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ACTIONS OF SEMISIMPLE LIE GROUPS PRESERVING

A DEGENERATE RIEMANNIAN METRIC

E. BEKKARA, C. FRANCES, AND A. ZEGHIB

Abstract. We prove a rigidity of the lightcone in Minkowski space. It is
(essentially) the unique space endowed with a lightlike metric and supporting
an isometric nonproper action of a semisimple Lie group.

1. Introduction

Our subject of study here is lightlike metrics on smooth manifolds. First, a
lightlike scalar product on a vector space E is a symmetric bilinear form b which
is positive but nondefinite and which has exactly a 1-dimensional kernel. If E has
dimension 1 + n, then in some linear coordinates (x0, x1, . . . , xn), the associated
quadratic form q can be written q = (x1)2 + . . .+ (xn)2. A lightlike metric h on a
manifold M is a smooth tensor which is a lightlike scalar product on the tangent
space of each point.

1.0.1. Characteristic foliation. The kernel of h is a 1-dimensional sub-bundle N ⊂
TM and thus determines a 1-dimensional foliation N called the characteristic
(or null, normal, radical, isotropic,...) foliation of h. By definition any null curve
(i.e. a curve with everywhere isotropic speed) of (M,h) through x is contained
in the null leaf Nx. The abstract normal bundle of N , i.e. the quotient TM/N ,
is a Riemannian vector bundle. Conversely, a lightlike metric is the data of a
1-dimensional foliation together with a Riemannian metric on its normal bundle.

1.1. Major motivations. Lightlike geometry appears naturally in many geomet-
ric situations. We now list some natural examples motivating their study.

1.1.1. Submanifolds of Lorentz manifolds. Let M be a submanifold in a Lorentz
manifold (V, g). The metric g is nondegenerate with signature −+ . . .+. However,
for a given x ∈ M , the restriction hx of g to TxM does not necessarily have
the same signature. Two easy stable situations are those where hx is everywhere
of Riemannian type (M is spacelike) or hx is everywhere of Lorentzian type (M
is timelike). In both cases, all the submanifold theory valid in the Riemannian
context generalizes: there is a well-defined shape operator which satisfies the Gauss
and Codazzi equations.
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The delicate situation occurs when hx is degenerate for any x. Because the
ambient metric has Lorentz signature, hx is then lightlike as defined above. Un-
fortunately, by opposition to the previous cases, these lightlike submanifolds are
generally “too poor” to generate a coherent extrinsic local metric differential ge-
ometry. Let us give examples of interesting lightlike submanifolds.1

• Horizons of domains of dependence and black holes. Unfortunately, they have
an essential lack: their lower smoothness. Actually, one can believe that smooth
horizons are sufficiently rigid to be classifiable (see for instance [22] for a quick
definition of domains of dependence and [6, 20, 13] for more details, examples and
rigidity).

• Characteristic hypersurfaces of the wave equation. On a Lorentz manifold, a
wave operator defines a distinguished class of hypersurfaces called characteristic.2

There is a nice interpretation of lightlike hypersurfaces in terms of propagation
of waves: a hypersurface is degenerate exactly if it is characteristic for the wave
equation on the ambient Lorentz space (see [12]). However, except for some general
elementary facts, no systematic study of the extrinsic geometry of such hypersur-
faces seems to be available in the literature. One of these known facts is that
their null curves, called bi-characteristics of the wave equation, are unparametrized
geodesics in the ambient space (this is not true for lightlike submanifolds of higher
codimension). Another property is that being a lightlike submanifold is confor-
mally invariant (in particular, unparametrized null geodesics in Lorentz manifolds
are conformally invariant!).

• Lightlike geodesic hypersurfaces. They are characterized by the fact that their
lightlike metrics are basic (see the example in §1.2.1). They inherit a connection
from the ambient space. See [8, 9, 23, 24] for their use in Lorentz dynamics.

• Degenerate orbits of Lorentz isometric actions. Let G be a Lie group acting iso-
metrically on a Lorentz manifold (V, g). Then any orbit which is lightlike at a point
is lightlike everywhere and hence yields an embedded lightlike submanifold in V .
The problem of understanding these lightlike orbits, and more generally degenerate
invariant submanifolds, is essential when studying such isometric actions.

• Terminology. We believe that the choice of the word “lightlike” is justified
by the relationship between lightlike submanifolds and fields on the one hand, and
geometrical as well as physical optics in general Relativity on the other hand (see
for instance [21]). Although this terminology seems natural here, it is less adapted
to the general situation of “singular pseudo-Riemannian” metrics (compare with
[10, 17]).

1.1.2. From submanifolds to intrinsic lightlike geometry. In the last example given
above, when we restrict the action of the Lie group G to a lightlike orbit, we are
led to study the isometric action of G on a lightlike submanifold in a Lorentzian
manifold. The submanifold structure is actually irrelevant for this problem, and

1 The first two examples come from mathematical Relativity. We cannot recall detailed defini-
tions, but in a few words, a Cauchy hypersurface in a Lorentz manifold is a spacelike hypersurface
that captures all the causal structure: every timelike curve can be extended to meet it exactly
once. For any spacelike hypersurface, its domain of dependence is the maximal open set in which
it is a Cauchy hypersurface. The horizon of the hypersurface is the boundary of its domain of
dependence.

2 In order to solve an initial data problem for the wave equation, the data must be given
on a Cauchy hypersurface. The completely opposite situation occurs when the hypersurface is
characteristic.
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the pertinent framework is that of isometric actions on abstract lightlike manifolds.
The main difficulty when dealing with this intrinsic formulation is that we lose the
rigidity of the ambient action since, as we will see below, the isometry group of a
lightlike manifold can be infinite-dimensional.

1.2. Two fundamental examples. We now give two important examples of light-
like geometries, which are in some sense antagonistic.

1.2.1. The most flexible example: transversally Riemannian flows. The linear situa-
tion reduces to the case of R0,n, i.e. R1+n with coordinates (x0, x1, . . . , xn) endowed
with the lightlike quadratic form q = (x1)2 + . . .+ (xn)2.

We will denote its linear orthogonal group by O(0, n) (this is somehow natural
since it is reminiscent of the notation O(1, n)). We have:

O(0, n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

λ a1 ... an
0
.
.
0

A

⎞
⎟⎟⎟⎟⎠ ∈ GL(1 + n,R), A ∈ O(n), λ, ai ∈ R

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

It is naturally isomorphic to the affine similarity group R×Eucn = R.O(n)�R
n

(where Eucn = O(n) � R
n denotes the group of rigid motions of the Euclidean

space of dimension n).
Let us now see R

1+n as a lightlike manifold. The group of its affine isometric
transformations is O(0, n) � R

1+n. Contrary to the nondegenerate case, there is
here a huge, infinite-dimensional group of nonaffine isometries. For example, any

ψ : (x0, x1, . . . , xn) �→ (ψ1(x
0, x1, . . . , xn), ψ2(x

1, . . . , xn)),

where ψ2 ∈ Eucn, and ψ1 : Rn+1 → R is a smooth function with ∂ψ1

∂x0 �= 0, is an
isometry.

• More generally, let us consider (L, g) as a Riemannian manifold and M = R×L
endowed with the lightlike metric 0⊕ g. The null foliation is given by the R-factor,
and the metric does not depend on the coordinate along it. Here we also get
an infinite-dimensional group of isometric transformations given by ψ : (t, l) ∈
R×L �→ (ψ1(t, l), ψ2(l)), where ψ2 is an isometry of L, e.g. ψ2 is the identity map,

and ∂ψ1

∂t �= 0.
Conversely, assume that the lightlike metric (M,h) is such that there exists a

nonsingular vector field X tangent to the characteristic foliation and satisfying
LXh = 0. Then locally, there is a metric splitting M = R × L as above. Observe
that any vector field collinear to X will actually preserve h. In other words, any
vector field orienting the characteristic foliation N preserves h. We call the lightlike
metric basic in this case. This terminology is justified by the fact that h is the
pull-back by the projection map M → L of the Riemannian metric on the basis L.

