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Abstract
We prove here, by geometric, or rather dynamical, methods, the following
theorem. Let G be a non-compact connected Lie subgroup of the isometry
group Isom(Hn) of the real hyperbolic space Hn, which does not fix any point
at infinity, i.e. on ∂Hn � Sn−1. Then G preserves a certain hyperbolic subspace
Hd ⊂ Hn and ‘contains’ all the identity components Isom0(Hd) of its isometry
group. We provide an ‘algebra-free’ proof and present the dynamical tools
used, so that the exposition is ‘self-contained’.

Mathematics Subject Classification: 53A30, 37C85, 57S20, 53C29

1. Introduction

We provide here a geometric—essentially dynamic—proof of the following result.

Theorem 1.1. Let G be a non-compact connected Lie subgroup of Isom(Hn), which does not
fix any point at infinity (i.e. on ∂Hn � Sn−1). Then, up to conjugacy, G preserves a hyperbolic
subspace Hd with 1 � d � n and contains O0(d, 1).

In [DO], Di Scala and Olmos proved some equivalent results, describing additionally the
case where G admits a fixed point. Their motivation was, like ours, to give a geometrical
proof of a result classically proved by algebraic means. This takes place in a more general
background which we recall in section 1.1. However, some non-trivial algebraical tools are
used in their proof. We propose here an ‘algebra-free’ approach (actually, we allow the use
of some rudimentary notions, such as the radical of a Lie group, to show that theorems 1.1
and 1.2 are essentially equivalent). From a pedagogical view, the proof is fully self-contained
(see section 1.2) and one of its steps is linked with a more general problem in the dynamics
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of algebraic groups (see section 1.3). Finally, we present an application of theorem 1.1 to the
holonomy of Lorentzian manifolds (see section 1.4).

1.1. Isometric dynamics on Riemannian symmetric spaces

Let X be a Riemannian symmetric space of non-positive curvature. The following two
properties of subgroups of Isom(X) are well known. First, if G is compact, then it has a
fixed point in X. Second, if G is a semi-simple (e.g. diagonalizable) one-parameter group,
then it keeps invariant a geodesic, which is moreover unique in the negatively curved case
and called the axis of G. The original proofs were algebraic in nature, but now there are also
geometrical ones, applying to any Hadamard space [BGS].

However, both these facts are corollaries of the following less known statement.

Theorem 1.2. Let G be a semi-simple Lie group acting isometrically on a Riemannian
symmetric space X of non-positive curvature. Then G admits a totally geodesic orbit Y

(which is obviously a symmetric space). Moreover G contains the identity component of the
isometry group of Y ; more precisely, the group of the restrictions of elements of G to Y contains
the ‘intrinsic’ group Isom0(Y ).

Though this statement is purely geometric, only algebraic approaches to this result are
found in the literature, with the exception of [DO]. One can find in [K] an algebraic proof of
the first part of theorem 1.2 (the existence of a totally geodesic orbit); this reference is recalled
in [AVS], theorem 3.7, p 103, where theorem 1.2 is stated in the case of constant curvature.
We thank de la Harpe for this remark. Also, an algebraic proof of a proposition implying the
second part of theorem 1.2, in the case G = O(n, 1), appears in [BH], section 3, proposition 1.

The available formulations of theorem 1.2 are mostly algebraic. For example, for the
‘universal’ symmetric space SL(n, R)/SO(n), up to conjugacy, G is adjoint, i.e. invariant
under the canonical automorphism A �→ (A∗)−1 of SL(n, R). In this case, the orbit of base
point 1 is totally geodesic. Even this geometrical interpretation is not well known (see, for
instance [GP], where the algebraic formulation is attributed to [Mo]).

Now, all proofs of the different algebraic formulations of theorem 1.2 use non-trivial results
from the classification of semi-simple Lie groups, or at least significant steps towards it.

We would like to give a geometric proof of theorem 1.2. This would emphasize exactly
which properties are behind it; also, as a by-product, one should get geometric proofs of other
well-known algebraic facts regarding semi-simple Lie groups.

1.2. Philosophy of this paper

The essential mathematical aim of this paper is to realize the above wish in the particular case
of hyperbolic space. More precisely, we prove the slightly different version, theorem 1.1, given
at the beginning, which implies it (see lemma 2.1, section 2). We recognize this is modest
with respect to the global goal. However:

• Paying attention to this question is by itself interesting. Beyond the technical content, it
forces one to think about the ‘geometrization of Lie groups’.

• In our exposition, we have tried to present the proof, based on geometric (essentially
dynamic) arguments, in a completely self-contained way. For ease of reading, the
background and proofs of the few standard lemmas used here are also recalled. The
geometric (this time in a more analytical sense) motivation of [DO] was similar, yet this
paper still uses (implicitly) non-trivial algebraic tools in the proofs, e.g. the Iwasawa
decomposition.
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• Step two of the proof is an elementary result on conformal dynamics on the sphere, which
suggests more serious questions in this special case as well as in the general case of
boundaries of symmetric spaces (see section 1.3).

