact Lorentz manifold (without any condition
on its curvature), as its lightlike cone determines a continuous field of directions.
Therefore compact anti de Sitter spacetimes are odd dimensional.

For odd dimensions, R. Kulkarni observed that the gr@p U (1,d) is
contained inSO(2, 2d), and thus acts isometricaly da2?. This action is in
fact transitive angroper, since its isotropy group is judd (d). It then follows
that any co-compact latticE' in U (1,d) acts properly, discontinuously and co-
compactly onH%2, This action is free ifl" is torsion free. The quotient’ \

HL2d js thus a compact anti de Sitter spacetime. Any spacetime, obtained, up to
finite covers, by this construction, will be callstandard, andspecial standard

if I" is contained inSU(1,2d). (See TheorenB and 8.1 for another causal
characterizations of these spaces).

These anti de Sitter spacetimes admit the following Riemannian description.
Observe that the (Riemannian) complex hyperbolic space of complex dimension
d, Hd = U (1,d)/S! x U (d) is obtained as a quotient &2, by the centeS*
of U(1,d) (the group of unitary complex multiplication), and tHabnmP(HZ) =
SU(1,d). MoreoverH% may be seen as the circle bundle associated to the
canonical (or may be the anti-canonical) bundleRff. Therefore, a special
standard anti de Sitter spacetimie\ H% is the canonicaB® bundle over the
complex hyperbolic manifold” \ H. Conversely the canonic&® bundle of
a hyperbolic complex manifold admits a structure of a special standard anti de
Sitter spacetime. For hyperbolic surfaces, this construction yields the Killing
Lorentz structure on their unit tangent bundle.

Here follows our principal result, it suggests that in dimensioB, all anti
de Sitter spacetimes are standard !

Theorem A Let MM = [ \ HL" be a compact anti de Sitter spacetime with
n > 2. Then up to finite covers, M is in fact a quotiéht, H-", that is in other
words, the projection” of 71(M) in SO(2, n), acts discontinously and properly
onHY". Moreover, exactly one of the following two possibilities holdsZfor

i) I" is Zariski dense in S, n).

ii) I' is conjugate to a (discrete) uniform lattice of(Lld) (n = 2d), i.e. M is
standard
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Some comments are in order:

The 3 dimensional case.The linear anti de sitter spacetink&"? is identified
with the groupSL(2,R) endowed with its Killing form. Its isometry group is
essentially the direct produ&l(2, R) x SL(2, R) acting by the left and the right.

Special standard (resp. standard) manifolds are just quotlentSL(2, R),
whenI" C SU2,R) x {1} (resp.I" is a subgroup o8L(2, R) x St, with the first
factor acting by left multiplication and the second by the right).

It is clear that special standard anti de Sitter spacetimes are Seifert fiber
spaces. A basic work on closed anti de Sitter spacetimes of dimension 3 is [13].
The authors proved that, as in the special standard case, all the closed anti de
Sitter spacetimes are (topologically) seifert fiber spaces. They then asked if all
of them are (geometrically) standard? This was immediately seen to be not true
by B. Goldman [10], as one can non trivially deform standard spacetimes. This
is essentially du to the non simplicity &O(2, 2), which is not true for higher
dimensions. The systematic question: what kind oin SO(2, 2) can occur, is
studied by F. Salein [19].

Finiteness of levels. The fact that, up to finite covers, one may obtMnas a
quotient of the “linear modelH" (which means that we don't need its universal
coverHLn), is expressed in [13] as a finiteness level property. Indeed for each
integerk, HY" has ak—coverHﬁ"”, and (up to orientability conditiond)l is a
quotient of someH-". The level ofM is the smallesk.

The finiteness of levels (for closed anti de Sitter spacetimes) is a fundamental
property, and is by no means obvious (it may also have a physical meaning, as
a quantum number...!). The fact that the compact anti de Sitter spacetimes of
dimension 3 have finite levels, is announced in [13] (and then used to prove other
claims). Nevertheless, their proof is far from being convincing. Our method of
proof here can easily be extended to the dimension 3.

The Zariski closure. The Theorem states a dichotomy for the holonomy group
I': it is either Zariski dense, or a lattice i (1,d). However, we do not know
non standard examples, that is those for whitis Zariski dense.

In dimension 3, Zariski dense examples exist, and the dichotomy itself is
not true. One can check this by taking small deformations of a compact lattice
I' ¢ S(2,R) in SO2,2) =SL(2,R) x SL2,R).

Ford > 1, SO(2,2d) is simple, and it is not clear how to deform (non
trivially) inside it, a latticel” c U (1,d).

In general, lattices in simple groups are locally rigid, but those of our inter-
esting groupSU(1,d) (together with those o8Q(1, n)) appear as exceptional
cases. More precisely, by classical rigidity theorems [18], a lattice in a simple
group G, except forG = SO(1,n) or G = SU(1,d) is locally rigid for any non
trivial representation oG (in any SL(N, R)).
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On the other hand, as exceptional case for rigidity, there are in fact lattices
of SU(1,d) which may be deformed (outsidé(1,d)) in someSL(N,R) [16].
Nevertheless, it is not obvious how to do this insE&(2, 2d) for 2d > 2. We
therefore dare ask:

Question 1.1 Are all anti de Sitter spacetimes of dimensior8, standard?

1.1 Related results

The question we are asking above, may be posed in the general context of com-
pact quotients of homogeneous spaces, and may be expresséiedmeidbach
rigidity for these spaces (because it is somewhat reminiscent to the Bieberbach
Theorem for cristalographic groups).

Consider a homogeneous spag¢él , quotient of aconnectedLie groupl by
a connectedLie subgroupH. We are researching for discrete subgrotips |
acting properly co-compactly and freely éfiH (so that the quotient™ \ | /H
is a compact manifold, locally modeled ériH ).

As in the definition of standard anti de Sitter spacetimes, one may start
by consider a radically simpler problem which is, first, find a connected Lie
subgroupG C | acting co-compactly (or say, transitively) ampdoperly on
I /H, and next takel” to be a co-compact lattice iG. One says that /H
satisfies the Bieberbach rigidity, if all its compact quotients are of this type. As
example, after many works during the last decade, the structure of compact flat
Lorentz manifolds, was elucidated, as in the following Theorem, by proving a
completeness result and a Bieberbach rigidity.