• A 1-dimensional foliation N on a manifold M is transversally Riemannian (one
then says N is a transversally Riemannian flow) if it is the characteristic foliation
of some lightlike metric h on M , this metric being moreover preserved by the
local vector fields tangent to N . This data is strictly equivalent to that of a basic
lightlike metric on M . Of course, the usual classical definition does not involve
lightlike metrics. The reader will find in [7, 19] an introduction to the theory of
transversally Riemannian foliations, with sharp conclusions in the 1-dimensional
case.
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The isometry group of a basic lightlike metric contains at least all flows tangent
to N , so that it is infinite-dimensional and surely not so beautiful. However, these
metrics are somehow tame, since at least locally the metric is encoded in the asso-
ciated Riemannian one. Moreover, it was proved by D. Kupeli [17] (and reproduced
in many other places) that some kind of Levi-Civita connection exists exactly if the
lightlike metric is basic. The connection is never unique, so it is often necessary to
consider additional structures. The most useful one is that of screen, mostly de-
veloped in [10], which allows us to develop “calculus” and sometimes get invariant
quantities (see for instance [3]). Nevertheless, there is generally no distinguished
screen left invariant by the isometry group, so this notion will not be helpful to us.

1.2.2. The example of the lightcone in Minkowski space. We will now consider an
opposite situation where the isometry group is “big”, although remaining finite-
dimensional. Let Min1,n be the Minkowski space of dimension 1 + n, i.e. R

1+n

endowed with the form q = −x2
0 + x2

1 + . . .+ x2
n. The isotropic positive lightcone

Con is the set {q(x) = 0, x0 > 0}. The metric induced by q on Con is lightlike.
The subgroup O+(1, n) ⊂ O(1, n) preserving the cone Con acts isometrically on it.
This action is in fact transitive so that Con = O+(1, n)/Eucn−1 becomes a lightlike
homogeneous space with isotropy group Eucn−1 = O(n− 1)� R

n−1, the group of
rigid motions of the Euclidean space of dimension n− 1.

A key observation is:

Theorem 1.1 (Liouville Theorem for lightlike geometry). For n ≥ 3, any isom-
etry of Con belongs to O+(1, n). This is true even locally for n ≥ 4: any isome-
try between two connected open subsets of Con is the restriction of an element of
O+(1, n).

• For n = 3, the group of local isometries is in one-to-one correspondence with
the group of local conformal transformations of S2.

• For n = 2, there is no rigidity at all, even globally, since to any diffeomophism
of the circle corresponds an isometry of Co2.

This theorem, which will be proved in §2, shows in particular that for n ≥ 3,
Con is a homogeneous lightlike manifold with isometry group O+(1, n). We remark
that for the sake of simplicity we will often use the notation O(1, n) for any finite
index subgroup of O(1, n). Actually, to be precise, we can say that our geometric
descriptions of objects are always given up to a finite cover.

It seems likely that being homogeneous and having a maximal isotropy O(0, n−1)
characterizes the flat case, i.e. R0,n−1, and having a maximal unimodular isotropy,
i.e. Eucn−1, characterizes the lightcone. In some sense the lightcone is the maximal
symmetric nonflat lightlike space, analogous to spaces of constant nonzero curvature
in the pseudo-Riemannian case.

1.3. Statement of results. The present article contains detailed proofs of the
results announced in [5]. Before giving the statements, let us recall that two lightlike
metrics h and h′ on a manifold M are said to be homothetic if h = λh′ for some
real λ > 0. A Lie group acts locally faithfully on M if the kernel of the action is
a discrete subgroup.

One motivation of the present work was Theorem 1.6 of [9], which we state here
as follows.



ACTIONS OF LIE GROUPS 2419

Theorem 1.2 ([9]). Let G be a connected group with finite center, locally isomor-
phic to O(1, n) or O(2, n), n ≥ 3. If G acts isometrically on a Lorentz manifold
and has a degenerate orbit with noncompact stabilizer, then G is locally isomorphic
to O(1, n) and the orbit is homothetic to the lightcone Con.

Here, we prove an intrinsic version of this result:

Theorem 1.3. Let G be a noncompact semisimple Lie group with finite center
acting locally faithfully, isometrically and nonproperly on a lightlike manifold
(M,h). Assume that G has no factor locally isomorphic to SL(2,R). Then, looking
if necessary at a finite cover of G:

• G = H ×H ′, where H is locally isomorphic to O(1, n).
• G has an orbit which is homothetic, up to a finite cover, to a metric product
Con×N , where N is a Riemannian H ′-homogeneous manifold. The action
of H ×H ′ on Con ×N is the product action.

Using this theorem and working a little bit more, we can also handle the case
where some factors of G are locally isomorphic to SL(2,R) when the action is
transitive. The following result can be thought of as a converse to Theorem 1.1:

Corollary 1.4. Let G be a noncompact semisimple Lie group with finite center,
acting locally faithfully, isometrically, transitively and nonproperly on a lightlike
manifold (M,h), i.e. M is a homogeneous lightlike space G/I, with a noncompact
isotropy group I. Then a finite cover of G is isomorphic to O(1, n) × H ′, where
n ≥ 2 and H ′ is semisimple.

• If n �= 2, then up to finite cover, the manifold M is homothetic to a metric
product Con ×N , where N is an H ′-homogeneous Riemannian space.

• If n = 2, then up to finite cover, M is either homothetic to a metric product
Co1 × N as above or is a topological product Co2 × N , and there is a
finite-dimensional family of G-homogeneous lightlike metrics, which is, up
to homothety, in natural one-to-one correspondence with the linear forms
on R

dimN . Up to homothety, any such h induces the standard lightlike
metric on Co2 and an H ′-homogeneous Riemannian metric on N .

In any case, the action of G on M is the product action.

The nonproperness assumption is essential in the previous theorems. If one
removes it, “everything becomes possible”. Indeed, consider a Lie group L and a
lightlike scalar product on its Lie algebra l. Translating it on L by left multiplication
yields a lightlike metric for which the left action of L is isometric.

It is quite surprising that these kinds of global rigidity theorems can be proved
in the framework of lightlike metrics, which are not rigid geometric structures (see
§1.2.1). Here, it is in some sense the algebraic assumption of semisimplicity which
makes the situation rigid. However, since any Lie algebra is a semidirect product of
a semisimple and a solvable one, it is natural to first consider actions of semisimple
Lie groups.

When the manifold M is compact, only one simple Lie group can act isometri-
cally, as shows:

Theorem 1.5. Let G be a noncompact simple Lie group with finite center acting
isometrically on a compact lightlike manifold (M,h). Then G is a finite covering
of PSL(2,R), and all the orbits of G are closed, 1-dimensional, and lightlike.
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1.4. The mixed signature case: sub-Lorentz metrics. This notion will nat-
urally model the situation of general submanifolds in Lorentz manifolds. A sub-
Lorentz metric g on M is a symmetric covariant 2 -tensor which is at each point
a scalar product of either Lorentz, Euclidean, or lightlike type. The point is that
we allow the type to vary over M . So if (L, h) is a Lorentz manifold and M is a
submanifold of L, then the restriction on h to M is a sub-Lorentz metric (this fact
raises the inverse problem, i.e. the isometric embedding of sub-Lorentz metrics in
Lorentz manifolds). We think it is worthwhile to investigate the geometry of these
natural and rich structures (see for instance [18] for a research of normal forms of
these metrics in dimension 2).

