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ON COMPLETENESS AND DYNAMICS OF COMPACT
BRINKMANN SPACETIMES

LiLiA MEHIDI & ABDELGHANI ZEGHIB

Abstract

Brinkmann Lorentzian manifolds are those admitting a light-
like parallel vector field. We prove geodesic completeness of the
compact and also compactly Brinkmann-homogeneous Brinkmann
spacetimes. We also prove, partially, that their parallel vector field
generates an equicontinuous flow.

1. Introduction

There is a lack of completeness and a lack of compactness of Lo-
rentzian structures compared to Riemannian ones. Compact Riemann-
ian manifolds are complete and have a compact isometry group, but
compact Lorentzian manifolds are (generically) incomplete and some
have a non-compact isometry group. This is mainly due to existence
of degenerate objects for Lorentzian metrics. A Brinkmann spacetime
is a Lorentzian manifold admitting a lightlike parallel vector field V
(see Definition . So Brinkmann Lorentzian manifolds appear as a
consecration of this phenomenon. Moreover, being parallel, V is also
a Killing vector field, and generates therefore a one-parameter group
of isometries. However, we will see here, strikingly, that Brinkmann
manifolds exhibit a Riemannian-like behavior: they are complete, and
their isometry group tends to be compact (more precisely, the flow of
V tends to be relatively compact in the isometry group).

Our work generalizes T. Leistner and D. Schliebner’s completeness
result of a special class of Brinkmann spacetimes, those with abelian
holonomy [31], also called pp-waves. From the dynamical point of view,
we are studying here the opposite situation to the one recently consid-
ered by C. Frances who got a quite precise description of Lorentzian
manifolds having an isometry group of exponential growth [18§].
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1.1. Completeness. Generic Lorentzian metrics on compact manifolds
are thought of to be incomplete. The historical example is the Clifton-
Pohl torus R? — {(0,0)}/(3.4)~2(z) endowed with the metric x‘éﬁ;@ (see
[13], [42] 43 [46], [33] for various results on completeness of Lorentzian
surfaces).

1.1.1. Completeness results. In the sequel, we will mention known
completeness results (essentially all, to our best knowledge). One ob-
serves here that all these results assume some symmetry or a high local
symmetry hypothesis.

Homogeneous case. The “oldest” one is perhaps Marsden’s result
[32] stating completeness of compact homogeneous pseudo-Riemannian
manifolds. Let us observe here that, contrary to the Riemannian case,
indefinite homogeneous pseudo-Riemannian (non-compact) manifolds
fail to be complete in general, unless in some classes, for example sym-
metric spaces and left invariant metrics on 2-step nilpotent groups, as
this was proved by Guediri [24]. See also [15], a recent work studying
Lie groups with all left invariant pseudo-Riemannian metrics complete.

Example 1.1. U = {(z,y) € R%y > 0},g = 2dxdy. The subgroup
of O(1, 1) xR? consisting of Lorentzian affine transformations of the form
(,9) = (ax +b,a™ly),a > 0,b € R, acts transitively on U, which is
then homogeneous. It is however incomplete since it is a proper subset
of (R?,2dxdy). Observe that this has a Brinkmann structure, with
parallel null vector field V' = 0,. Its Lorentzian metric is homogeneous,
but it is not homogeneous for the Brinkmann structure, i.e. the group
of isometries does not preserve the parallel vector field.

Constant curvature case. The most striking result is Carriere’s The-
orem [12] on completeness of compact flat Lorentzian manifolds, and
its generalization to the constant (sectional) curvature case by Klingler
[30].