Theorem 1.2 ([3], [7], [8], [9]....) Let M 1" be a compact lorentz flat manifold.
Then there is a solvable group G acting isometrically and simply transitively on
the Minkowski spac®'" and a latticeI" in G such that up to finite covers,

M =T \RMYM™ (=I\G).

There are many examples of such solvable Lie groups [9]. In contrary, in
our question (above), we are hoping for a unique Bieberbach rigidity, because
we suppose that only the Lie grop = U(1,d) is possible. It seems that this
unigueness phenomenon is a consequence of the presence of reductive (or say
semi-simple) groups.

Notice finally that the compact de Sitter spacetimes, i.e. Lorentz manifolds of
constant positive curvature, are easy to understand: they do not exist at all! (see
[2] and [12]). Modulo the completeness (which is now proved by [11]), the non
existence of compact anti de sitter spacetimes is known as the Calabi-Markus
phenomenon [2] (see also [12]).

1.2 Further results

In dimension 3, the beauty of anti de Sitter spacetimes is amplified by the iso-
metric dynamical systems that they support.
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For M = "\ HY", its isometry grougsom(M) is identified toNor(I")/ I,
where Nor(I") is the normalizer ofl" in SO(2,n) = Isom(H%"). The neutral
componentsonP(M) corresponds t&€entralizefI")/I". This component is easy
to understand from the Theorem above. Nevertheless, the normalizer is typically
a non algebraic group and is “difficult” to detect algebraically in the case of
Zariski dense subgroups &0(2, n). Our result is:

Theorem B The isometry group of a compact anti de Sitter spacetiméM > 2,
is compact. More precisely, IsdiM ) is finite, unless M is standard, in which case,
the identity component IsdtfM ) is isomorphic to $.

It will be explained in Sect. 10, how to deduce the Theorem above from the
following one.

Theorem C A compact anti de Sitter spacetime of dimensior8, has no ¢
lightlike geodesic foliation of codimension one.

2 Geometric and algebraic preliminaries

The linear model of H". We denote byR?>" the spaceR?™ equipped with a
(non degenerate) quadratic folmof signature— — + ... +. Any such a form is
equivalent to the standard orgg:= —xZ—xZ+x3+. . .+x2,,. A subspac® C R?>"
is calleddegenerateor lightlike if the restriction ofg on P is degenerate (i.e.
P NP, #0). It is calledisotropic if q vanishes orP (i.e. P ¢ P+ ). Such an
isotropic space has at most dimension 2.

Let SO(2,n) be the special orthogonal group qf. From the equivalence
of quadratic forms of the same signature gs we deduce thaBO(2, n) acts
transitively on each connected component of each qué(c), in R — {0},
for c € R.

The anti de Sitter spacel’" is identified with qo‘l(fl), since the last
space is a homogeneous space of the g2, n) with isotropy group ex-
actly SO(1,n), at (1L 0,...,0). The Lorentz metric otd>" is induced from the
pseudo-riemannian metric &?" (defined byqp ).

From our (mathematical) point of view, neither the valug, nor the normal
form qo have particular importance. Any sheet of a legef(c) for ¢ < 0 andq
having the same signature gsmay serve as a model of the anti de Sitter space.

Notice thatSO(2, n) acts transitively on the space of isotropic directions, as
well as on the space of isotropic 2-spaces.

Lightlike geodesic hypersurfaces and foliations.A geodesic submanifoléH
of HL" is obtained as a connected component of an interseEtiof ", where
E is a vector subspace &"*2, with dimE = dimH + 1 (see [20]). In particular,
a geodesic hypersurface is obtainedHas= u*- N H" for some vectou. One
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verifies thatH, is lightlike, i.e. the restriction of the metric to it is degenerate, ex-
actly whenu is isotropic. Observe that in fakt, has two connected component,

and thus any connected lightlike geodesic hypersurface equals some connected
component of someél,. However, to simplify notation, we shall argue below as

if H, was connected, one in fact easily sees this does not matter in what follows.

Fact 2.1 A ( CO) lightlike geodesic foliation afi>" is obtained as follows. There
is an isotropic2-vector space P such that the leaves are l@ tracéslii of the
hyperplanes t, for u € P. A lightlike geodesic foliation dfi1n is a lift of such
a foliation in H".

Proof. Consider two lightlike geodesic hypersurfacestof", H, and H, (u
andv are defined up to multiplicative constants). [Retbe the 2- vector space
generated by andv. Since bothu andwv are isotropic,P must be isotropic or
Lorentzian (i.e. with restricted metric of signaturet ). In this last case, the
metric onP+ = ut+ Nv' has a signature- +...+. ThusP meetsH". Hence
Hy NH, =ut novt NHL is not empty. Hence the two geodesic subspates
andH, have a trivial intersection (insidd®" ) exactly if u andv are orthogonal
(and of course non collinear).

Therefore a foliation is defined by a one parameter family of isotropic and
mutually orthogonal vectors d?%". Thus they generate an isotropic vector sub-
space. Since the signature4is— +...+, these vectors must lie in a 2-vector
space.

We now observe that our analysis for intersection of geodesic subspaces,
also holds, locally inrHL", That is for any poini, there is a neighborhood,
such that, two connected components passing thrdugh lifts of two geodesic
hypersurface$l, andH,,, must meet, unless andwv are orthogonal. O

Lie subgroups of SO(2, n). Here follows some preparing elementary facts about
actions onH'" of subgroups 050(2, n). We shall use the wordbtation for a
linear mapA on a linear spacg&, to mean that it is conjugate to a multiplication

by a unit complex nhumber on a complex space. This is equivalent toAtlgt
semi-simple, with a unique (non real) eigenvalue, which furthermore has module
1. If furthermoreA € SO(2, n), then the conjugacy is insidgO(2, n). One easily
proves:

Fact 2.2 The centralizer of a one parameter group of rotation of (3@) is
conjugate to U1,d), with n=2d.

We say that a group (even non discrete) ascompactlyon some space,
if the iterates by this group of some compact subset, cover the whole space (in
particular every continuous invariant function on that space is bounded).

Lemma 2.3 For n > 0, the subgroup G of elements of &) preserving a non
trivial splitting R"*? = E; @ E, does not act co-compactly d®".