Here we restrict our investigation to an adaptation of our lightlike results to this
sub-Lorentz situation.

1.4.1. Lorentz dynamics. Recall the three fundamental examples of Lorentz mani-
folds having an isometry group which acts nonproperly. They are just the universal
spaces of constant curvature:

(1) The Minkowski space: Min1,n−1 = O(1, n− 1)�R
n/O(1, n− 1).

(2) The de Sitter space dSn = O(1, n)/O(1, n− 1).
(3) The anti-de Sitter space AdSn = O(2, n− 1)/O(1, n− 1).

In the case of Minkowski space, the isometry group is not semisimple.
The Lorentz and lightlike dynamics are unified in the following statement, which

is basically a corollary of Theorem 1.3 and results of [4]:

Theorem 1.6. Let G be a semisimple group with finite center, no compact factor
and no local factor isomorphic to SL(2,R), acting isometrically nonproperly on a
sub-Lorentz manifold M . Then up to a finite cover, G has a factor G′, isomorphic
to O(1, n) or O(2, n) and having some orbit homothetic to dSn, AdSn or Con.

2. Preliminaries

2.1. Proof of Theorem 1.1. The metric on Con is just the metric 0 ⊕ e2tgSn−1

on R×Sn−1. An isometry f of Con is of the form (t, x) �→ (λ(t, x), φ(x)). A simple
calculation proves that f is isometric iff at any point (t, x) ∈ R× Sn−1,

φ∗gSn−1 = e2(t−λ(t,x))gSn−1 .

So any local isometry of Con is of the form (t, x) �→ (t−µ(x), φ(x)), with φ a local
conformal transformation of the sphere satisfying φ∗gSn−1 = e2µgSn−1 . Thus, the
different rigidity phenomena are just consequences of classical analogous rigidity
results for conformal transformations on the sphere. �

2.2. SL(2,R)-homogeneous spaces. Understanding these spaces is worthwhile in
our context since one can take advantage of restricting the G-action to small simpler
groups, e.g. SL(2,R) or a finite cover of it, which always exist in semisimple Lie
groups.

2.2.1. Notation. Let SL(2,R) be the Lie group of 2× 2-matrices with determinant
1. It is known that any 1-parameter subgroup of SL(2,R) is conjugate to one of
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the following:

A+ =

{(
et 0
0 e−t

)
, t ∈ R

}
, N =

{(
1 t
0 1

)
, t ∈ R

}

or K+ =

{(
sin t − cos t
cos t sin t

)
, t ∈ R

}
.

The corresponding derivatives of A+ and N at the identity are

X =

(
1 0
0 −1

)
and Y =

(
0 1
0 0

)
.

Together with Z =

(
0 0
1 0

)
, X and Y span the Lie algebra sl(2,R) and satisfy

the bracket relations

[X,Y ] = 2Y, [X,Z] = −2Z and [Y, Z] = X.

As usual, we denote by A (resp. K) the subgroup generated by A+,−A+ (resp.
K+,−K+).

Let Aff(R) be the subgroup of upper triangular matrices,

Aff(R) = A.N =

{(
a b
0 a−1

)
∈ SL(2,R)

}
,

and aff(R) be its Lie algebra.
Disconnected 1-dimensional subgroups of Aff(R) can be constructed as follows.

Let Γ0 be a cyclic subgroup of A generated by an element γ ∈ A. The semidirect
product Γ0 �N is then a closed, 1-dimensional, disconnected subgroup of Aff(R).
Conversely, any closed 1-dimensional disconnected subgroup of Aff(R) is obtained
in this manner.

Thanks to the “classical” classification of the SL(2,R)-homogeneous spaces, we
are going to recognize the lightlike ones.

Proposition 2.1 (Classification of SL(2,R)-homogeneous spaces).

(1) Any SL(2,R)-homogeneous space is isomorphic to one of the following:
(a) The circle S1 = SL(2,R)/Aff(R) endowed with its natural projective

structure.
(b) The hyperbolic plane = SL(2,R)/K with its Riemannian metric of

constant negative curvature.
(c) The affine punctured plane R

2 \ {0} = SL(2,R)/N equipped with an
affine flat connection, together with a lightlike metric.

(d) A Hopf affine torus R2\{0}/{x ∼ ax} = SL(2,R)/Γ0.N endowed with
a flat projective structure.

(e) A space SL(2,R)/Γ, where Γ is a discrete subgroup of SL(2,R). It is
locally an anti-de Sitter space, i.e. a Lorentz manifold with negative
constant curvature.

(2) Up to homothety, the unique lightlike SL(2,R)-homogeneous spaces having
a noncompact isotropy are:
(a) The lightcone Co1, i.e. the circle S1 endowed with the null metric.
(b) The lightcone Co2, namely R

2 \ {0} endowed with the lightlike metric
dθ2, where R

2 \ {0} is parametrized by the polar coordinates (r, θ).
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Proof. The proof of the first part is standard; we just give details in the lightlike
case.

Let Σ be an SL(2,R)-homogeneous space of dimension≥ 2, i.e. Σ ∼= SL(2,R)/H,
where H is the stabilizer of some p ∈ Σ which is conjugate, as shown above, to
one of the following subgroups: K,N,Γ0N and Γ. Let h be the Lie algebra of H.
Considering the isotropy representation

ρH : H −→ GL(Tp(Σ)) = GL(g/h),

one observes that when H = K or Γ0N (with Γ0 �= 1), ρH(H) is not conjugate to
a subgroup of O(0, 1). Now if H = Γ, then ρH(Γ) is conjugate to a subgroup of
O(1, 2). This is just because the Killing form on sl(2,R) has Lorentz signature. If
moreover ρH(Γ) is conjugate to a subgroup of O(0, 2), then ρH(Γ) has to be finite.
Since the kernel of the adjoint representation of SL(2,R) is finite, we get that Γ
is finite. Therefore the unique lightlike SL(2,R)-homogeneous space of dimension
≥ 2 with noncompact isotropy is R2 \ {0}.

In order to check that the lightlike metric has the form αdθ2 for some α ∈ R
∗
+,

one argues as follows. We consider the basis X,Y, Z of SL(2,R) introduced in
§2.2.1. By a slight abuse of language, they will also denote vector fields of R2 \ {0}
induced by the SL(2,R)-action. At p = (1, 0), the vector X is the unique nontrivial
eigenspace of ρN , and thus the orbit of p by the flow φt

X must coincide with the
null leaf N(1,0), which is therefore a radial half-line. The other null leaves are also
radial, since they are images of N(1,0) by the SL(2,R)-action. By homogeneity, the

metric must have the form αdθ2. �
Remark 2.2. Proposition 2.1 is a special case of Theorem 1.3, where G = O(1, 2).

For later use, let us state the following fact which follows directly from the
previous description of the lightlike surface R

2 \ {0} (here, X,Y, Z is the basis of
SL(2,R) introduced in §2.2.1).

Fact 2.3. If Y is isotropic at some p ∈ R
2 \ {0}, then Y vanishes at p and X is

isotropic at p.

2.3. Generalities on semisimple groups; notation. [See for instance [14],
chapters II and VI]. Let G be a semisimple group acting isometrically on (M,h).
This means that we have a smooth homomorphism ρ : G → Diff∞(M) such that
for every g ∈ G, ρ(g) preserves h, i.e. ρ(g)∗h = h. Let g be the Lie algebra of G.
For any X in g, we will generally use the notation φt

X instead of ρ(exp(tX)). By a
slight abuse of language, we will also denote by X the vector field of M generated
by the flow φt

X .
We get for every p ∈ M a homomorphism λp : g → TpM , defined by λp(X) = Xp.