• We are confident that the hyperbolic part of the proof can be adapted to the general rank 1
case, and this would naturally involve beautiful geometric properties of the boundaries.

1.3. Dynamics on boundaries, one step of the proof

Step 2 of the proof rests on a rigidity property (lemma 4.1) of invariant sets under conformal
dynamics on the sphere Sn−1. Let us state it here—in a slightly different and weaker form—in
order to comment on it. Denote by Mk

d the space of Ck embedded compact submanifolds of
dimension d in Sn−1 and by Sd the space of the d-dimensional (round) spheres.

Fact 1.3 (quick and weaker version of lemma 4.1). If V ∈ M1
d is invariant under a non-

compact subgroup of Conf(Sn−1), then V ∈ Sd .

Let us make the following observations.

(1) Other symmetric spaces. It is very useful to consider how this fact comes into play on
other symmetric spaces.

Lemma 4.1, in step 2 of the proof, consists of finding an orbit of G in Sn−1, which is
a (round) sphere. One then fills it (taking its convex hull) and gets a hyperbolic subspace.
In the most general case (say for the symmetric space SL(n, R)/SO(n)), algebraic geometric
dynamics yields closed orbits of G on the boundary. The filling process is then sufficiently
regular in the general rank 1 case but delicate in higher rank. In any case, it seems not to
be easy to describe the geometry of submanifolds of the boundary that are the boundary of
geodesic submanifolds of the symmetric space. Even in the case of the complex hyperbolic
space Hn

C
, these boundary submanifolds may be quite complicated (see, for instance [G]).

(2) Stability. One may ask if a stable version of fact 1.3 holds. Indeed, it turns out that the
following is true; we shall provide the details of its proof elsewhere.

Theorem 1.4. Endow M1
d with the C0 topology and consider the action of Conf(Sn−1) on it.

This is proper on M1
d\Sd (and obviously transitive and non-proper on Sd ).

This means, roughly speaking, that there is a good complete system of conformal invariants
for elements of M1

d\Sd .

(3) Topological submanifolds, fractals. The example of limit sets of quasi-Fuchsian groups
shows that no rigidity condition extends to M0

d . It remains nevertheless interesting to
understand the conformal dynamics on M0

d .

1.4. An application: the holonomy of the Lorentz symmetric spaces

Finally, let us mention an application of theorem 1.1, already indicated in [DO]. We state the
result in terms of linear algebra.

Theorem 1.5. Let G be a non-compact connected Lie subgroup of O(n, 1) = O(Rn+1, g),
g = −dx2

0 + dx2
1 + · · · + dx2

n , which does not preserve any isotropic direction. Then

• G preserves a subspace E ⊂ Rn+1, with sgn(g|E) = (d, 1) and dim E = d + 1 � 2;
• E and G are such that {h|E/h ∈ G} ⊃ SO0(g|E) � SO0(d, 1).
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Corollary 1.6. Let Hol0 be the restricted holonomy group of an indecomposable (i.e. not
locally decomposable into a Riemannian product) Lorentzian manifold of dimension n. Then
either Hol0 = SO0(n − 1, 1) or Hol0 stabilizes an isotropic direction.

This fact was known since 1957, as a consequence of Berger’s list [B2] of the possible
holonomy groups for symmetric spaces. However, Bérard Bergery and Ikemakhen asked for a
direct proof in [BBI], remark, p 31. As indicated in [BBI], Berger’s theorem [B1] implies the
above corollary for non-locally symmetric Lorentzian spaces. Now, if the manifold is locally
symmetric and indecomposable, its isotropy subgroup Iso0 is indecomposable, and so it can
neither fix a non-isotropic vector (so cannot be compact) nor stabilize a subspace E as in the
statement of theorem 1.5. So it has to fix an isotropic direction. Now for locally symmetric
spaces, Hol0 ⊂ Iso0. The result follows. (Note also [Z] for another proof.)

2. Background and structure of this paper

2.1. Some brief recalls

Throughout, g is the Lorentzian metric−dx2
0 +dx2

1 +· · ·+dx2
n on Rn+1 (d replacingn in section 5).

The n-dimensional hyperbolic space is Hn = {m ∈ R+ × Rn/g(m, m) = −1}, endowed with
its Riemannian metric ghyp = g|Hn , of constant curvature −1. So PO(n, 1) is its isometry
group Isom(Hn, ghyp). Hence, O(n, 1) acts on Sn−1, which bounds Hn at infinity. This action
is conformal for the canonical conformal structure of Sn−1; more precisely, PO(n, 1) is the
conformal group Conf(Sn−1) of Sn−1. Indeed, any sphere Sn−1 imbedded into the g-isotropic
cone of Rn+1, transversally to the isotropic lines, inherits from g a Riemannian metric. These
inherited metrics are conformally equivalent to the canonical metric of Sn−1. Finally, the
topology on H̄n = Hn ∪ Sn−1 is the topology induced by that of Rn on the closed unit ball
D̄n, with which H̄n is identified by the stereographic projection of Rn+1 on {0} × Rn, of pole
(−1, 0, . . . , 0). This topology gives naturally back, on Hn and Sn−1, their canonical topology.
Note that other topologies on H̄n with these properties exist and are used. An inversion centred
at a point of the boundary of D̄n maps D̄n on the Poincaré half-space (�R+ × Rn−1), another
conformal model for Hn.