Among locally homogeneous spaces, those of constant curvature can

be interpreted as having a maximal local isometry group. There are
however examples of incomplete compact locally homogeneous Lorent-
zian manifolds, e.g. a quotient SL(2,R)/I', where I' is a co-compact
lattice, and SL(2,R) is endowed with a generic left invariant Lorentzian
metric [7].
Timelike Killing field. Other results in the compact case assume ex-
istence of a few symmetry, e.g. a Killing field, say V, but with a given
constant causal character. For example, the Euler vector field whose
flow is the homothetic action on R?, determines a Killing field on the
Clifton-Pohl torus, but with a varying causal character. Romero and
Sanchez [44] proved completeness when V' is (everywhere) timelike i.e.
of negative square length, actually merely assuming V' being a conformal
Killing field.
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Lightlike Killing field. Taking a product of an incomplete Lorentzian
manifold with the circle, equipped with a Riemannian metric, shows that
the existence of a spacelike Killing field does not imply completeness.
But what if the Killing field is everywhere lightlike? There is a non-
compact 3-dimensional Lorentzian homogeneous space, called Lorentz-
SOL geometry in [14], which is incomplete although having a lightlike
Killing field. Even in the compact case, the presence of a lightlike Killing
field does not ensure completeness, as shown in [26, Example 6.5], where
a 4-dimensional incomplete locally homogeneous Lorentzian manifold
with a lightlike Killing field is constructed. In fact, compact incomplete
examples exist starting from dimension 3; we refer to [26], Paragraph
7.3] for such examples.

Parallel fields. Now, what about the completeness question under the
existence of a parallel vector field? Recall that a vector field V' is parallel
if its covariant derivative vanishes, i.e. VxV = 0, for any vector field
X, where V is the Levi-Civita connection of the Lorentzian metric g.
Equivalently, V' is invariant under parallel transport: for a smooth curve
c:[0,1] - M, 7.(V(c(0)) = V(c(1)), where 7. denotes the parallel
transport T )M — T,q)M. Again, the question makes sense only in
the lightlike case. This is exactly what our main result answers, since by
definition, Brinkmann spacetimes are those admitting a lightlike parallel
vector field.

1.1.2. Case of Brinkmann spacetimes. Before we delve into the
main result on completeness, let us introduce some terminology:

Definition 1.2. (1) A Brinkmann spacetime is a Lorentzian mani-
fold (M, g) admitting a lightlike parallel vector field V. We denote the
structure by (M, g, V).

(2) Let (M,g,V) be a Brinkmann spacetime. A Brinkmann isometry
is an isometry of (M, g) preserving V. We denote by Iso(M, g, V) the
group of Brinkmann isometries.

Definition 1.3. (1) We call Brinkmann-homogeneous a Brinkmann
spacetime which is homogeneous in the sense of the Brinkmann struc-
ture, i.e. the group of Brinkmann isometries acts transitively.

(2) A compactly Brinkmann-homogeneous Brinkmann spacetime is one
such that there exists a compact subset whose iterates by the Brinkmann
isometry group covers all the space.

Now, we can state our result:

Theorem 1.4 (Theorem. A compactly Brinkmann-homogeneous
Brinkmann spacetime is complete. In particular, both compact Brink-
mann spacetimes and Brinkmann-homogeneous Brinkmann spacetimes
are complete.



386 L. MEHIDI & A. ZEGHIB

Observe that Example is homogeneous, but not Brinkmann ho-
mogeneous (nor compactly Brinkmann-homogeneous). So if we assume
homogeneity for the metric only, this example shows that we can have
incompleteness.

Some comments are in order:

pp-waves. Let (M, g, V) be a Brinkmann Lorentzian manifold. Since
V is parallel, its orthogonal distribution V+ is invariant by the Levi-
Civita connection and hence is integrable and has totally geodesic (and
degenerate) leaves. We will always note the so defined foliation F. Each
leaf of F inherits an induced connection. Then, pp-waves are defined
by the fact that all the F-leaves are flat. These spacetimes are very im-
portant to General Relativity. As previously mentioned, completeness
of compact pp-waves was proved by Leistner and Schliebner in [31]. It
is this result that motivates our present work.