The flow φt
X stabilizes p iff Xp = 0, and we denote by gp the Lie algebra of the

stabilizer of p.
We say that X ∈ g is lightlike at p ∈ M (or isotropic) (resp. spacelike) if

hp(Xp, Xp) = 0 (resp. hp(Xp, Xp) > 0).
We denote by sp the subspace of all vectors of g which are isotropic at p ∈ M .
Let O be a lightlike G-orbit of some p ∈ M , that is, O ∼= G/Gp, where Gp is the

stabilizer of p. The tangent space TpO is identified by λp to the quotient g/gp. In
fact the isotropy representation on TpO is equivalent to the adjoint representation
Ad of Gp on g/gp. In particular Gp is mapped, up to conjugacy, to a subgroup of
O(0, n).
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Similarly, the Euclidean space TpO/Np is identified to g/sp, where Ad : Gp −→
GL(g/sp) preserves a positive definite inner product on g/sp so that Gp acts on g/sp
by orthogonal matrices. In particular, if we consider the tangent representation
ad : gp −→ End(g/sp), the Lie subalgebra gp acts by skew symmetric matrices on
g/sp. We will use the same notation for the elements of the quotients g/gp and
g/sp and their representatives in the Lie algebra g.

We fix once and for all a Cartan involution Θ on the Lie algebra g. This yields
a Cartan decomposition g = k⊕ p, k (resp. p) being the eigenspace of Θ associated
with the eigenvalue +1 (resp. −1).

We choose a as a maximal abelian subalgebra of p and denote m as the centralizer
of a in k. This choice yields a rootspace decomposition of g, namely there is a finite
family Σ+ = {α1, ..., αs} of nonzero elements of a∗ such that g =

⊕
α∈Σ+ g−α ⊕

g0 ⊕
⊕

α∈Σ+ gα. For every X ∈ a, adX(Y ) = α(X)Y as soon as Y ∈ gα. The
Lie subalgebra g0 is in the kernel of adX for every X ∈ a and splits as a sum:
g0 = a⊕m.

The positive Weyl chamber a+ ⊂ a contains those X ∈ a such that α(X) ≥ 0
for all α ∈ Σ+. Its image by the exponential map is denoted by A+. Let Σ− =
{−α1, ...,−αs}.

The stable subalgebra (for a) W s =
⊕

α∈Σ− gα and the unstable one Wu =⊕
α∈Σ+ gα are both nilpotent subalgebras of g mapped diffeomorphically by the

exponential map of g onto two subgroups N+ ⊂ G and N− ⊂ G.
Given X ∈ a, its stable algebra is W s

X =
⊕

α(X)<0 gα and its unstable algebra

is Wu
X =

⊕
α(X)>0 gα.

Let us now prove a lemma which will be useful in the sequel:

Lemma 2.4. The subalgebra W s
X has the following properties:

(1) [g,W s
X ∩ gp] ⊂ sp.

(2) [sp,W
s
X ∩ gp] ⊂ gp.

Proof. Let Y ∈ W s
X ∩ gp.

(1) Since Y ∈ gp, adY acts on g/sp by a skew symmetric endomorphism, which
is moreover nilpotent since Y ∈ W s

X . Hence adY acts by the null endomor-
phism on g/sp, which means that adY maps g to sp.

(2) adY acts as a nilpotent endomorphism of g/gp (identified with the tan-
gent space) and has sp/gp (identified to the isotropic direction) as a 1-
dimensional eigenspace. By nilpotency the action on it is trivial, i.e. adY
maps sp into gp. �

Finally, recall that a semisimple Lie group of finite center admits a Cartan de-
composition G = KAK, where K is a maximal compact subgroup of G.

2.4. Nonproper actions. (See for instance [15] for a recent survey about these
notions.)

Definition 2.5. Let G act on M . A sequence (pk) is nonescaping if there is a
sequence of transformations gk ∈ G such that both (pk) and (qk) = (gk(pk)) lie in
a compact subset of M but (gk) tends to ∞ in G, i.e. leaves any compact set of G.

– The sequence (gk) is called a return sequence for (pk).
– In the sequel, we will sometimes assume that (pk) and (qk) converge to p and

q in M .
One says that the group G acts nonproperly if it admits a nonescaping sequence.
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Here is a nice criterion for actions of semisimple Lie groups of finite center to be
nonproper:

Lemma 2.6. Let G be a noncompact semisimple group with finite center. Then G
acts nonproperly iff any Cartan subgroup A acts nonproperly.

Proof. G admits a Cartan decomposition KAK, where K is compact. Let (pk)
be a nonescaping sequence of the G-action and (gk) its return sequence. Write
gk = lkakrk ∈ KAK. Then, p′k = rk(pk) is a nonescaping sequence for the A-
action, with associated return sequence (ak). Obviously (ak) goes to infinity in A
since (gk) goes to infinity in G. �

3. A key fact on the stable space

Here we state a crucial ingredient for the proofs of all our theorems. In all that
follows, G is a noncompact semisimple Lie group with finite center acting locally
faithfully, nonproperly and isometrically on a lightlike manifold (M,h). The main
result of this section is:

Proposition 3.1. If no factor of G is locally isomorphic to SL(2,R), there exists
a Cartan subalgebra a0 such that for some X0 ∈ a0 and p0 ∈ M , both X0 and its
stable algebra W s

X0
are isotropic at p0.

3.1. Starting fact. The nonproperness of the action of G leads to a fundamental
fact, already observed in [16] for Lorentzian metrics, which is the existence of p ∈ M
and X ∈ a such that W s

X is isotropic at p. Let us recall its proof.

Proposition 3.2 ([16]). Let a be a Cartan subalgebra of g.

(1) If the flow of X ∈ a acts nonproperly, then for any sequence pk → p which
is nonescaping for the action of φt

X , the stable space W s
X is isotropic at p.

(2) More generally, if pk → p is a nonescaping sequence for the A-action, then
there exists X ∈ a such that W s

X is isotropic at p ∈ M .

Proof. (1) Denote φt
X = exp(tX) as the flow of X, and let (tk) be a return

time sequence for (pk), i.e. φtk
X is a return sequence of pk, which means

that qk = φtk
X (pk) stay in a compact subset of M .

Let Y ∈ gα; then [X,Y ] = α(X)Y . Hence for any x ∈ M , Dxφ
t
XYx =

etα(X)Yφt
X (x). Assume that α(X) < 0. Then

hpk
(Ypk

, Ypk
) = hqk(Dpk

φtk
X (Ypk

), Dpk
φtk
X (Ypk

)) = e2tkα(X)hqk(Yqk , Yqk).

On the left hand side, passing to the limit yields hp(Yp, Yp).
On the right hand side, since (qk) lie in a compact set, hqk(Yqk , Yqk)

is bounded. Therefore, since α(X) < 0, this right hand term tends to 0,
yielding hp(Yp, Yp) = 0. This proves that W s

X is isotropic at p.
(2) Let (Xk) be a sequence in a such that exp(Xk) is a return sequence for

(pk). Let ‖.‖ be a Euclidean norm on a and, considering if necessary a
subsequence, assume ( Xk

‖Xk‖ ) converges to some X ∈ a. As above, one

proves that W s
X is isotropic at p. �

Remark 3.3. This result is nothing but a generalization of the linear (pointwise)
easy fact: if a matrix A preserves a lightlike scalar product, then its corresponding
stable and unstable spaces are isotropic. In our particular case, if X ∈ a ∩ gp, i.e.
X stabilizes p, then both W s

X and Wu
X are isotropic at p.
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3.2. Proof of Proposition 3.1. The proof follows from several observations. The
simplest one is that for lightlike metrics (in contrast with the Lorentz case), the
isotropic direction is unique on each tangent space TpM . Furthermore, it coincides
with the nontrivial eigenspace (if any) of any infinitesimal isometry fixing p. The
hypothesis made in Proposition 3.1 that G has no factor locally isomorphic to
SL(2,R) will only be used in Lemma 3.7.