The space of the oriented geodesics of Hn is parametrized by the couples of their limit
points in Sn−1 = ∂Hn, and so this space is identified with (Sn−1)2\�, where � is the diagonal,
i.e. the graph of IdSn−1 . The application � : T1Hn → (Sn−1)2\� associating, to each vector
v ∈ T1Hn, the geodesic with initial condition v is a C∞ submersion; its fibres are naturally the
orbits of the geodesic flow ϕt of T1Hn.

An element h ∈ O(n, 1) is said to be elliptic if it fixes a point of Hn, i.e. if it admits an
eigenvector v ∈ Rn+1 such that g(v, v) < 0. Else, it must fix a point of Sn−1, i.e. admit a
g-isotropic eigenvector v. Two cases are then possible: either this fixed point is unique (then
h(v) = v and v ∈ Im(h − Id)) and h is said to be parabolic or h admits exactly two fixed
points, corresponding to two isotropic eigenvectors v and v′ in Rn+1 with h(v) = λv and
h(v′) = λ−1v′ with λ < 1; then h is said to be loxodromic.

As stated in section 1.2, theorem 1.1 implies theorem 1.2. Actually, they are essentially
equivalent. Let us recall briefly why (the following lemma holds in the general rank 1 case but
not in a higher rank).

Lemma 2.1. If G is a semi-simple non-compact connected subgroup of Isom(Hn), it has no
fixed point (neither at infinity nor in the interior).

If G has no fixed point, then it fixes some hyperbolic subspace Hd , and the so obtained
homomorphism G → Isom(Hd) has a compact kernel and a semi-simple image.
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Proof. Assume G fixes a point x. If x ∈ Hn, G is compact as it is contained in the stabilizer of
x that is isomorphic to O(n). If x ∈ ∂Hn, its stabilizer is naturally isomorphic to the similarity
group of a Euclidean space (see the model of the Poincaré half-space, with x = ∞) that cannot
contain a non-compact semi-simple Lie group.

Conversely, let R be the solvable radical of G. It will have a fixed point in H̄ = H ∪ ∂H.
This is true in general and essentially equivalent to the fact that representations of solvable Lie
groups preserve flags (see for instance [BGS] for an overview of the subject).

If R is non-compact, then it contains some hyperbolic or parabolic element (see lemma 3.1
in section 3). The set of fixed points of such an element (parabolic or hyperbolic) consists of
one or two points. Therefore, this property holds for the set of fixed points of R. The group
G acts on it and thus, by connectedness, fixes some point at infinity. This is a contradiction,
and so R must be compact. In this case, its fixed point set is a geodesic hyperbolic subspace
Hd . This determines a homomorphism G → Isom(Hd). Its kernel is compact since all
its elements fix some interior point. Its image is semi-simple since this procedure kills the
radical. By definition, the quotient of a Lie group by its radical has no radical and is therefore
semi-simple. �

Now the proof of theorem 1.5 is divided into one (classical) preliminary step and two
additional steps, each of them corresponding to one section of this paper.

Scheme of the proof.

Step 1. Preliminary. We recall, with a sketch of its proof, a standard sufficient condition for
the existence of loxodromic elements in a subgroup of O(n, 1).

Step 2. ‘Rigidity’ of some G-orbits on Sn−1. We exhibit here a subspace E as announced in the
theorem. More exactly, we will prove that G stabilizes a subsphere of Sn−1 = ∂Hn, and
hence its convex hull in Hn, which is a hyperbolic subspace of Hn, that is H = Hn ∩E,
where E is a sub-vectorspace of Rn+1. Moreover, G acts transitively on this subsphere.

Step 3. ‘Maximality’ of G in the stabilizer of E. We show how this leads to the result.

3. Step 1 (standard): existence of loxodromic elements in G

We prove the following lemma—the notion of the limit set is defined below.

Lemma 3.1. If G is a non-precompact subgroup of O(n, 1), G has a loxodromic or a parabolic
element. If its limit set, L(G), contains two distinct points x, y (so in particular if G stabilizes
no isotropic direction), G contains a loxodromic transformation, the two fixed points of which
are arbitrarily near x and y.

This result is a consequence of a few classical (and basic) notions and results in hyperbolic
dynamics. You can find a good introduction to them, for example, in [Ma], in the framework
of flat conformal geometry, or in [EN], in that of Hadamard manifolds. The first notion is that
of the limit set of G, which is most usually used for discrete groups but works in the same way
for any group with the following definition.