Observe that Brinkmann class is more flexible than the pp-waves one.
For instance, the product of a Brinkmann spacetime with a Riemann-
ian spacetime is still Brinkmann. One needs taking the product with
a flat Riemannian manifold in the pp-wave case. We will also see in
Par. a construction of a Brinkmann structure on M*, the bundle
of orthonormal frames of V. The so-constructed structure is never a
pp-wave (say for dim M > 4).

Ehlers-Kundt conjecture. It is somewhat unrelated to our subject
since it concerns non-compact spaces, still it is a completeness question
on Brinkmann spaces, which aims to characterize complete Ricci-flat
(global) pp-waves. A pp-wave metric can be written locally in the fol-
lowing special form on R? x R™: g = 2du(dv+ H (u, z)du) +eucgn, where
(u,v) € R?, 2z € R™ and eucgn denotes the Euclidean metric ¥(dz")?.
The parallel vector field is V = % (this derives from the fact that H
does not depend on v). The Ehlers-Kundt conjecture states that in the
global case, with n = 2, i.e., when H is defined globally on R x R? (also
referred to as being in ‘standard form’), if ¢ is Ricci-flat, then g is com-
plete if and only if H is quadratic in z, in which case g is called a plane
wave (see [16] for the most recent results on the subject). Observe that
Ricci-flatness is equivalent to harmonicity of H with respect to z € R2.
This fact together with the reduction of the geodesic equation to a me-
chanical system, that will be discussed below, show the post-Newtonian
character of pp-waves, which applies also to Brinkmann spaces. The lat-
ter spaces also admit special but more complicated local charts for their
metrics, see Par. Returning to the Ehlers-Kundt conjecture, the
compact case, i.e., when the pp-wave in standard form (R? x R", g) ad-
mits a compact quotient which is also a pp-wave, has been proven in [31],
Corollary 1]. The general non-compact case remains open (see [16]).
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Weakly Brinkmann. A weakening of the Brinkmann condition is to
assume existence of a parallel direction field F, i.e. existence of a 1-
dimensional sub-bundle £ C T'M invariant under parallel transport.
In a similar manner, one can define a weak version of pp-waves. An
example given in [31] shows that the latter can be incomplete, even
when compact. It is also asked in this paper if the leaves of the lightlike
geodesic foliation F (tangent to E+) are complete in the compact case.
In a recent paper [26], it is shown that when the manifold is compact,
the F-leaves are complete as soon as the (1-dimensional) leaves tan-
gent to E are complete. Moreover, an incomplete compact example is
constructed.  More abstractly, the Brinkmann class, which naturally
generalizes pp-waves, is in turn part of the broader class of (locally)
Kundt spacetimes, defined as those having a codimension one lightlike
geodesic foliation F (see for instance [6]). It is shown in [26] that the
aforementioned result holds in the more general setting of (compact)
locally Kundt spacetimes.

An associated mechanical system. Other works that should be
quoted here are [8] and [9]. They relate completeness of pp-waves to
that of a second order differential equation on a Riemannian manifold
(Mo, g), defined by a general class of forces:

(1) Vi ¥ (t) = Fyw),n7®) + Xy,
where V denotes the Levi-Civita connection of g, F' a (1,1)-smooth
tensor field and X a smooth vector field on My x R. Observe that
this is a linear perturbation of the geodesic equation of (My,g). Suf-
ficient conditions on F' and X for the trajectories to be complete are
given in [9)], assuming (My, g) complete, and also in [45], both in the
smooth case and in low regularity cases (assuming the metric functions
of distributional nature).

In the general Brinkmann case, one meets, in adapted local coordi-
nates, equations of the form:

(2) Vi V() = Fiymn (1) + Xy

Now, V! is the Levi-Civita connection of a (locally defined) Riemannian
metric g¢, varying with time. So our situation is noticeably different
from the one investigated in [9], first because there is no globally defined
Riemannian metric on M, secondly because of the time dependency of
the connection involved in Equation .