Lemma 3.4. For any p ∈ M , the subspace of isotropic vectors sp is a Lie subalgebra
of g.

Proof. Let X,Y ∈ sp, and let φt
X be the isometric flow generated by X on M . Then

[X,Y ]p = lim
t→0

1

t
[dφ−t

X (Yφt
X(p))− Yp].

Since X,Y are isotropic at p, their integral curves at p are supported by the null leaf
Np and thus Yφt

X (p) is isotropic. Because φ−t
X is an isometry, dφ−t

X (Yφt
X(p)) is also

isotropic. Together with the observation made above, this yields the lemma. �
Lemma 3.5. G stabilizes no p ∈ M .

Proof. Suppose by contradiction that G stabilizes p ∈ M . Then G acts on TpM
by ρ : g �→ dpg ∈ GL(TpM). Since G preserves the lightlike scalar product hp, it is
mapped by ρ into a subgroup of O(0, n). Thus, at the level of Lie algebras, we get
a homomorphism dρ : g → o(0, n). Now, we prove:

Sublemma 3.6. Any homomorphism from g to o(0, n) is trivial.

Proof. Without loss of generality, we can assume that g is simple. Let λ be a
homomorphism from g to o(0, n), and let π be the projection from o(0, n) to o(n).
Consider the homomorphism λ ◦ π : g −→ o(n). Since g is simple and noncompact,
it has no nontrivial homomorphism into the Lie algebra of a compact group; this
implies that λ ◦ π is trivial. So, g is mapped by λ into the kernel g0 of π, that is,

the algebra of matrices of the form

⎛
⎜⎜⎜⎜⎝

µ x1 ... xn

0
.
.
0

0

⎞
⎟⎟⎟⎟⎠ . Since g0 is solvable

and g is simple, we conclude that λ is trivial. �
As a corollary, the ρ-image of any connected compact subgroup K ⊂ G is trivial.

However such K preserves a Riemannian metric. But on a connected manifold M ,
a Riemannian isometry which fixes a point and has a trivial derivative at this point
must be the identity on M . This is easily seen since in the neighborhood of any
fixed point a Riemannian isometry is linearized by the exponential map. Hence K
acts trivially on M , and therefore G does not act faithfully, which contradicts our
hypothesis and completes the proof of our lemma. �
Lemma 3.7. If G has no factor locally isomorphic to SL(2,R), then no Cartan
subalgebra a meets the stabilizer subalgebra: a ∩ gp = {0} for any p ∈ M .

Proof. Assume by contradiction that a ∩ gp �= {0}, and let us take X �= 0 in this
intersection. Apply Remark 3.3 to X to get that the subspaces W s

X and Wu
X are

both isotropic at p. It is a general fact that the Lie subalgebra n generated by W s
X

and Wu
X is an ideal of g (see for instance [16]), hence is a factor of g. It acts on the
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1-dimensional manifold Np. This action is faithful. Otherwise its kernel s would
be the Lie algebra of a semisimple group S ⊂ G which would have fixed points
on M , in contradiction with Lemma 3.5. Now, the only semisimple algebra acting
faithfully on a 1-dimensional manifold is sl(2,R). This contradicts our hypothesis
that g has no such factor. �

Lemma 3.8. Let H be a Lie group with Lie algebra sl(2,R).

(1) If H is linear, then it is isomorphic to either SL(2,R) or PSL(2,R).
(2) If H is a subgroup of a Lie group G with finite center, then it is a finite

covering of PSL(2,R).

Proof. The point is that all the representations of the Lie algebra sl(2,R) integrate
to actions of the group SL(2,R) itself, and not merely its universal cover. Indeed
all the irreducible representations are isomorphic to symmetric powers of the stan-
dard representation, or equivalently to representations on spaces of homogeneous
polynomials of a given degree, in two variables x and y (see for instance [14], section
I.9). Clearly, SL(2,R) acts on these polynomials, and PSL(2,R) acts iff the degree
is even. For the last point, observe that the adjoint representation of G has finite
kernel. �

End of the proof of Proposition 3.1. From Proposition 3.2, there exist X ∈ a and
p ∈ M such that W s

X is isotropic at p. Since g has no local factor isomorphic to
sl(2,R), we have dimW s

X > 1 (otherwise the subalgebra a ⊕ Σα(X)≥0gα is sup-
plementary to W s

X and would have codimension 1, yielding an action of g on a
1-dimensional manifold). For a lightlike metric, an isotropic space has dimension
at most 1, so that the evaluation of W s

X at p has at most dimension 1 and thus W s
X

contains at least a nonzero vector Y0 vanishing at p.
By the Jacobson-Morozov Theorem (see [14], Theorem 10.3), the nilpotent el-

ement Y0 belongs to some subalgebra h isomorphic to sl(2,R), i.e. generated
by an sl2-triple {X0, Y0, Z0}, such that [X0, Y0] = 2Y0, [X0, Z0] = −2Z0, and
[Y0, Z0] = X0.

Let H ⊂ G be the group associated to h. From the lemma above and the fact
that G has finite center, H is a finite covering of PSL(2,R). Let us call Σ the
H-orbit of p. Because in any finite-dimensional representation of sl(2,R) any R-
split element is mapped on some R-split element, the Cartan subalgebra RX0 is
contained in a Cartan subalgebra a0 of the ambient algebra g. By Lemma 3.7, we
know that X0 does not vanish at p. On the other hand Y0 vanishes at p, which
implies RY0 = gp. In particular, Σ is 2-dimensional and cannot be Riemannian
because Y0 ∈ gp shows that the action of H is nonproper on Σ. We obtain the
fact that Σ is a lightlike surface homothetic, up to finite cover, to (R2 \ {0}, dθ2).
We already mentioned that H acts nonproperly on Σ. The group exp(RX0) is a
Cartan subgroup of H, and by Lemma 2.6 exp(RX0) also acts nonproperly on Σ.
Thus we can find (qk) as both a sequence of Σ converging to p0 ∈ Σ and a sequence
of return times (tk), such that hk.qk converges in Σ, where hk = exp(tkX0). Now
we apply the first part of Proposition 3.2 to X0 and a0, and deduce that W s

X0
is

isotropic at p0 (where W s
X0

is defined relatively to a0). In particular Y0 is isotropic
at p0, and Fact 2.3 then ensures that X0 is also isotropic at p0. �
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4. Proof of Theorem 1.3

4.1. Reduction lemma. The following fact together with Proposition 3.1 reduces
the proof of Theorem 1.3 to the case of nonproper transitive actions of semisimple
groups.

Lemma 4.1 (Reduction to the transitive case). Let G be a semisimple Lie group
with finite center and no factor locally isomorphic to SL(2,R), acting faithfully non-
properly isometrically on a lightlike manifold. At any p ∈ M for which there exists
X such that W s

X is isotropic at p, the orbit G.p is lightlike and G acts nonproperly
on it. In fact, the stabilizer subalgebra gp contains nilpotent elements.