Definition 3.2. The limit set, L(G), of a group G acting isometrically on Hn is L(G) =
Sn−1 ∩ G · a, where Sn−1 is the boundary of Hn at infinity and where G · a is the closure, in
H̄n, of the G-orbit of a point a ∈ Hn. This definition does not depend on the choice of a.

Definition 3.3. Two points x and y (not necessarily distinct) of L(G) are called dual if there
exists a sequence (ϕn)n∈N of elements of G such that, for one point a ∈ Hn (and then for any
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such point), ϕn(a) −→
n→∞ x and ϕ−1

n (a) −→
n→∞ y. We denote by D(x) the set of the points of Sn−1

dual to x.

We summarize the key facts needed in our proof in the following lemma. Its first point
gives the ‘independence of a’ in the definitions.

Lemma 3.4.

(i) If a, b ∈ Hn, x ∈ Sn−1 = ∂Hn, (ϕn)n∈N ∈ O(n, 1)N and ϕn(a) −→
n→∞ x, then ϕn(b) −→

n→∞ x.

(ii) For all x in Sn−1, D(x) is G-invariant.
(iii) If G fixes no point on Sn−1, any two points of L(G) are dual.
(iv) If x, y in Sn−1 are dual, G has a parabolic or a loxodromic element. If x �= y, G contains

a loxodromic element ϕ, the two fixed points of which are arbitrarily near x and y.

Proof. (i) This follows from the comparison between the hyperbolic and the Euclidean
metrics on Dn: if x ∈ Sn−1, Dn  an → x, Dn  bn → x and dhyp(an, bn) is bounded,
deucl(an, bn) → 0.

(ii) Let us take y dual to x, a ∈ Hn and ϕ ∈ G. By the definition of duality, there
is a sequence (ϕn)n∈N ∈ GN such that ϕn(a) −→

n→∞ x and ϕ−1
n (a) −→

n→∞ y. Then naturally

ϕ(ϕ−1
n (a)) −→

n→∞ ϕ(y) and by (i), ϕn(ϕ
−1(a)) −→

n→∞ x, that is to say, ϕ(y) is dual to x.

(iii) Note that if E ⊂ Sn−1 is G-invariant, so is its convex hull C(E) in Hn, i.e. the
convex hull of the union of the geodesics joining the pairs of points of E. Therefore, for any
a ∈ C(E), G · a ⊂ C(E), and so G · a ∩ Sn−1 ⊂ E. By (i), it implies that L(G) ⊂ E as
soon as C(E) �= ∅, i.e. as �E � 2. Now if x ∈ L(G), by the compactness of H̄n, D(x) �= ∅;
if moreover G has no fixed point in Sn−1, D(x), which is G-invariant, contains at least two
points. Applying the remark, we get D(x) ⊃ L(G). This shows (iii).

(iv) Let us take x and y dual points in Sn−1, represented by two isotropic vectors ex and ey

of Rn+1, and (ϕn)n∈N, a sequence in G such that ϕn(a) −→
n→∞ x and ϕ−1

n (a) −→
n→∞ y. Then let us

take e, a point in Hn, i.e. a vector in Rn+1 with g(e, e) = −1, and K = Ge � O(n), its stabilizer;
K is a maximal compact subgroup of O(n, 1). Let ϕn = KnAnK

′
n be the decomposition of

each ϕn with Kn and K ′
n in K and An ∈ O(n, 1) diagonal; note that A has then at most two

eigenvalues in R\{−1, 1}, λn and λ−1
n , of multiplicity 1. By the compactness of K , taking

possibly a subsequence of (ϕn)n∈N, Kn and K ′
n tend, respectively, to some K∞ and K ′

∞ in K .
Now, as for a ∈ Hn, ϕn(a) −→

n→∞ x, An leaves all compact sets of O(n, 1), i.e. its eigenvalues

λn > 1 and λ−1
n , associated to (isotropic) eigenvectors en and e′

n, leave all compact sets of R∗.
Let us denote by xn and yn the points of ∂Hn associated to en and e′

n. Then, for n big enough,
ϕn(K

′−1
∞ (a)) must be close to K∞xn. As it is close to x, necessarily xn −→

n→∞ K−1
∞ x. Similarly,

yn −→
n→∞ K ′

∞y. Besides, if ε > 0, if B ′
ε and Bε are the Euclidean ε-balls of the respective

centres K′−1
n yn and Knxn (in the model of the Poincaré ball Dn), and if |λn| is big enough, then

KnAnK
′
n sends D̄n\(B ′

ε ∩ D̄n) inside D̄n ∩ B̄ε (‘north–south dynamics’). One checks then that
ϕn is parabolic or loxodromic with fixed point(s) ε-close to K ′−1

n yn and Knxn. If x �= y, for n

big enough, these fixed point(s) are distinct, and so ϕn is loxodromic. �

Notes. The ‘KAK decomposition’—given by the existence of a square root of any symmetric
matrix—shortens the proof of (iv). Alternate tools may be used, e.g. the notion of the ‘vision
angle’ in a Hadamard manifold ([EN] propositions 8.4–8.6, 4.7 and 6.4) or of an isometric
sphere of a conformal map ([Ma], section 5, notably lemma 5.8).
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Note that in general G does not contain a parabolic or loxodromic element, the set of fixed
points of which is {x, y}, even if G is closed in O(n, 1). For example, if G is a cocompact
lattice, all pairs {x, y} ⊂ ∂H are dual, though only a countable number of them are the set of
fixed points of elements of G.