In addition to the previous comments, let us mention here that in
dimension 3, all Brinkmann manifolds are pp-waves. Their complete-
ness in the “roughly homogeneous” case, i.e. when the isometry group
acts transitively, without preserving the parallel vector field, is investi-
gated in the literature, for instance in [20], where they are referred to
as Lorentzian “Walker spaces”. In particular, there are maximal incom-
plete homogeneous examples, meaning that they admit no embedding
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into a larger space. These spaces are (incomplete) homogeneous plane
waves. Let us mention that what some references call Walker spaces
can be seen as generalizations of Brinkmann spacetimes in a general
pseudo-Riemannian context. More recently, a C?-maximality result has
been established in any dimension for simply connected, non-flat homo-
geneous plane waves (all of which are incomplete in the roughly homo-
geneous case).

1.2. Reduction to an (almost) locally homogeneous situation.
Beyond completeness, we want to understand how Brinkmann space-
times are made up. In Section @ inspired by [18], we will prove the
following result which will be next used to study the dynamics of V.

Theorem 1.5. Let (M,g,V) be a compact Brinkmann spacetime.
Then M admits a core N, a closed submanifold of M, invariant under
a finite index subgroup of Iso(M, g, V).

Description of the core N: there exists an open subset U of M, in-
variant under all local isometries of (]\Zr,g, f/), containing a lift N in
the universal cover M, and such that

1) Either N is a locally homogeneous Lorentzian Brinkmann closed
submanifold of M : more precisely, the lift N is the orbit of a finite
index subgroup of G = 1s0°(U,§, V), which has finite index in
Iso(M, g, V).

2) Or N is a locally co-homogeneity one Lorentzian Brinkmann closed
submanifold of M, with boundary, which is a trivial fibration over
an interval. The fibers are lightlike totally geodesic and locally
homogeneous. More precisely, in the universal cover M, the lift
of the fibers of N are the orbits of a finite index subgroup of G =
150’ (U, §, V), which has finite index in Iso(M, g, V).

In each case, the core N or its (codimension 1) fibers have the form
'\ G/I, where I is a closed subgroup in G, and I" is a discrete subgroup
of G acting properly and freely on G/I.

Actually, the core N is not unique: in each of the previous cases,
there exists an open subset of M that is trivially fibered over an open
subset of R¥, for some k € N, with fibers that are submanifolds like N.

1.3. Dynamics. Besides completeness issues, the other interesting to-
pic on Lorentzian manifolds is to understand when their isometry group
is non-compact (assuming the manifold compact), see for instance [53],
22| 1, 2, 49, (51 50| 40|, 17]. The more recent article [18] studies
actions of discrete groups with exponential growth, a situation somehow
opposite to ours here. Indeed, we want to know here whether V is
“essential” or not. In other words, we ask the question if the flow of
V is equicontinuous (or not), or equivalently, if it preserves (or not) an
auxiliary Riemannian metric. If it does not preserve such a Riemannian
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metric, then it is really of Lorentzian nature. Actually, one may ask
such a question for a parallel vector field, say W, not necessarily null as
in the Brinkmann case:

— In the case where W is timelike, it is obviously equicontinuous:
just apply a “wick rotation” to the Lorentzian metric g to make
it Riemannian; precisely, keep g on W+ and multiply it by —1 on
RW.

— There are interesting non-equicontinuous examples in the case
where W is spacelike. For instance, a hyperbolic matrix A €
SL(2,7Z) preserves a flat Lorentzian metric on T?. Its suspension
is a parallel spacelike flow on a flat Lorentzian 3-manifold Ti. It
is Anosov and so far away from being equicontinuous.

— For lightlike parallel vector fields, we will prove, partially, that
their flows are equicontinuous. For this, we will refer to the second
situation in Theorem as the degenerate case. Also, in order
to state our next result, notice that the foliation F determined by
V- is defined by a non-singular closed 1-form. Hence, it is either
minimal, i.e. all its leaves are dense, or all its leaves are closed.