On closed anti de Sitter spacetimes 701

Proof. Assume the contrary. The formp (X, X) = qo(71(X), w1(X)), wheremr; is
the projection ontde,, is anotheiG-invariant form. So by co-compactnesg,is
bounded orH>": a < g;(x, x) < b, for x € HY". Hence:al? < gui(y,y) < bA?,
fory € gy 1(—)?).

In particular the lightlike cone]o_l(O) is contained in that ofj;. This would
imply, if g; is not identically 0, that the two forms have the same lightlike cones
(as both of them are connected analytic codimension 1 subsets). This is known to
imply the two forms are proportional. This is impossible siggds degenerate
(its kernel containg,). It then follows thaty; is trivial. The same is true fap,
the analogous form constructed frdga. This is impossible. O

Fact 2.4 Let G be a connected Lie subgroup of @) acting co-compactly on
HL". Then, one of the following possibilities holds:

i) G is semi-simple.

i) n =2d, and G is conjugate to (1, d)(= SU(1, d) x S%).

iii) G preserves an isotropic line.

iv) G preserves an isotropi2-vector space.

Proof. If G is not semi-simple, then it has a non trivial radi¢akits maximal
connected normal solvable subgroup). There is a root (i.e. a non trivial homo-
morphism)a : R — C and a maximal subspa& C R"2, on which any element

A € R acts as a multiplication by(A). More precisely, ifa is real, thenA is
actually a multiplication byx(A). If « is complex, then the same is true for some
complex structure oie. FurthermoreE is preserved by the normalizer & (in

GL(n + 2)). In particularE is preserved bys.

A vector belonging to a characteristic space of an orthogonal matrix, associ-
ated to a non unitary eigenvalue, must be isotropic. Hence in theFcasR?*",
we havea(A) € St C C, for anyA € R. ThereforeR is embedded is! and so
the action ofG by conjugacy is trivial. That i€5 centralizesR. From aboveG
is conjugate to a subgroup ©f (1, 2d), with 2d = n.

If now E # R?*", andE is not degenerate, the® preserves a non trivial
splitting R>*" = E @ E*, which is impossible by the Lemma 2.3. i is de-
generate, then its kern@ N E* is G-invariant isotropic subspace which has
therefore dimension 1 or 2. O

By considering characteristic subspaces, as in the proof above, one checks:

Fact 2.5 Let A be a one parameter group of $2)n). Suppose that, G, the
centralizer of A, acts co-compactly oRl%". Then, one of the following two pos-
sibilities must hold:

i) Al is a one parameter rotation group, and G is conjugate t@ L#l), for n = 2d.

ii) At is unipotent, and G preserves an isotropic subspace of dimensior?.

Parabolic subgroups. We say that a subgroup &O(2, n) is of type P, (resp.
of type P,) if it is the stabilizer of an isotropic line (resp. a 2-vector space). Note
the following geometric and algebraic interpretations.
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Fact 2.6 i) A subgroup of S@, n) is of typeP; (resp.P,) if and only if it is
the stabilizer in S@2, n) of a lightlike geodesic hypersurface (resp. a lightlike
geodesic foliation).

i) A maximal parabolic subgroup of S@ n) is a group of typeP; or P,.

Proof. The point (i) follows from 2.1. For the point (ii), observe firstly, that a
group of typeP; or typeP, is parabolic, because it may be seen as an isotropy
group of a projective action 08Q(2,n) on a projective space. Conversely, a
maximal parabolic subgroup &O(2, n) is not semi-simple, and is co-compact
in SO(2, n). In particular it acts co-compactly ad®". It follows from 2.4, that

it is of type P, or Pa. O

3 Plan of the proof of Theorems. Tools

Notations and steps. Let’s firstly precise that we will always suppose> 2.
Also we will follow the notational convention: the “operator overtilde” (on no-
tations) ensures the passage from objectd ¥t to that inH'". For instance if
A (resp.A) is a subgroup ofsom(H") (resp.SO(2,n)), thenA (respA) is its
projection in (resp. lift t0)SQ(2,n) (resp.lsom(HL")). However, if A is con-
nected A will be just the identity component of its inverse imagesom(H").
For instance ifA is simply connected, then we identify with A.

Let M = "\ HL" be a compact anti de sitter spacetime, andGdebe the
algebraic closure of (the projection ofi” in SO(2,n)). It has finitely many
connected components, and after passing to a finite index subgroiip wé
may suppose thds is in fact connected. The compactnesdvbfimplies thatG
acts co-compactly orl>". Here are the steps of proofs:

1) We will start in Sect. 4, by proving th& is not contained in a group of
type P;.

2) The key technical contribution in the present article is the impossibility
of the typeP,, too, that isG is not contained in a group of tyg®. This is the
content of the Main Proposition 6.1, which proof occupies Sect. 6.

3) In view of the geometric interpretation of the typg (2.6), this would
imply TheoremC, that is a compact anti de Sitter spacetime has no codimension
1 lightlike geodesic foliation.

4) From 2.4,G may beSO(2,n), conjugate toU (1,d) or a semi-simple
subgroup acting co-compactly ¢t". It is the aim of Sect. 7 to show that such
a subgroup is conjugate ®U(1,d). This would prove half of Theorem, that
about Zariski closures.

5) The compactness of the isometry group follows from Theotgrbecause
a compact Lorentz manifold admitting a non compact isometry group, possesses
a lightlike geodesic foliation, see [5], and [22]. Using this, we prove in the last
section of the article the first part of Theorei(i.e. finiteness of levels), and
the last part of TheorerB.
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Tools. The content of the steps 1 and 2, is that the homogeneous spdge
endowed with a restricted isometry group, corresponding to a group ofRype

or type P,, has no compact quotient. There is no general method of proving
that some homogeneous space does not have a compact quotient. Our tools here
consist of the two following unimodularity and nilpotency facts.

Unimodularity. The following proposition summarizes classical facts about in-
variant measures on locally homogeneous spaces.

Proposition 3.1 Let G be a Lie group and H a closed connected subgroup, with
Lie algebras respectivel§g and.7. Define, forg € G, the modular distortion:
Ag(g) = det(Ad(g)/%), and for g normalizing H: Ay (g9) = det(Ad(g)/.77).
Then:

i) If G/H admits a non trivial G (left) invariant measure, then: ford H,
Ag(h) = Ay (h).

ii) If furthermore G/H admits a left quotienf”\ G/H, of finite measure (witti"
discrete), then, for any normalizing H: Ag(g) = Au (g).