Proof of lemma 3.1. If L(G) �= ∅, the result follows from (iii) and (iv). Now L(G) = ∅ if and
only if G is precompact. The ‘if’ part is immediate; let us check the ‘only if’. If L(G) = ∅,
by the definition of L(G), the orbit G · a of any a ∈ Hn is bounded. So is Ḡ · a, where Ḡ is
the closure of G in O(n, 1). Now, denoting by Ḡa the stabilizer of a in Ḡ, π : Ḡ → Ḡ/Ḡa is
a fibration over Ḡ/Ḡa , homeomorphic to Ḡ · a, and hence compact, with fibre Ḡa , which is
also compact, as included in O(TaH

n, (ghyp)|a) � O(n). So Ḡ is compact. �

4. Step 2: a rigidity result about differentiable submanifolds of Sn−1

The fundamental lemma on which the second step is based is the following.

Lemma 4.1. Let M be a connected differentiable manifold of dimension k and F : M → Sm

an injective continuous map of M into Sm. Let us suppose that F = F(M) is h-invariant,
where h is a loxodromic transformation of Sm with attractive point q+ ∈ F and that F is
differentiable at F−1(q+). Then F is a k-sphere of Sm passing by the poles q+ and q− of h, or
such a sphere, without the point q−.

Proof of the lemma. A stereographic map from Sm\{q−} onto Rm sending q+ on 0 conjugates
h with a linear transformation of Rn of the type λA, where λ ∈]0, 1[ and A ∈ O(m). We go
further in this framework.

Let us denote by p the inverse image of q+ by F . Using the differentiability hypothesis
about F , we may choose an open set U of M containing p and such that, in a well-chosen
coordinate system of Rm, centred at 0, F(U) is the graph of a certain function f : Rk → Rn−k ,
differentiable at 0 (and, for convenience, satisfying f (0) = 0):

F(U) = {(x, y) ∈ Rk × Rm−k / x ∈ B(0, r) and y = f (x)}.
Now, necessarily, f is linear. Let us prove it.

Remark. The particular case A = Id. In this case, the h-invariance of F implies that f

commutes with x �→ λx. Now, lots of such functions exist, but only the linear ones may be
differentiable at 0. Indeed, by the definition of differentiability,

λ−nf (λnx) −→
n→∞ df (0) · x

and so, if λ−nf (λnx) = f (x), f has to be equal to its differential, df (0).
The proof of the general case, modulo technical modifications, is the same as O(m) is

compact. For convenience, let us choose more precise coordinates. The first factor, Rk × {0},
may be chosen equal to Tq+F(U), so that df (q+) = 0. Besides, as F = F(M) is h-stable,
Tq+F(U) is A-stable. Choosing (Tq+F(U))⊥ as second factor {0} × Rm−k , that factor is also
A-stable, A being orthogonal. Then

h(F (U)) = {A · (x, y) ∈ Rk × Rm−k / x ∈ B(0, λr) and y = λ · f (λ−1 · x)}
= {(x, y) ∈ Rk × Rm−k / x ∈ B(0, λr) and y = A′′λ · f (λ−1 · A′−1x)},

where A′ = A|Rk×{0} and A′′ = A|{0}×Rm−k .
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Now, as F = F(M) is preserved by h, h(F (U)) ⊂ F . As the projection from Rm on its
first factor, Rk , maps h(F (U)) onto B(0, λr), necessarily

h(F (U)) = {
(x, y) ∈ Rk × Rm−k / x ∈ B(0, λr) and y = f (x)

}
.

Therefore, on B(0, r), f ◦ λA′ = λA′′ ◦ f . Fixing an x near 0, we get, for any n ∈ N,

f (λnA′n · x) = λnA′′n · f (x), or equivalently λ−nA′′−n · f (λnA′n · x) = f (x).

Now f (0) = 0, f is differentiable at 0, the coordinates are such that df (0) = 0, and A′ and A′′

preserve the Euclidean norm, and so λ−nA′′−n · f (λnA′n · x) −→
n→∞ 0. Thus f = 0 on B(0, r);

that is to say, f is linear on B(0, r), and hence f ◦ A′ = A′′ ◦ f .
Finally, as F is h-invariant, and thus h−1 is also invariant, it contains S ′ =⋃

n∈N
h−n(F (U)), which is f (Rk), a vectorspace of dimension k. Going back to Sm by

the inverse of the stereographic map, S ′ = S\{q−}, where S is a k-sphere passing by q+ and
q−. As the only proper extension, as an immersed manifold, of S ′ in Sm, is S, and as M is
connected, F = S or F = S ′ = S\{q−}. �

Proof of step 2. The group G is supposed to preserve no isotropic direction, that is to say it
has no fixed point on Sn−1 = ∂Hn. So by lemma 3.1, there is a loxodromic element γ in G.
Let q+ ∈ Sn−1 be the attractive point of γ and Gq+ ⊂ G the stabilizer of q+ in G. We apply
lemma 4.1 to the G-orbit of q+, i.e. with M = G/Gq+ and F : h �→ h(q+), and so F = F(M)

is the G-orbit G · q+ of q+. So G · q+ is a certain sphere S or S\{q−}. The second case is
impossible, for {q−} = bound(S\{q−}) would be G-invariant. So G·q+ is a G-invariant sphere
of Sn−1, and step 2 is achieved. �

5. Step 3: ‘maximality’ of G

We prove now the end of the statement of theorem 1.5, which is as follows.

Proposition 5.1. Let G be a non-compact (closed) connected Lie subgroup of SO0(d, 1) that
acts transitively on Sd−1. Then G = SO0(d, 1).

By lemma 3.1, section 3, we can take a loxodromic element γ in G. The space of the
geodesics of Hd is diffeomorphic to (Sd−1)2\�; with this identification, the axis, θ , of this
loxodromic element, γ , corresponds to the couple (q−, q+) of its endpoints. Step 3 rests on
two lemmas.

Lemma 5.2. The G-orbit of θ is open in the space of the geodesics of Hd .

Proof. Let π1 and π2 be the restrictions to (Sd−1)2\� of the projections on the first, respectively,
second, factor Sd−1. Let us also set q = (q−, q+). After Step 2, G · q+ = Sd−1, and so
π2(G · q) = G · q+ = Sd−1 and symmetrically π1(G · q) = Sd−1.

Now G ·q is the image of an immersion of G/Gq in (Sd−1)2\�, and so, differentiating this
immersion at the identity, we get a subspace F = Tq(G ·q) ⊂ Tq((S

d−1)2\�), which is stable
under the action of the stabilizer Gq . In particular, it is dγ (q) = (dγ (q−), dγ (q+))-stable,
where γ is seen, successively, as a diffeomorphism of (Sd−1)2 and of Sd−1.

In a chart (s, i ◦ s) of (Sd−1)2, where s is a stereographic map from Sd−1 onto Rd−1 ∪{∞}
sending q− on 0 and q+ on ∞ and where i is the inversion of Rd−1 of centre 0 and radius 1



Isometric actions of Lie subgroups 1685

(the radius does not matter), dγ (q) is represented by a linear isomorphism, B, of (Rd+1)2 of
the type

B =
(

λ−1A 0
0 λA

)
, where A ∈ O(d − 1) and λ ∈]0, 1[.

The image, E, of Tq(G ·q) by this chart is B-invariant. Let us denote by E1 and E2 the first and
second factors of the product (Rd−1)2 and by pri : E1 ⊕ E2 → Ei the canonical projections.
By assumption, πi(G · q) = Sd−1; differentiating, in the chart, these equalities in 0, we get
pri (E) = Ei for each i.

Remark. The particular case A = Id. As E is B-stable, it has immediately to be, in this
case, {0}, E1, E2 or E1 ⊕ E2. As pri (E) = Ei for i = 1, 2, E = E1 ⊕ E2 = (Rd−1)2, i.e.
dim G · q = 2(d − 1), which is the wanted result.

The general case works similarly. Since each Ei is a sum of spectral subspaces of B

(associated with complex eigenvalues of the respective type λ−1eiθ and λeiθ , θ ∈ R), the
projections pri are polynomials in B. So, as E is B-stable, pri (E) ⊂ E. As pri (E) = Ei ,
E ⊃ E1 ⊕ E2 and the result is arrived at as above. �

Lemma 5.3. Take G as in proposition 5.1, with d � 2. Then G acts transitively on the unit
tangent bundle T1Hd of Hd .

Remark. In the case d = 1, which we shall not need, the following proves the transitivity of
G on Hd .

Proof. Throughout, we take γ , a loxodromic element of G, θ , its axis, and v, a unit tangent
vector to θ , at some point x of θ .

As G acts isometrically on Hd , its action on T1Hd commutes with the geodesic flow
ϕt : ∀γ ∈ G, ∀t ∈ R, ∀v ∈ T1Hd ϕt (γ (v)) = γ (ϕt (v)). In particular, � is G-equivariant,
with � the canonical submersion from T1Hd onto (Sd−1)2\�, as set in the introduction. By
lemma 5.2, �(G · v) = G · θ is open, and so

• either G · v is open in T1Hd

• or G · v is transverse to the fibres of �, that is to the orbits of the geodesic flow ϕt .

Now, as Isom(Hd , ghyp) acts properly on (Hd , ghyp), it acts properly on its unit tangent
bundle T1Hd , and hence so does G. Consequently, the orbits of G in T1Hd are closed.

So in the first case, G · v is open and closed in T1Hd , which is connected, and so
G · v = T1Hd and we are done.