Theorem 1.6. Let (M,g,V) be a compact Brinkmann spacetime.
Then, the flow of V' is equicontinuous, that is its closure in Iso(M, g) is
compact, in each of the two following cases:

— the foliation determined by V- is not minimal;

— the degenerate case of the reduction Theorem i.e. when the
core N is not locally homogeneous, but rather has local co-homo-
geneity one.

1.3.1. Dynamics in the locally homogeneous case. We think that
this equicontinuity result extends to the general case of compact Brink-
mann spacetimes. Our results reduce the proof of equicontinuity to the
locally homogeneous case, that is M has the form I'\ G/I where:

e [ is a closed subgroup in G (in fact contained in the nil-radical
of G).

e The G-action on G/I preserves a Lorentzian metric g.

e [' is a discrete sub-group of GG acting properly freely and co-
compactly on G/I.

e 7 is a central 1-parameter subgroup of G defining a parallel vector
field V on G/I.

The question, which we guess has a positive answer, is whether the
Z-action on M lies in a compact torus T C Iso(M, g)?

This would allow one to give a somewhat exact description of M.
One starts with a compact manifold M with a toral action, and sees if
a l-parameter group Z C T can be parallel for some Lorentzian metric.

It could appear paradoxical to be able to handle equicontinuity in the
degenerate case, but not in the locally homogeneous case! The reason
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is that this sympathetic algebraic form I" \ G/I hides arithmetic and
dynamical formidable difficulties due to the discreteness of I' and the
non-compactness of 1.

1.3.2. Cahen-Wallach spaces. They are (indecomposable) Brink-
mann (globally) symmetric spaces. More precisely, they are global met-
rics on R? x R" given by a formula: g = 2du(dv + H(z)du) + eucgn,
where (u,v) € R?, 2 € R", eucgn is the Euclidean metric ¥(dz%)?, and
H is a quadratic form on z. Their discrete groups I' giving rise to com-
pact quotients are investigated by I. Kath and M. Olbrich in [29]. It
is proved in their cases, but after a long algebraic preparation, that
their parallel vector field is in fact periodic, that is it corresponds to a
Sl-action.

1.3.3. Flat case. Let us first note that if a Lorentzian manifold (M, g)
has d > 1, linearly independent null parallel vector fields, then its uni-
versal cover splits as M = N x R%, where N is Riemannian, R? is flat
Lorentzian, and 71 (M) acts by translation along the factor R%. One
can then find a null parallel vector field whose closure in Iso(M, g)) is a
torus of dimension d, or maybe more.

Consider now the case where M is flat with exactly one (up to scaling)
null parallel vector field. Then, by Carriere completeness Theorem, M
is a quotient of the Minkowski space Mink!™ by a discrete group T.
Many results are known regarding I'. In particular, I' is solvable, in fact
it has a “crystallographic hull” L containing it, a solvable connected Lie
L, acting simply transitively and isometrically on Mink!™ [19] 21, 23].
One can deduce from this that if M has exactly one null parallel field,
then as in the Cahen-Wallach case, the so defined flow is periodic.

1.3.4. A non-periodic example. Consider on M = (I x R) x R,
parameterized by (u,v,z',...,2"), a metric of the form: g = 2dudv +
@ij(u)dz'dz? where a : u € I — (a;)ij(u) is a curve of positive def-
inite matrices, and I is either an interval or the circle S'. These are
pp-waves, and non-flat for a generic a. They are even plane waves
(written in Rosen coordinates), see [4) p. 6]. The abelian group R™*!
acts isometrically, trivially on u and by translation on the coordinates
(v,2%,...2™). This action is transitive on the u-levels. Let A be a lat-
tice in R™*! with respect to which the v-axis is irrational, that is the
translation along v determines a minimal linear flow on R"*1/A. The
quotient M /A has the topology of I x T"*1 on which the flow of %
acts minimally on the T""!-factor. It will be noted M(a,A). In the
case I = S', one gets compact pp-waves with topology T"*2, for which
closures of the parallel flow are given by a T"*!-action.