Proof. Let p ∈ M and let X be such that W s
X is isotropic at p. We already saw at

the end of the proof of Proposition 3.1 that W s
X has dimension > 1. If it is isotropic

at p, then it contains a nonzero element Y0 ∈ W s
X ∩ gp vanishing at p. But Y0 is

a nonzero nilpotent element in g, and in particular Ad(exp(tY0)) is noncompact,
proving that the stabilizer of p is noncompact. Therefore the action of G on the
G-orbit G.p is nonproper, and gp contains nilpotent elements.

Let us show that G.p is lightlike. Lemma 3.5 shows that G.p cannot be reduced
to p. Suppose now by contradiction that G.p is Riemannian. Then any vector
which is isotropic at p must vanish there, in particular W s

X ⊂ gp.
Consider the infinitesimal action of Y0 on the tangent space of the orbit at p. This

action is just adY0
: g/gp −→ g/gp. If G.p is supposed to be Riemannian, it is at the

same time skew symmetric and nilpotent, hence trivial on g/gp, which means that
adY0

(g) ⊂ gp. Now, use the Jacobson-Morozov theorem to get an sl(2,R)-triple
{Z0, X0, Y0}. Then adY0

(Z0) = X0, so that X0 ∈ gp. Since we already saw that X0

is in a Cartan subalgebra of g, this yields a contradiction with Lemma 3.7. �

4.2. Proof in the simple case. We now give the proof of Theorem 1.3, assuming
that the group G is simple with finite center, not locally isomorphic to SL(2,R),
and the action is transitive and nonproper. The general case of semisimple groups
will be handled in the next section. The proof will be achieved in several steps (let
us mention that some of the arguments below are similar to those in [9]).

Step 1. There exist p ∈ M and X in some Cartan subalgebra a such that W s
X ⊂ gp.

Proof. Proposition 3.1 says that for some p ∈ M , there exists X in a Cartan
subalgebra of g such that both X and W s

X are isotropic at p. For any Y in W s
X , the

Lie algebra generated by X and Y is isomorphic to the Lie algebra aff(R) and acts
on the null leaf Np. Up to isomorphism, there are exactly two actions of aff(R) on
a connected 1-dimensional manifold:

(1) The usual affine action of aff(R) on the line. For this action, a conjugate
of X vanishes somewhere.

(2) The nonfaithful action, for which Y acts trivially.

The first case cannot occur without contradicting Lemma 3.7, so that only pos-
sibility (2) occurs and thus W s

X ⊂ gp. �

Step 2. The R-rank of g equals 1.

Proof. Suppose the R-rank of g is greater than 1. Let α be a root such that
α(X) > 0 and β be an adjacent root in the Dynkin diagram, according to the
choice of a basis Φ of positive simple roots for which γ ∈ Φ =⇒ γ(X) ≥ 0. (See
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[14], p 160.) By definition, α + β is also a root and (α + β)(X) > 0, which means
that g−α and g−(α+β) are different and contained in W s

X .
Let Tα and Tα+β be the vectors of a dual to α and α + β, respectively. They

are linearly independent. Moreover, Tα ∈ [gα, g−α] ⊂ adg(W
s
X)(g), and the same is

true for Tα+β ,
By the first step and Lemma 2.4, Tα and Tα+β are isotropic at p. Hence, there

is a nontrivial linear combination of them which vanishes at p. This contradicts
Lemma 3.7 claiming that a ∩ gp = {0}. Therefore, g has rank 1. �

Remark 4.2. It is exactly here that we need G to be simple!

Step 3. The Lie algebra g is isomorphic to o(1, n).

Proof. Suppose that g is not isomorphic to o(1, n); then we have two roots α and
2α such that α(X) > 0.

Claim 4.3. The bracket [g2α, g−α] �= 0.

Let us continue the proof assuming the claim. Consider a nonzero Y ∈ [g2α, g−α]
⊂ gα. By Lemma 2.4, Y is isotropic at p. Let Θ be the Cartan involution (see
[14] p. 355); then ΘY ∈ W s

X , and hence belongs to gp, by Step 1. Lemma 2.4
then implies that [Y,ΘY ] ∈ gp, in particular a ∩ gp �= 0, which contradicts Lemma
3.7. �

Proof of the claim. The rank 1 simple Lie groups of noncompact type are known
to be the isometry groups of symmetric spaces of negative curvature, namely the
real, complex and quaternionic hyperbolic spaces, together with the hyperbolic
Cayley plane. A direct computation can be performed to prove the claim. Let
us give another synthetic proof. By contradiction, if [g2α, g−α] = 0, the sum l =
g0 + g−α + g−2α + g2α would be a subalgebra of g. For the sake of simplicity, let
us work with groups instead of algebras. Let L be the group associated to our last
subalgebra l. Clearly, L is noncompact. The point is that there is a dichotomy for
noncompact connected isometry subgroups of negatively curved symmetric spaces.
If they have a nontrivial solvable radical, then they fix a point at infinity and thus
are contained in a parabolic group. In particular, they have a compact simple Levi
part (see [11]). If not, the group is semisimple. It is clear that our L contains
a noncompact semisimple group, and therefore by the dichotomy it is semisimple.
But in this case, L will have a “symmetric” root decomposition, i.e. the negative of
a root is a root, too. Thus, there must exist a nontrivial root space corresponding
to α, which contradicts the definition of l. �

Step 4. The full isotropic subalgebra is sp = a⊕m⊕ g−α.

Proof. Recall thatm is the Lie algebra of the centralizer of a in the maximal compact
K. Since m ⊂ [gα, g−α], Lemma 2.4 implies that it is isotropic at p.

On the other hand, if Y ∈ gα is isotropic at p, Lemma 2.4 implies that the
semisimple element [Y,ΘY ] ∈ [g−α, gα] ⊂ [sp,W

s
p∩gp] is in the stabilizer subalgebra

of p, which contradicts Lemma 3.7. Therefore, the isotropic subalgebra is exactly
sp = a⊕m⊕ g−α. �

Step 5. The full stabilizer subalgebra is gp = m⊕ g−α.
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Proof. Every Z ∈ m is isotropic at p. Suppose by contradiction that Z /∈ gp. Then
there exists an element Z + λX ∈ gp, λ ∈ R

∗. We let it act on the normal space of
the null leaf.

The action of X on g/sp is identified to its action on gα by the previous step. In
particular the X-action has nonzero real eigenvalues.

The action of m on g/sp has purely imaginary eigenvalues, since m is contained
in the Lie algebra of a maximal compact group. This is particularly true for the
adjoint action of Z.

On the one hand, since X and Z commute by definition of m, the action of
Z + λX on g/sp must have eigenvalues with nontrivial real part.

On the other hand, Z + λX ∈ gp acts as a skew symmetric endomorphism on
g/sp, and thus has only purely imaginary eigenvalues: a contradiction. This shows
that m ⊂ gp, but since a ∩ gp = 0 and gp ⊂ sp, we infer from the previous step the
equality gp = m⊕ g−α. �
End. Since g is isomorphic to o(1, n) and the Lie algebra of the stabilizer gp is
isomorphic to the Lie algebra of the group of Euclidean motions Eucn, we conclude
that M is covered by O(1, n)/Eucn endowed with a left-invariant lightlike met-
ric. All those metrics are homothetic to that of the lightcone in Minkowski space.
Finally, because n ≥ 3, the covering O(1, n)/Eucn → M has to be finite, which
completes the proof of Theorem 1.3 when G is simple.