We complete the proof by supposing that the second case holds and by obtaining a
contradiction. Before doing this, let us recall a classical fact about the loxodromic elements
of Isom(Hd , ghyp).

Recall. If h is a loxodromic element of Isom(Hd , ghyp) and θh its axis, then h|θh
is a translation.

The (constant) distance τ(h) = d(h(m), m), for m ∈ θh, is equal to 2 ln(ρ(h)), where ρ(h) > 1
is the spectral radius of h ∈ O(d, 1).

As G and ϕt commute, we may associate to each vector w of T1Hd the group
T (w) = {t ∈ R; ϕt (G · w) = G · w}. Let us consider T (v). It is a subgroup of (R, +), and so
T (v) = {0}, T (v) = aZ for some a ∈ R or T (v) is dense. The last case is impossible as G ·v is
transverse to ϕt and closed. So is the first one: γ (v) is still tangent, with the same orientation
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as v, to the axis, θ , of γ and γ (v) �= v, and so there is a t ∈ R∗ such that γ (v) = ϕt (v)

(actually t = τ(γ ), see recall). So ϕτ(γ )(G · v) = G · v and T (v) ⊃ τ(γ )Z � {0}.
Let us finally rule out the second case. As G and ϕt commute, T is invariant along the

orbits of ϕt (CB thanks Thierry Barbot for this remark), and so T may be viewed as a function
of the (oriented or not: we choose ‘oriented’) geodesics of Hd . For θ such a geodesic, let us
set a(θ) = inf(T (θ) ∩ R∗

+). Trivially, T , and hence a, is invariant along the orbit G · θ of θ .
If h is a loxodromic element of G, of axis θh, the same argument as used above for v gives
a(θh) � τ(h).

By lemma 5.2, the G-orbits of such geodesics θh are open in (Sd−1)2\�, and so T and
hence a are locally constant on the union, U , of these orbits—note that U is simply the set of
the (couples of endpoints of the) axis of loxodromic elements of G. Besides, an element h of
O(d, 1) is loxodromic if and only if ρ(h) > 1, and so U = ρ−1(]1, +∞[). As G is connected
and as Id ∈ ρ−1(1) �= ∅, the closure of each connected component of U contains ρ−1(1); in
particular, if U1 is such a component, infU1 ρ = 1. Let a1 be the constant value of a on U1; if
h ∈ U1 and if θh is its axis, a1 = a(θh) < τ(h) = 2 ln(ρ(h)), and so a1 � infU1(2 ln ◦ρ) = 0:
therefore a = 0 on U , which is a contradiction. �

We will also need a little standard lemma, for which we give a proof.

Lemma 5.4. Let G be a Lie group acting differentiably and transitively on a connected
manifold M. Then the identity component, G0, of G also acts transitively on M.

Proof. Let a be a point in M. As G is a Lie group, the G0-orbit of a is open in G · a = M,
as well as the orbit of a under the action of any connected component of G. As these orbits
are pairwise disjoint or equal, they are also closed; in particular, G0 · a is closed. As M is
connected, G0 · a = M. �

Proof of proposition 5.1. By lemma 5.3, G acts transitively on T 1Hd . By induction, we
will prove that G ∩ Isom+(H

d , ghyp) acts transitively on the fibre bundle B+Hd of the positive
orthonormal frames on Hd . As an isometry of (Hd , ghyp) is determined by its differential at
any point, it means that G ⊃ Isom+(H

d , ghyp) = SO0(d, 1), which is the required result.
Let us take v, any element of T1Hd , and H1 = exp(v⊥), the hyperbolic hyperplane of Hd ,

passing through the base point x of v and orthogonal to v. Let G1 ⊂ G be the stabilizer of H1

in G and G0
1 its identity component. Then G0

1, which is a closed subgroup of Isom(H1), as the
condition g(H1) ⊂ H1 is closed, acts transitively on H1. Let us check it.

Let us take y ∈ H1 and w one of the two unit normal vectors to H1 at y. As G acts
transitively on T1Hd , there is an h in G such that h(v) = w. The differential, dh, of h maps
v⊥ on w⊥, and so h maps H1 = exp(v⊥) on H1 = exp(w⊥)—both are H1 as H1 is totally
geodesic—i.e. h ∈ G1; h maps the base point, x, of v on y, and so G1 acts transitively on H1.
So does G0

1, by lemma 5.4. Note that G0
1 cannot then be compact as H1 is not compact; so it

has loxodromic elements. We will moreover prove the following claim.

Claim. G0
1 has no fixed point at infinity on ∂H1 � Sd−2.

Let us suppose the contrary: then this fixed point p1 is unique; indeed else G0
1 would

stabilize any geodesic linking two such fixed points, which is excluded as G0
1 is transitive on

H1. Thus, there is an application, ψ , associating, to each ‘hyperbolic hyperplane’ H ′
1 of Hd ,

the fixed point of the identity component, G0
H ′

1
, of its stabilizer.