In fact, it turns out that any Brinkmann spacetime as in the situation
of Theorem |1.6|is built up by pieces of the form M (c, A). (This may be
extracted from our last Sections and [9] Details will be published
elsewhere).
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1.4. Organization of the article. Section [2.1] contains some gener-
alities about Brinkmann spacetimes. In Sections and we give
some properties on the local geometry of Brinkmann spacetimes; these
properties are interesting on their own, but they will also be needed in
the development of the rest of the article. In particular, we introduce in
Section some principal bundle over a Brinkmann spacetime (M, V')
with the property that the induced action of the subgroup of Iso(M)
preserving V' has unipotent isotropy; this feature will serve in the study
of the V-dynamics on M, carried out in Sections [7] and [§] Among
submanifolds of a pseudo-Riemannian manifold, totally geodesic ones
are fundamental. In Section we prove the existence of many such
submanifolds in a Brinkmann spacetime.

We will then use all this in Section [3] to give a synthetic proof of
completeness through the lightlike geodesic foliation F' orthogonal to V.

Section [4] gives the geodesic equations on a Brinkmann spacetime,
and Section [5| focuses on the proof of Theorem on the completeness
of compactly Brinkmann-homogeneous Brinkmann spacetimes, through
an analysis of the geodesic equation.

In Section [6 we prove Theorem on the existence of a core N, and
Section [7] gives more details on the structure of this core.

Sections [§ and [J] contain the proof Theorem Section [§] seems to
be the most technical. One deals with a homogeneous lightlike space
G/I, and a discrete subgroup I' C G acting properly co-compactly.
A proven approach to such a problem is to find a kind of connected
envelope H containing I' and still acting properly. The difficulty in
implementing this idea lies on one hand in the possible existence of
a semi-simple compact factor of GG, and on the other hand the fact
that the radical of GG is not nilpotent. What helps us here is that V
defines a 1-dimensional transversally Riemannian foliation, say V. As
this is the case of any transversally Riemannian foliation, the closure
of the V-leaves defines a transversally Riemannian foliation (possibly
singular) V. By a result of Y. Carriere [10, [11], because dimV = 1,
V has toral leaves. The algebraic richness of our situation allows us to
find such a syndetic hull H.
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2. Brinkmann geometry

2.1. Preliminaries and local coordinates. In this section, we de-
rive some interesting properties on the local geometry of Brinkmann
spacetimes.

Throughout this section, (M, g,V) is a Brinkmann manifold of di-
mension n + 1. We assume V' to be complete (which is only needed in
Par. . Denote by V the 1-dimensional foliation defined by V', and by
F the foliation of codimension 1 defined by the parallel distribution V.

2.1.1. Transverse Riemannian structure. The leaves of F are light-
like submanifolds of M foliated by the 1-dimensional foliation V. Since
V is parallel, F is a geodesic foliation. Therefore, the foliation V along
any leaf F' of F admits a transverse Riemannian structure invariant by
the local flow of any vector field tangent to V. Locally, it is given by any
(n — 1)-submanifold S contained in F' and transversal to V, endowed
with the Riemannian metric induced by g.

2.1.2. Local coordinates. Brinkmann spacetimes admit two different
adapted local coordinates, known in the literature as Brinkmann coor-
dinates (see for instance the construction in [3, Par. 4]), and Rosen
coordinates. In what follows we recall the construction of the Rosen
coordinates.

Fact 2.1. A Lorentzian spacetime (M, g) is a Brinkmann spacetime
of dimension n + 1 if and only if there is a globally defined wvector
field V on M, such that any point p € M admits a coordinate chart
(u,v, 21, ..., 2" 1) in which the metric takes the form

g = 2dudv + g;j(z,u)dx'dz?,

with V- = 0,. These coordinates are referred to in [4] as Rosen coordi-
nates.