Proof. A detailed proof may be deduced following the developments of ([18],
Chapter 2). Leto ' be ap-form on &, with p = dim.7%, which is a volume form
on .7 . It defines ap-form w on G, invariant by the left action.

Let u be the given measure @/H . Define onG, the measure by: [ fdv =
f(fo fw)du, wheref is a continuous function with compact supportGn This
is a Haar measure o6 since it is G-invariant by the left. In particular the
measureu is defined by means of a volume formnon G/H . Its pull-back inG,
is a form 3 which is G-invariant by the left, and alsbl -invariant by the right
(because it comes fro® /H). That is, the action aAd(H) on & /. 7% preserves
a volume form. This exactly means equality of modular distortions.

For the point (ii), notice that iy normalizesH, then it acts on" \ G/H.
Moreover,g* 1 = cu for some positive constartt But if p is finite, then nec-
essarilyc = 1, that isg preserves:. As above,g must have the same distortion
along. 7 and <. |

Nilpotency. In the proof of the Main Proposition 6.1, we will meet groups which
are neither discrete, nor closed. For this purpose, let us formulate the following
notion.

Definition 3.2 Let B be a subgroup of a Lie group C. The non-discrete part of

BisBg=Bn EO, whereB’ is the identity component of the closure of B. It is
a normal subgroup of B, characterized as being the minimal subgrdupf B
such that, B projects onto a discrete subset of the coset spaBé. C

From the definition, we get:

Fact 3.3 Suppose that B is contained and is co-compact in a closed normal
subgroup E of C. Then the projection of B on/[E is a discrete subgroup.
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The following Lemma will be a fundamental ingredient in proofs. It is a
straightforward consequence of the Margulis Lemma, and seems to be presented
with (essentially) the following general form, at the first time in [4].

Lemma 3.4 Let G be a connected Lie group which is a semi-direct produet G
N x A, where N is a nilpotent normal subgroup. Suppose that the adjoint action
of A commutes with a non trivial homothety of N, that is a strictly contracting
or a strictly expanding automorphism of N. (This is for instance the case if A
contains a central element which induces a contraction on N).

Letw : G — Abe the projection and C G adiscrete subgroup. Sét = 7(¢)
and ¢” = ¢/ its non discrete part. Theg” is nilpotent.

In fact, also theelative non discrete part of, defined byPng A = o7 ~1(¢"),
is nilpotent (relative here means that it is associated to the factor A).

4 Algebraic structure of groups of type P,

Here we show that the groufy can not preserve an isotropic line, i£.is not
contained in a subgroup of tyg®. Consider the quadratic forngp = XoXn+1 —
X2 +x2+---+x2. Let P; be the group of transformations preservipgnd the
line Rey, whereeg = (1,0...,0). One verifies thal; is a semi-direct product of
the following subgroups:

1) A semi-simple grou®; isomorphic toSO(1, n— 1), consisting of matrices:

1.0 0
<o A O),AeSO(l,n—l).
00 1

2) A diagonal grouD; isomorphic toR*:

A0 O
<0 I 0 ),AER*.
0 0 A1

3) An unipotent subgroupl; isomorphic toR":

1 2899 --- 2a, f(faf+a22+...+a§)
0 1 -~ 0 “ay
e ) ,(@,...,a)) € R".
0 1 —an
0 .0 1

Moreover, one verifies thag, andD; commuteN; is normal, the adjoint ac-
tion of S, onN; ~ R", is the usual one, and finally thBt acts by multiplication
on N;(~ R").
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Action of P; on H". Observe thaP; has exactly two orbits itH": an open
dense oner” = P.e, for e = (1,0,...,0,—1), and its complementary?’ =
(Reg) NHY". Note that the isotropy group @fis S; which is in fact centralized
by D;. Hence, the modular distortion &d(D;) on S is trivial, but obviously
not that onP; = N; x (§,.D1). We deduce from 3.1 that the universal cover of
¢ has no finite volume quotient.

The geometry of a lightlike geodesic hypersurface Any lightlike geodesic
hypersurface is congruent t8 = e;- N HL", and its stabilizer inSO(2,n) is
conjugate toP;.

The directioney determines a 1-dimensional foliatidw of H, &% = {x +
reg, I € R}. Observe that the sef(0,Xy,...,%n,0) / — X2 + X2 + ... + x2 =
—1}, which may be identified t¢1"~2, is a global cross section @¥. In fact
& is a transversally Riemannian foliation in the sense that the gRyuacts
isometrically onH"~1, IndeedP; acts via its factoiS; which acts orH" ! via
its identification withSO(1,n — 1).

5 Algebraic structure of groups of type B

Consider orR"*2 the quadratic form of index 2] = XoXn +X1Xns1+. . . +X3+X2_,.

Let P be the vectorial 2-plane generated by the elements of the canonical basis
e ande;, andP;, its isotropy group in the orthogonal group @f To understand

P,, we shall first observe that it contains the following four subgroups, and then,
P, is a semi-direct product of them:

1) A semi-simple of non compact type subgro®: SL(2, R). We have the
following representation o6L(2, R) in Py:
a b
a b c d
Az( )eSL(Z,R)—>RA: I €S CP,
c d
d -—c
—-b a

2) A semi-simple compact subgroup isomorphic toSO(n — 2). We have
the following representation O(n — 2) in Py:

10
0 1
A€ SON—2)— Ra= A €ERCP,.

3) A diagonal subgrou isomorphic to R:



706 A. Zeghib

> O

AeER* - Ry, = | eD cC Ps.
Ao
0 a1
4) We finally have a unipotent subgrolyp isomorphic to the Heisenberg
group of dimension 2(— 2) + 1.