Recall. The set of the hyperbolic hyperplanes of Hd is parametrized by the set E ⊂ RPd of the
vectorial lines of Rd+1, on which g is positive definite. Indeed, H ′

1 is such a hyperplane if and



Isometric actions of Lie subgroups 1687

only if it is of the form Hd∩E′, whereE′ is a hyperplane of Rd+1 such that sgn(g|E′) = (d−1, 1),
i.e. such that E′⊥ ∈ E . (Hence, E is canonically diffeomorphic to the de Sitter space
dSd = {m ∈ Rd+1; g(m, m) = 1}, quotiented by antipody m ∼ −m: a δ ∈ E cuts dSd

in two antipodal points.)

Now, G is transitive on T1Hd and consequently also on the set {exp(w⊥); w ∈ T1Hd} of the
hyperbolic hyperplanes of Hd . So ψ , which is G-equivariant, is defined by ψ(g ·H1) = g ·p1,
and so ψ is differentiable and thus continuous.

Let us fix a geodesic θ of H1, with endpoints {q−, q+} � p1. If θ is the axis of some
loxodromic element γ of G1, we are done. Indeed if so, let us take a loxodromic element h in
G0

1 and denote its axis θh; p1 is necessarily one of its endpoints. Then γ hγ −1 is loxodromic
with axis γ (θh): p1 �∈ {q−, q+}, γ (p1) �= p1, and so p1 is not an endpoint of γ (θh). So
γ hγ −1(p1) �= p1, which cannot hold: as G0

1 is normal in G1, γ hγ −1 ∈ G0
1. So we are left

with finding a loxodromic element in G1 with axis θ .
As G acts transitively on T1Hd , the stabilizer, Gθ , of θ in G acts transitively on θ ; so does

its identity component G0
θ , by lemma 5.4. Now, O(d, 1)0

θ , the full connected stabilizer of θ in
O(d, 1), is isomorphic to R × SO0(d − 1), with the first factor, R, standing for the translation
along θ (see, in the model of the Poincaré half-space, the stabilizer of the half line iR∗

+; we
denote it additively, and so (R, +)). Note that an h ∈ O(d, 1)0

θ � R×SO0(d−1) is loxodromic
if and only if its component on R is not 0. Now, G0

θ is transitive on θ , which exactly means that
its projection on this first factor, R, is surjective. So one can find a one-parameter subgroup
� = {γt ; t ∈ R} of G0

θ consisting, except Id, of loxodromic elements, and transitive on θ .
Now let us choose an x in θ and denote by Nθ the normal bundle of θ in Hd . Each γ t ·H1

is a hyperbolic hyperplane containing θ , and so it may be parametrized by its unit normal
vector vt ∈ Sd−2

x ⊂ Nxθ at x. The group � acts isometrically on Sd−2
x : the image of w ∈ Sd−2

is obtained by pushing back γ t · w, by parallel transport along θ , from Tγ t ·xHd to TxHd ; so
vt = γ t · v0. Examining the matricial form of such an isometry, one sees that

• either � · v0 = {vt ; t ∈ R} is periodic
• or it is not, and then its closure � · v0, equal to its ω-limit set

⋂
n∈N

{vt ; t � n}, is
diffeomorphic to a torus of dimension 2 or more.

In the first case, taking t such that vt = v0, γ t is what we need: a loxodromic element
stabilizing H1. The second case is impossible for ψ(γ t · H1) = γ t · p1 would tend, when
t → ∞, to q+: so ψ , which is continuous, would be constant, equal to q, on the ω-limit set
of � · v0, and hence equal to q on � · v0  x. This contradicts ψ(H1) = p1. This proves the
claim.

By induction, we now finish the proof of proposition 5.1. As G0
1 is a closed, connected

and transitive subgroup of Isom(H1), fixing no point at infinity on ∂H1 � Sd−2, by step 2,
it stabilizes a subsphere of Sd−2 (and the hyperbolic subspace of H1 that it defines) and acts
transitively on this sphere. As G0

1 acts transitively on H1, this sphere is the whole ∂H1 � Sd−2.
So we can apply lemma 5.3: G0

1 acts transitively on T1H1. In particular, the stabilizer Gv of v

acts transitively on the unit vectors of v⊥ ⊂ TxH1. Let (v1, . . . , vd) be a positive orthonormal
basis of TxHd , with v1 = v. By induction, with Hk = exp(span(v1, . . . , vk)

⊥), it comes about
that for each k < d − 1, the stabilizer G0

(v1,...,vk)
of (v1, . . . , vk) acts transitively on the unit

vectors of (span(v1, . . . , vk))
⊥. Put together, steps k = 1 to k = d − 2 mean exactly that

the stabilizer, Gx , of x acts transitively on the direct orthonormal basis of TxHd . (Note that
the induction stops with step k = d − 2. Indeed, once the vectors (v1, . . . , vd−1) are fixed,
vd is also as G0

(v1,...,vd−1)
= {Id}.) As G acts transitively on Hd by lemma 5.3, G acts then

transitively on B+Hd , which completes the proof. �
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