4.3. End of the proof. Thanks to Lemma 4.1 and Proposition 3.1, the com-
plete proof of Theorem 1.3 reduces to the study of nonproper transitive actions of
semisimple groups with no factor locally isomorphic to SL(2,R). The work shown
above will be useful thanks to the following reduction lemma:

Lemma 4.4 (Reduction to the simple case). Let X be in a Cartan subalgebra of g,
such that W s

X is isotropic at p. Consider the decomposition of g in simple factors.
Let h be such a simple factor and let H ⊂ G be the corresponding group. Suppose
X has a nontrivial projection on h. Then the H-orbit is nonproper and lightlike.

Proof. Write g = h1 ⊕ ... ⊕ hs, where the hi’s are the simple factors of g, and call
Xi the projection of X on hi. If W s

Xi,hi
denotes the stable space of Xi relative to

hi, it is straightforward to check that W s
X = W s

X1,h1
⊕ ...⊕W s

Xs,hs
. In particular, if

W s
X is isotropic at p and h is a simple factor on which X has a nontrivial projection

X ′, then W s
X′,h is nontrivial and isotropic at p. We infer from Lemma 4.1 that the

H-orbit of p is lightlike and the action of H on it is nonproper. �
By this lemma, there is a simple factor H of G having a lightlike nonproper orbit

H.p. It follows from the previous section that H is locally isomorphic to O(1, n),
n ≥ 3, and H.p is homothetic to Con up to a finite cover. There is a semisimple
group H ′ such that G is a finite quotient of H ×H ′. This product still acts locally
faithfully on M , so that we will assume G = H × H ′ in the following. Consider
O = G.p, the G-orbit containing H.p. The remaining part of Theorem 1.3 will
follow from the geometric description of O: up to a finite cover, it is a direct metric
product H.p×H ′.p. This is the content of the following proposition, which will also
be useful when dealing with groups having factors locally isomorphic to SL(2,R).

Proposition 4.5. Let G be a semisimple Lie group acting locally faithfully transi-
tively and nonproperly on a lightlike manifold (M,h). We assume that G = H×H ′,
where H is isomorphic to O(1, n), n ≥ 2, and H ′ is semisimple.
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• We assume that n ≥ 3. If for some p ∈ M the orbit H.p is homothetic to
Con, then M is homothetic to a metric product M = Con ×N , where N is
an H ′-homogeneous Riemannian manifold.

• We assume that n = 2. If for some p ∈ M the orbit H.p is homothetic to
Co1, then M is homothetic to a metric product Co1×N as above. If H.p is
homothetic to Co2, then M is a topological product Co2×N , and there is a
finite-dimensional family of G-homogeneous lightlike metrics, which is, up
to homothety, in natural one-to-one correspondence with the linear forms
on R

dimN . Up to homothety, any such h induces the standard lightlike
metric on Co2 and an H ′-homogeneous Riemannian metric on N .

In any case, the G action is the product one.

Proof. M is naturally foliated by lightcones Hx = H.x. This foliation is G-
invariant: if g ∈ G, then, gHx = gH.x = Hg.x = Hg.x, since H is normal in
G.

1) We first prove that M is a topological product. By homogeneity it is sufficient
to show that for p ∈ M , the intersection H.p∩H ′.p is reduced to {p}. If it were not
the case, there would be h′ ∈ H ′ such that h′.p ∈ H.p and h′.p �= p. This would
imply h′.H.p = H.h′.p = H.p. Hence h′ would preserve the orbit H.p and act on it
by commuting with H. We conclude thanks to the next lemma, which says that h′

should act trivially on H.p, contradicting h′.p �= p.

Lemma 4.6. Let h′ be an isometry of the cone Con, n ≥ 2 (resp. of Co1),
commuting with the action of O(1, n) (resp. O(1, 2)). Then h′ is the identity map
of Con (resp. Co1).

Proof. We begin with the case of Co1. An isometry of Co1 is just a diffeomorphism
of S1. If such a diffeomorphism commutes with the projective action of O(1, 2) on
S1, it must fix all the fixed points of parabolic elements in O(1, 2). But the set of
these fixed points is precisely S1, so we are done.

In a higher dimension, we saw that writing Con as R × Sn−1 with the metric
0 ⊕ gSn−1 , the isometry h′ is of the form (t, x) �→ (t − µ(x), φ(x)). Here φ is a
conformal transformation of Sn−1 satisfying φ∗gSn−1 = e2µgSn−1 . If h′ commutes
with the action of O(1, n), it must leave invariant any line of fixed points of parabolic
elements in O(1, n). This implies φ(x) = x for all x, and finally µ(x) = 0. �

2) We now observe that H ′.p is Riemannian, because if it is not the case, it
contains the null leaf Np and we get Np ⊂ H.p ∩H ′.p, contradicting H.p ∩H ′.p =
{p}.

We first deal with the case H = O(1, n), n ≥ 3. Let us suppose that H.p is
homothetic to Con, and consider S as a maximal compact subgroup in the isotropy
group of p in H. Since H and H ′ commute, S acts trivially on H ′.p: sh′.p =
h′s.p = h′.p. By the first point of the proof, we know that Tp(H.p) is transverse to
Tp(H

′.p). Moreover, there is an S-invariant splitting TpM = Tp(H
′.p)⊕Tp(Np)⊕E,

where E is a Riemannian subspace of Tp(H.p), on which S acts irreducibly by the
standard action of O(n − 1) on R

n−1. Let us call F the orthogonal of Tp(H.p)
in TpM . This space is transverse to E so that F is the graph of a linear map
A : Tp(H

′.p) ⊕ Tp(Np) → E. This map A intertwines the trivial action of S
on Tp(H

′.p) ⊕ Tp(Np) with the irreducible one on E, so that A = 0, and F =
Tp(H

′.p) ⊕ Tp(Np). As a consequence, the sum Tp(H
′.p) ⊕ Tp(H.p) is orthogonal
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for the metric hp, and by homogeneity of M this remains true at every point of
M . The manifold M is a metric product, Con × N , where N is Riemannian and
H ′-homogeneous, as desired.

It remains to handle the case H = O(1, 2). If for some p ∈ M , H.p is homothetic
to Co1, i.e. it is 1-dimensional and lightlike, then clearly, M is a metric product
Co1×N , withN Riemannian andH ′-homogeneous. Now, assumeH.p is homothetic
to Co2. Let us fix (e1, e2) as a basis of Tp(H.p), with e1 lightlike, and (e3, ..., es)
as a basis of Tp(H

′.p). Let Hp (resp. H ′
p) denote the stabilizer of p in H (resp.

in H ′). Elements of Hp induce transformations of Tp(H.p) with matrices of the

form

(
1 u
0 1

)
, u ∈ R, in the basis (e1, e2). In particular, if 〈 〉 is a Riemannian

H ′
p-invariant scalar product on Tp(H

′.p) and l is any linear form on Tp(H
′.p), then

h′
p, defined by h′

p(e1, ei) = 0 for all i = {1, ..., s}, h′
p(e2, e2) = 1, h′

p(e2, ej) = l(ej),
j ∈ {3, ..., s}, and h′

p(ei, ej) = 〈ei, ej〉 for all i, j ∈ {3, ..., s}, is a lightlike product
on TpM which extends to a G-homogeneous lightlike metric on M . Reciprocally,
any G-homogeneous lightlike metric is homothetic to one of the previous form.
Thus, there is a finite-dimensional family of G-homogeneous lightlike metrics on
M , parametrized up to homothety, by the linear forms on R

dimM−2. �

4.4. Proof of Corollary 1.4. Here, we assume that G is semisimple, noncompact,
with finite center. The group G acts transitively and nonproperly on a lightlike
manifold (M,h). Looking at a finite cover of G if necessary, we assume that G =
H1 × ... × Hs, where each Hi is a simple group with finite center. For p ∈ M
and every i = 1, ..., s we call Gi

p the projection of the isotropy group Gp on Hi,

and Hi
p the intersection Gp ∩ Hi. Each Hi

p is a normal subgroup of Gp. Since

Gp is noncompact, some Gi
p has noncompact closure; for example i = 1. Let us

consider a sequence (gk) tending to infinity in Gp, such that the projection of (gk)
on H1 also tends to infinity. Performing a Cartan decomposition (gk) in G and
using (the proof of) Proposition 3.2, we get X in a Cartan subalgebra of g and
p′ ∈ M such that W s