(a,...,an—1;b2,...,bh_1,C) — R(az,...,Bn_l;b27...,bn_1,c)
1 0 223,71 —Ya?> —c-—2Yab
0 1 Zop---2b_4 c —Ebiz
00 1-- —ay —b,
-1 —an_1 —bn_1
0 1

The adjoint action on N. One verifies thalN is a normal subgroup, and that
the action by conjugacy on it is given as follows:

1. The action ofS: represent an elememRa, . a1, b_1c) € N by
Ri@z,b2),....(an—1.bn-1)i0)- Then, forA € SL(2, R):

-1 _
RaR((o,02).....(an-1.00-1):0)Ra ™ = Ria@a by, Alan 1,00 1)i0)
2. The action oR: if A€ SO(n — 2), then

-1 _
RaR@,,....a0- 10z, bn-1,0Ra ™ = Rz, ...a0- 1)iAb2, ..o —1),0)

3. The action oD:

-1 _
R\Ra@,,....a0_1b,....0n_1,0) RN _R()\aZ;uw)\an—l;)\vawv)\bnfly)\zc)

Fact 5.1 P, is a semi-direct product: =N x (S.D.R), where the factors D
and R commute and act on N as above. Furthermaie Qresp. N) is the radical
(resp. nilpotent radical) of P

Action on H": P, acts transitively orH>", which therefore may be seen as
a homogeneous spaé®/l., where we choose the base poete H" to be
e=1(0,1,0,...,0,—1). To compute the isotropy group, let us introduce the
following notations:

i) No, the center oN: Np = {Ro,....0,0.....0:0), C € R}.

i) Np (resp. Np) the “upper” (resp. “lower”) “half” of N, isomorphic
to the abelian grougR"~2: N; = {R@,....a0_10,...00,8 € R}, and N, =
{Ro....00,....00_1,0), B € R}
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iii) Observe thaiNg x (S.D) is a subgroup oP;. It is in fact just the stabilizer
in P, of the 4-space generated by, e1, e, ande,+;. Notice also thalNy x (S.D)
is a direct product x (D.Np).

Let U* C SL(2,R) be the subgroup of upper triangular matrices. Both
andD .Ng are canonically isomorphic tAG, the group of affine transformations
of the line. LetDiag be the diagonal o) * x (Np x D):

Diag = {RaR\R,....0:0,....000/ A= <3 ;CE\) ,c€R,\€R"}

Fact 5.2 I = N; x (Diag.R)

6 Main Proposition

Main Proposition 6.1 The homogeneous spa@@z,ﬁﬁ) has no compact quo-
tient (that is there is no compact quotiefit\ H", with I” c Py).

Remark 6.2 In geometric terms, the Main Proposition is equivalent to Thebrem
that is a compact anti de Sitter spacetime has no codimension 1 lightlike geodesic
foliation. In algebraic terms, it means that the homogeneous sﬁg)de has no
compact quotient (notation of Sect.5 ).

6.1 Preliminaries

Notations. P,, S, R, D andN are respectively, the identity components of the
inverse images insom(H"), of the groupsP,, S, R, D andN. However, we
omit the tilde overD andN, because these later groups are simply connected.
For the same reason we dend@&g, simply by Diag. As for P,, we have a
semi direct producB, =N x (5.R.D).

If Ais a group which is a factor in the semi-direct product structur,obr
P,, then the projection ontd, will be denoted byProja.

Application of the Lemma 3.4. The adjoint action oD onN yields non trivial
homotheties commuting with the action &f= S.R.D. Thus the lemma 3.4 is
applicable toPs.

Lie subgroups of N. Let | = (io,...,iq),ij € {2,...,n — 1} be an ordered
multi-index, andoy = (i, . . ., o), o, real, # 0. Consider4,, the 3- dimen-
sional Heisenberg subgroup bf generated by the cent&f together with the
“diagonal” elements of the form (0.., ai,X, . .., @i, X ,0) e N, for x € R?,

Consider also the d(— 1) + 1 Heisenberg subgrodﬁels (which does not
depend oy, but only onl), generated by th&? factors corresponding to the
coordinatess,, . . . , X, -
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One proves the following lemma in a standard way by considering irreducible
invariant subspaces of the diagonal representatioBL(#, R) in (R?)" 2.

Lemma 6.3 A connected subgroup of N, invariant by thg&IR)-adjoint action,
is a (direct) product of some subgroups of typeor Heis, associated to disjoint
multi-indices. In particular such a subgroup is normal in N, contairs &hd is
non abelian unless it equalsyN

6.2 Steps

Suppose by contradiction that such a quotibht= I \ H1n exists. Thus the
projection” of I" is contained inP».

Step 1L =projs(I”) C S is not solvable.

Proof. Assume the contrary. Suppose firstly thais not precompact. Every non
precompact solvable subgroup 8£(2,R) is conjugate to a subgroup &f *,
the group of upper triangular matrices (notation of the previous section). It then
follows that, after conjugacyl” € N x (U*.D.R). But this last group preserves
the line Rey, which is impossible by Sect. 4.

Suppose now thdt is precompact. Then after conjugady,is contained in

, . . cosf) —sin@)

G’ =N x (K.D.R), whereK is the rotation group[(sin(a) cos) )}. One
verifies thatG’ acts transitively orH>", and that the isotropy group of the base
pointe = (0,1,0,...,0,1) is nowN; x R. In particularD normalizes this last
isotropy group, and hence acts naturally by the rightidfi = N x (K.D.R)/Nj x
R. We now conclude with the help of Proposition 3.1, by observing Enhdtas
not the same modular distortion alohgx (K.D.R) and alongN; x R. O

Step 2 L = projs(I") c S is discrete.

Proof. Let [’ = projs (1), so L = projs , #(L’). We argue by contradiction
and consider many cases and subcases:

Case 1:L" is discrete.

Subcase 1R is compact, i.e. r- 2 F2 SinceR is compactprojg. D(I:’) is
also discrete. We apply Lemma 3.4, to this last prOJecuonAfer andN =D.
The projection onteS is exactly L. So, if non dlscreteL would have a non

trivial normal nilpotent subgroup. However, a subgrougsmz, R) (or SL(2, R))
which has a normal non central nilpotent subgroup, is solvable. This contradicts
the previous step.

Subcase 2: n- 2 = 2, i.e.R = R. We apply the same previous argument to
S.D.R, which is now isomorphic t& x R2.

Case 2: is not discrete.

Subcase 1R is compact. If the non-discrete pahnd which is nilpotent by
3.4, projects non trivially ors, then it is as in the case 1, solvable.
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If in contrary ng is contained inR, then by compactness & and 3.3,
projects discretely o%.D. So, we are able to use 3.4, with= S;N =D, and
conclude that is discrete, since it is not solvable.

If now L’ng is contained inD.R but not inR, then it is co-compact in the
“cylinder” D.R. From 3.3, we get that the projection bf on S is discrete.

Subcase 2: R-2 = 2, i.e,R=R. ThusS.D.R ~ S x R2. The same argument
as above works if’,q is not contained irR2, or also, in contrary if it is co-
compact inR2. The remaining case is whdr,q C R? is isomorphic toR. In
that case, we divide by it (since it is normal) and get a discrete projection onto
S x R. Again as above, we apply 3.4 to this last discrete group. |

Step 3 Up to a change of by a subgroup of finite index, the projectitff =
projp g(17) is abelian.

Proof. In the casen — 2 = 2, i.e.R = R, there is nothing to prove, because
D.R itself is abelian. Now, len — 2 # 2, that isR = R is compact. By the
previous step, the non discrete plam;i is nilpotent, because it coincides with
the non discrete part df’ = projz p g(I) itself (sincel = prolS(F) is discrete).
ThereforeL”d is abelian, because any nilpotent, or even solvable subgroup of
D.R (which is isomorphic tdR x SQ(n — 2)) is. abehan

The intersection.” N R is of finite index in el R (becauseR is compact).
In order to have equality between these Iast subgroups, and in particular, to
ensure thal” N R is abelian, we just replacé’ by its finite index subgroup
projz *(Ly N R).

Observe that the derivative group’| L] is contained in_” NR and is hence
abelian. Thereforé” is solvable and hence abelian. O

Step 4 1) L is Zariski dense in S2, R) and after conjugacy, the Zariski closure
G of I" contains SI2, R) (we shall suppose that it is the case in what follows).
i) "N (N x (D.R)) is infinite.

Proof. For the first point, observe that a non-solvable subgrouglg®, R) is
Zariski dense. Therefore, the algebraic closureGofprojects surjectively on
SL(2,R). Thus it contains a semi-simple subgroup isomorphiSk?, R). But
all such subgroups are conjugateAp= N x (S.D.R), as maximal semi-simple
subgroups of non-compact type [1].

The last point follows from a standard cohomological dimension argument.
Assume thaTﬂ(N x D.R) is finite. After passing to a finite index subgroup we
may suppose thalt N (N x D.R) is trivial, that isI” injects intoS (as a discrete
group by the previous steps). SinSeis homeomorphic td&R3, this implies that
the cohomological dimension af is < 3. HencedimM < 3 (becauseM is
contractible). But the present article deals only with higher dimensions! [

Step 5 Let G (resp. @) be the algebraic closure af (resp.I"NN). Then
(i) I' N is a lattice in Gy, and G is normalized by S2, R). In particular
Gy has the form described in Lemma 6.3.
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(i) G contains N .

Proof. It is a general fact that a discrete subgroup of an unipotent group is a
lattice in its algebraic closure. ThusNN is a lattice inGy . Sincel” normalizes

the algebraic grousy, then also the algebraic closu& normalizesGy and
hence also does sBL(2,R) because it is contained i@.

The point (ii), that isG containsN, follows from the co-compactness of
the action ofG on H:". The unipotent radical o6 is a non trivial subgroup
N’ C N; as described in Lemma 6.3. So, at “most”, after conjug&equals
N’ x (S.D.R). It acts co-compactly o™ = N x (S.D.R)/N; x (Diag.R), if
and only ifN; x (Diag.R) acts co-compactly olN’ x (S.D.R) \ N x (S.D.R).
This is easily seen to imply thad; acts co-compactly o /N’. But from the
“symmetric” form of N’ (Lemma 6.3), this happens only N’ = N. a

Step 6 I' NN s trivial.

Proof. By contradiction, suppose that N N is not trivial. Notice thus that
I'NN intersects non triviallNo. Indeed if not, it projects injectively itN /No =
(R®)"=2, and is in particular abelian. But this implies that alsq is abelian,
which contradicts Lemma 6.3.

Now we check thaf” is contained ifN x S.R (without D). Suppose that an
elementy = sdrn € I". Then the action ofAd(y) on No, is reduced to that of
Ad(d). Hencel NNy, which is non trivial, is invariant byAd(d). By discreteness,
this impliesd is trivial.

Therefore we can restrict our group o x (é.f&), and sincel’ N Ny is co-
compact inNp, we can furthermore divide by, to get a lower dimensional
manifold. So the Heisenberg grol is now replaced byN’ = (R?)"~2. Our
homogeneous space becom#s: x (S.R)/N; x (U.R), whereU is the one
parameter group of unipotent upper triangular matriceSL2, R).

t
Observe that the one parameter group of diagonal matécegs eot> nor-

malizesN; x (U .R). Nevertheless, this one parameter group acts unimodularly
on N’ x (S.R), but obviously non-unimodularly ohl; x U.R. This leads to a
contradiction with Proposition 3.1, since our homogeneous space is supposed to
have a (left) compact quotient. O

End. It follows from the previous steps thptoj, g maps injectively the infinite
groupI’n(N xD.R) into an abelian subgroup & .R. In particular’ (N xD.R),
and hence also its algebraic closiite are abelian. BuH is normalized byl”
and hence also by its algebraic clos@e that isH is a normal subgroup of
G. The abelian algebraic groupp has a Jordan decompositibh=T.U, where

T is diagonal, andJ is unipotent. In facfl is contained in some conjugate of
D.R (in N x D.R) andU is contained inN. Of courseT is not trivial, since
otherwisel” N (N x D.R) should be contained iN.
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The Zariski closure G normalizes each of the facférandU. Since it is
contained inG, N also normalize§ andU. In factN centralizesT becauseN
is normal inN x D.R. However, it follows from Sect. 5, that the adjoint action
of D.R on N. is faithful. This finishes the proof of the Main Propositidn.

7 Semi-simple groups acting co-compactly on H'

The aim of this section is to prove the following proposition. The proof might
be viewed so long by a specialist of Lie group theory. But, we believe that
“geometrical” proofs are always interesting.

Proposition 7.1 Let G be a proper semi-simple subgroup of(8@) acting co-
compactly orH>", Then G is conjugate to S{, d), for n = 2d.