X is isotropic at p′. Now, because the projection of (gk) on
H1 tends to infinity and the Cartan decomposition in G is obtained as a product
of Cartan decompositions in the Hi’s, we have that the projection X1 of X on h1

is nontrivial. Moreover, as already observed, W s
X1,h1

is isotropic at p′. If H1 is not

locally isomorphic to SL(2,R), we get that W s
X1,h1

has dimension greater than 1,

and thus H1.p
′ is lightlike and carries a nonproper action of H1. By the previous

study, H1 is isomorphic to O(1, n), n ≥ 3, and H1.p
′ is homothetic to Con. We can

then apply Proposition 4.5 to conclude.
We are left with the case where H1 is a finite cover of PSL(2,R) and G1

p does
not have compact closure. We claim that the orbit H1.p cannot have dimension
3. Indeed, let 〈 〉p be the pullback of hp in the Lie algebra h1. Let g ∈ Gp and
gj be the projection of g on Hj . Since Dpg leaves hp invariant, we get that 〈 〉p
is Ad(g1)-invariant. But 〈 〉p is either Riemannian or lightlike. In both cases, we
saw in the proof of Proposition 2.1 that the subgroup S ⊂ H1 such that Ad(S)
preserves 〈 〉p is compact, contradicting the fact that G1

p does not have compact
closure.

If H1.p is of dimension 2 and Riemannian, H1
p is a maximal compact subgroup

K ⊂ H1. But since H1
p is normal in Gp, we get that K is normal in G1

p, which

yields G1
p = K and a new contradiction.
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We conclude that H1.p is either 1-dimensional and lightlike, or 2-dimensional
and lightlike. It follows from Proposition 2.1 that H1.p is homothetic to a cone Co1

or Co2. We then get the conclusion thanks to Proposition 4.5. �

5. Proof of Theorem 1.5

Here we assume that G is simple with finite center and acts locally faithfully by
isometries on a compact lightlike manifold (M,h).

We first assume, by contradiction, that G is not locally isomorphic to PSL(2,R).
By compactness, every sequence of M is nonescaping. It follows from the first point
of Proposition 3.2 that for every X in a Cartan subalgebra of g, W s

X is isotropic
at every p ∈ M . Thus, using the last point of Lemma 4.1, and the conclusions
of Corollary 1.4, we get that G is locally isomorphic to O(1, n), and any G-orbit
is homothetic to Con, n ≥ 3. Let us call K a maximal compact subgroup of G,
and let K0 be the stabilizer in K of a given point p0 ∈ M . As we said in the
proof of Lemma 3.5, the compact group K0 preserves a Riemannian metric on M .
Since any Riemannian isometry can be linearized around any fixed point (via the
exponential map), it is not difficult to prove that the set of K0-fixed points is a
closed submanifold of M that we call M0. We know explicitly the action of K
on Con, and observe that every orbit of K is of Riemannian type. Let S(k/k0)
denote the set of Euclidean scalar products on k/k0. There is a continuous map
µ : M0 → S(k/k0) defined in the following way: if X and Y are two vectors of k, and
X and Y are their projections on k/k0, then µ(p)(X,Y ) = hp(X(p), Y (p)). Now, any
linear homothetic transformation of Minkowski space preserves Con, acts on it by a
homothetic transformation for the lightlike metric, and commutes with any isometry
of Con. As a consequence, on G.p0, there is a 1-parameter flow of homotheties ht

which transforms h|G.p0
into e2th|G.p0

and commutes with the action of K (in

particular, it leaves M0∩G.p0 invariant). It follows that µ(ht.p0) = e2tµ(p0). Now,
by compactness of M0, there is a sequence (tk) tending to +∞ such that htk .p0
tends to p∞ ∈ M0. We should get by continuity of µ, limk→+∞ e2tkµ(p0) = µ(p∞),
which yields the desired contradiction.

It remains to understand what happens if G has finite center and is locally
isomorphic to PSL(2,R). Let us fix X,Y, Z as a standard basis of g: [Y, Z] = X,
[X,Y ] = 2Y , and [X,Z] = −2Z. It follows from Proposition 3.2 that Y and Z
are isotropic at every p ∈ M . As a consequence, at any p ∈ M a nontrivial linear
combination of Y and Z has to vanish, so that all the orbits of G have dimension
at most 2 and are lightlike since stabilizers of points are noncompact. If there is a
2-dimensional orbit G.p0, Proposition 2.1 ensures that it is homothetic to R

2 \ {0}
endowed with the metric dθ2 (namely Co2). We get a contradiction exactly as
above, using the action of a maximal compact group and the homothetic flow on
Co2 (here k0 = 0).

We conclude that every G orbit is 1-dimensional and lightlike. Since G has finite
center, these orbits are finite coverings of the circle, hence closed. �

6. Proof of Theorem 1.6

Let us first summarize results on Lorentz dynamics in the following statement,
fully proved in [9], but previously partially proved for instance in [1, 2, 4, 16].
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Theorem 6.1. Let G be a semisimple group with finite center, no compact factor
and no local factor isomorphic to SL(2,R), acting isometrically nonproperly on a
Lorentz manifold M . Then, up to a finite cover, G has a factor G′ isomorphic to
O(1, n) or O(2, n) and having some orbit homothetic to dSn or AdSn.

Observe now that most developments along the article, in particular Proposition
3.2, do not explicitly involve the lightlike nature of the ambient metric and apply
equally to the Lorentz case and to the general sub-Lorentz case. This allows one
to find a nonproper G-orbit O, i.e. with a stabilizer algebra containing nilpotent
elements (see the end of proof of Proposition 3.1). Let x0 ∈ O.

If the ambient metric at x0 is Lorentz, then we just apply Theorem 6.1 to the
Lorentz manifold M ′ which is the open subset of M comprising the points where
the metric is Lorentz.

If the metric at x0 is of Riemannian or lightlike type, then we first observe that
the G-action on O is locally faithful. The proof in this mixed situation proceeds
exactly as that of Lemma 3.5 in the (pure) lightlike case. By contradiction, if
a factor H of G fixes O pointwise, then its infinitesimal isotropy at x0 is trivial
(because the metric at x0 is Riemannian or lightlike). Hence the action of any
connected compact subgroup of H is trivial, contradicting the fact that G acts
faithfully (see the proof of Lemma 3.5). Now, since the stabilizer algebra at x0

contains nilpotent elements, and since the action on O is locally faithful, we get
that O cannot be Riemannian, hence is lightlike. We then apply Theorem 1.3 to
deduce that O is homothetic to a lightcone Con (up to a finite cover). �

6.0.1. Some remaining questions. The results of [9] are stronger than the statement
of Theorem 6.1, since they contain a detailed geometric description of the Lorentz
manifoldM (a warped product structure...). This is the missing part of Theorem 1.3
in the lightlike nonhomogeneous case and Theorem 1.6 in the sub-Lorentz case. In
particular, in this last sub-Lorentz situation it remains to see whether the manifold
is or is not pure, i.e. if we can find examples of nonproper actions where a lightlike
part and a Lorentz one coexist.
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