7.1 Subgroups of SQ, n)

We prove the following fact in a standard way:

Fact 7.2 Let H be a subgroup of SQ@, n).

i) Assume that H acts co-compactly on the hyperbolic spéiteThen H is
SQ(1, n) itself or is, up to a compact subgroup, a parabolic subgroup, fixing a
point at infinity ofH", acting in fact transitively oH".

i) Assume that H is self-adjoint, i.e. it is invariant under the transposition:
A — A*. Thenitis reductive (this is a general fact, valid for self-adjoint subgroups
of S(N, R)). Up to switching of coordinates (if®) x R"*Y), the non compact part
of H is S((1, p) for some p< n.

Sketch of proofit is a general fact, that if a reductive subgrddpof a semi-
simple groupl of non compact type, acts co-compactly on the (Riemannian)
symmetric space associatedltothenH =1.

(i) It suffices to consider the case whéiehas a non compact radical, which
therefore has exactly one or two fixed point at infinity, because it contains at
least a parabolic or a hyperbolic element. Thidixes a point at infinity, and
hence it is contained in a parabolic subgroup. In factup to a compact factor,
equals this parabolic group.

(i) In the case whereHd is self-adjoint, it has one orbit (i") which is
totally geodesic and may be thus identified to a subspticaVe then apply the
point (i).

O

We can assume tha has no compact factor, singg@ will still act co-
compactly without these factors. In fact, any parabolic subgrou@ efcts co-
compactly onH", because it is co-compact iG. Observe finally that the
problem is invariant by conjugacy.

Step 7 The action of G orH" s transitive.
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Proof. Let P be a parabolic subgroup @, it then acts co-compactly od>".
Let's show that there is a subgro® of P, acting co-compactly oid®" and
preserving a lightlike geodesic hypersurfadeIndeedP is contained in a max-
imal parabolic subgroup o8O(2, n), i.e. a subgroup of typ®; or type P,. In
the first case, we takB’ = P. In the other casel? preserves a codimension 1
lightlike geodesic foliation, and hence it acts on its leaf spatevia a homo-
morphisma : P — SL(2, R). If this action has no fixed point, then it factors
through a rotation. We then tak® to be the Kernel ofx which is co-compact
in P, and therefore acts co-compactly bit-".

Let's show thatP’ acts transitively orH. As described in Sect. 4] has
a natural 1-dimensional Riemannian foliatiari, with quotient space the hy-
perbolic spaceH"~!, and the action oP; on H"~! factors through the usual
action of its semi-simple factds;, which is isomorphic t&8OQ(1,n — 1). There-
fore the analogous action &' factors via the action oP’ N S,. SinceP’ acts
co-compactly orH, P’ N'S; acts co-compactly ok"~1, and hence transitively,
by Fact 7.2. One easily sees this implies tRattself acts transitively o+ .

Let xo € H. Notice that the orbitsx, is not contained irH since otherwise
G C Ps, but any semi-simple subgroup & is conjugate to a subgroup of
SO(1,n — 1), which does not act co-compactly &". ThereforeGx, is open,
since it is a connected submanifold containing strictly a closed codimension 1
submanifoldH . Through each point dBxg, passes (at least) a complete geodesic
hypersurface, image dfl. These images can not foliate, since othervisavill
be contained in a parabolic group of tyPe, which is impossible for the same
reasons as above. This fact may be used in a standard way to deduGeghat
can not have boundary points. ThatGsacts transitively orH". |

Step 8 G has rank 1.

Proof. Recall that a higher rank semi-simple group has some parabolic subgroup
P containing a non compact semi-simple group. This contained in a parabolic
subgroup ofSO(2,n) of type P; or P,. The argument for the two possibilities
is the same, and so we will just consider the cBsef type P;, more precisely:
P C P; (notation of Sect. 4).

As in the argument of the previous step, projects onto a subgroup of
S ~ SO(1,n — 1), which acts transitively oi"~1, and contains a non trivial
semi-simple group. Therefore, from 7.P, projects surjectively ontds, and
hence, up to a conjugack, containsS,. Let U be the unipotent radical d?. If
U = {1}, then up to a conjugack C S.D (notation of Sect. 4). But this later
group does not act co-compactly &t". ThereforeU is a non trivial subgroup
of R",invariant byS,. This impliesU = R", and soP containsL = R" x .
Let .Z be the symmetric space determined $§2, n). The orbits ofL have
at most codimension 1, sind® = L.D acts transitively onZ (the orbits of
L are in fact horospheres) As in the transitivity argument above, the orbits of
G which contain that oflL are open, since otherwige coincides withL, but
by semi-simplicity, this impliesG = S;. ThereforeG acts transitively onZ,
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which contradicts our hypothesis th& is a proper semi-simple subgroup of
SO(2, n). O

Step 9 The action of G orH" is proper.

Proof. SinceG acts transitively, to prove that it acts properly, we have just to
prove that its intersection with the isotropy gro8@X(1, n) is compact.

It is known, sinceG is semi-simple that it has a conjugate 8§02, n)) which
is self-adjoint, i.e., invariant under the transposition map GL(n +2) — A* €
GL(n + 2). Assume by contradiction thé¢ = G N SO(1, n) is not compact. It
follows from 7.2, that, up to switching of coordinateg, containsSO(1, p) for
somep. It contains in particular somR-semi-simple one parameter group. To
such a one parameter is associated a parabolic groopG.

It is easy to see that arfg-semi-simple one parameter group®®(1, n) is
conjugate to the diagonal groiy of the groupP;, and hence up to conjugacy,
P = GnNP;. LetK be the centralizer dD; in G. It equalsS; NP, and is compact
sinceG has rank 1. This contradicts the fact tt&t1 P must act co-compactly
on the leaf space of the Riemannian foliation of the geodesic hypersuiface
associated td;.

End of the Proof. Since G acts properly transitively omd'", a co-compact
lattice in G yields a compact quotient dd". Hence, as mentioned in Sect. 1,
n = 2d, that isn is even. Let us first prove th& is isomorphic toSU(1, d).

Observe thak = SO(2d) x St is a maximal compact subgroup 80(2, n),
and denote byZZ" and.7 their respective Lie algebras, and ¥ that of G.
Hence.7 has a Cartan decomposition = .72 + .

We assume as above thatis self-adjoint, i.e. invariant under the transpo-
sition mapA — A*. This implies in particular thakg = G N K is a maximal
compact subgroup db and that the cartan decomposition above induces a sim-
ilar one onY = & N.7Z + % N 2. Recall that’ and 2 N & are identified
with the tangent spaces of the corresponding symmetric spaces (at points with
isotropy, respectivelK andKg ).

If K projects trivially on the factos! of K, thenK ¢ SO(2d) ¢ SO(1, 2d).
That isKg = I = GNSQ(1, n). HenceH" = G /K¢ is canonically identified to
the symmetric space associateddoHowever the symmetric space determined
by a simple Lie group, without compact factor, is simply connected [20], but this
is not the case ofi".

Therefore K¢ projects non trivially orS'. ThusKg contains a factor isomor-
phic toS?. It is known that this implies tha® determines a Kahlerian symmetric
space [20]. This is precisely a complex hyperbolic space, Sbhtas rank one.
This space has dimensiaim(H2%) — 1. HenceG is isomorphic toSU(1, d).

We have to prove now thds is in fact conjugate t&U(1, d). The tangent
spacez” of the symmetric space associated0(2, 2d) ( at a base point with
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isotropy, exactlySO(2d) x S! ) is identified toR* @R = R +|R% = C%,
endowed with the complexified action 80(2d) together with the action oB*
by complex multiplication.

The symmetric space associated@ois the geodesic subspace tangent to
2 = % N . Since it is isometric to the complex hyperbolic space of real
dimension @, &' is isomorphic to a & subspace of”’. Moreover, the action
of Kg on &’ is conjugate to the usual action 81J(d) x St on CY.

Notice that forG = SU(1,d), the corresponding/” is: {x +iv/—1x X €
R}, whereR% is canonically identified witiC®.

We shall prove that after conjugacy by an elemenKof” = {x +io(x) €
R +iR?  x ¢ R¥}, for someo : R? — R conjugate to the multiplication
by v/—1. That conjugacy sends”’ to {x +iy/—1x x € R%}. . This means
in geometric words that the geodesic subspace determinél isycongruent to
that determined byU(1,d). ThusG is conjugate td5U(1, d).

Write Kg = S x R, whereS is isomorphic taSU(d) ¢ SO(2d) andR projects
one to one orB'. Notice that”’ is not contained in a factd®? or i R%, since
Kg contains elements outsidO(2d). Therefore the projection o#” onto R
is not trivial, and in fact conjugate (bijectively) the action®fo an action of a
subgroupS’ of SO(2d) (this follows from the equality of dimensions and the fact
that the action o8 is irreducible ). Therefore””’ = {x+io(x) € R¥+iR%? x ¢
R}, for somes : R? — iR%, commuting with the action o8’

Take an element oR of the form €,i). Since it preserves””’, we get:
ofoc = —f. Both of f and o centralizeS’, and so they commute, since the
centralizer ofS’ is abelian (becaus® is irreducible). Hences? = —1. That iso
defines a complex structure, with isotropy group containe®i@2d). Therefore
o is conjugate inSO(2d) to the multiplication byy/—1 on R«

Therefore, with the notations of 4, the projectionRifon SO(1,n — 1) acts
co-compactly orH"~. From 7.2, this projection acts in fact transitively i1,
the quotient space a¥. It is easy to show that the stabilizer Ri of a leaf of
2 must act transitively on that leaf. That#s acts transitively orH .

This finishes the proof of Proposition 7.1.

8 Standard spacetimes. Proofs of Theorems A and B.
The following result gives equivalent characterizations of standard spacetimes.

Proposition 8.1 Let M = I \ HL" be a compact anti de Sitter spacetime. Then
the following conditions are equivalent:

i) M has a non trivial timelike Killing field.

ii) M has a non trivial Killing field, i.e. Isorf(M) is not trivial.

iii) Isom°(M) = St.

iv) I' is conjugate to a lattice of (1, d) (n = 2d).

v) M is standard.

Proof. From Fact 2.5 and the Main Proposition 6.1Mf has a Killing field, i.e.
I’ centralizes some one parameter group, then it is conjugate to a subgroup of
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U(1,d). In fact it is Zariski dense ir8U(1,d) or U (1,d) and so its centralizer
coincides with that ofJ (1, d) itself, which isS?. This shows the equivalence of
the conditions i, ii and iii, whenever we observe that the Killing field determined
by St is timelike.

For a standard manifold; has a finite index normal subgroupj conjugate
in U (1, d). Hencel" normalizes the algebraic closure Bf, which isU (1,d) or
SU(1,d). But the normalizer of these two groups is exadflyd, 1), and hence
I' € U(1,d). Thereforel" is centralized byS!, and soM possesses a Killing
field. That is from abovetsonP(M) = St.

It remains now to prove the converse, that isJifis contained inU (1, d),
thenM is standard. It suffices to show thatthat I" is discrete. fact: ifl” C
U (1,d) = SU(1,d) x R is a co-compact lattice, then its projectidhin U (1,d) =
SU(1,d) x St is discrete (and hence it is a lattice). It suffices for this to show
that I" cuts non trivially the factoR. To ensure this, we have just to check
that the projection’y of I* on SU(L,d) (as a factor ofU (L, d))) is discrete.
But if this was not the case, then this projection would have a non trivial non
discrete part, which is nilpotent by Lemma 3.4. THgsnormalizes a non trivial
nilpotent group, and is therefore contained in a parabolic g@uplencel” is
a co-compact lattice dP x R, but this is impossible, because the later group is
not unimodular.

8.1 Proofs of Theorems A and B

LetM = f“\Hlvn be a compact anti de Sitter spacetime. As explained in Sect. 3,
Isom(M) is compact. Thereforésom(M) is finite, unlessM admits a non trivial
Killing field, and thusM is standard, by Proposition 8.1. By the same proposition,
Isom(M) = St, if M is standard. This proves Theore®n

From 2.4, 6.1 and 7.1, the algebraic closurelbfs conjugate toSO(2, n),
U(1,d) or SU(L,d) (for n = 2d). From 8.1,M is standard ifl" is contained in
U (1,d). This proves the statement about the Zariski closuré& .of

It remains to prove the finiteness of the levelMf Observe that this follows
from the true definition whem is standard. On the other hand,Nf is not
standard, thetsom(M) is finite. The fundamental group &f%" is infinite cyclic,
generated by a transformatidn € Isom(HL"), say. Because it is centrdl,
induces an isometry oM, which is of finite order sincdsom(M) is finite.
Therefore some power df belongs toi". This is easily seen to be equivalent to
the finiteness of the level dfl. O |
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