Proof. Rosen coordinates are defined as follows. Consider Fj a leaf
of F, and take any (n — 1)-submanifold € in Fj transversal to V.
The induced metric on € is a Riemannian metric. Denote by Z the
null vector field along 2y which is orthogonal to 2y and transversal
to V, such that g(Z,V) = 1. Such a vector field is uniquely defined.
Indeed, for every x € g, T,y is spacelike of dimension n — 1, hence
T,Qf is Lorentzian of dimension 2. Thus 7,03 contains a (unique)
second lightlike direction, other than that of V. So Z is uniquely defined
when adding the assumption that g(Z,V) = 1. Now, denote by € the
hypersurface transversal to V' such that QN Fy = g, obtained by taking
for every z € Qp the (null) geodesic with initial velocity Z,. Choosing
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Qo smaller, if necessary, these geodesics define a local flow on 2; we
denote again by Z its infinitesimal generator. Denote by ¢V (resp. ¥*)
the local flow of V' (resp. Z).

For ¢ € ©, define u(q) to be the unique real such that =% (q) € Q.

Take some local coordinates (z!,...,2"!) in €y and extend them in
a neighborhood of Qy of Q by setting for ¢ € Q,x(q) = z(qo), where
g = "9 (q). We obtain local coordinates (u,z',...,2""1) on Q.

Finally, define a local chart in a neighborhood of p by extending the
latter coordinates by the flow of V. This gives a diffeomorphism f =
(u,v,zt,..., 2" 1) from a neighborhood U of p into an open subset
of R™*1, by setting for ¢ € U, f(q) = (u(q),v(q),z"(q),-..,2z" " (q)),
where ¢_y,)(q) € Q, Y_y(g)(q) € Fo and x(q) = 2(P_y(q) © Y—u(g)(2))-
Again by taking o smaller, we can assume that the flows of V' and
Z are defined for |v],|u| < €, for some € > 0. If we take Qy to be a
metric ball of radius r (with respect to the induced Riemannian met-
ric), this defines a differomorphism of a neighborhood of p onto a set
B,_1(0,7) x I x J, where B,_1(0,7) is the open ball of center 0 and
radius 7 in R®!, and I and J are open intervals of R. We claim that
the metric in these coordinates has the given form. First, since V acts
isometrically, the orbits of 9, are null geodesics, hence ¢(9,,d,) is con-
stant (Clairaut’s constant) equal to 1, and ¢(9,,0,) = 0. Next, the
local flow of 9, leaves invariant the distribution tangent to F. This
is a consequence of a general fact: if « is a closed 1-form such that
a(Z) = 1, then the flow of Z leaves invariant the distribution ker «.
Here, take a := g¢(V,.) which is closed since V is parallel. Conse-
quently, O0y,,7 = 1,...,n — 1, are everywhere tangent to F, hence
9(0y,0z,) = 0. We are left with the proof that ¢g(9,,0,,) = 0. We
have 9y, - g(Ou, 0z,) = 9(Vo,0u,0z,) + 9(Ou, Vo, 0z;). The first term
vanishes since the orbits of 9, are geodesics. And 2¢(0,, Vg, 0z,) =
Conversely, one can check by a computation of Christoffel symbols
(or using Observation that in the local coordinates, 0, is lightlike
and parallel for a metric of the announced form. q.e.d.

2.2. The O(n — 1)-principal bundle M* over M. Let (M,g,V) be
a Brinkmann spacetime. The goal of this section is to associate to
M a natural new Brinkmann spacetime (M*, g*, V*) with an isometric
submersion M* — M, such that:

e The new foliation V* is transversally parallelizable on each leaf
of F*. This follows the standard construction in the theory of
transversally Riemannian foliations. Here, we provide a variant of
the construction. The parallelizability will be used in Section

(see Par. [8.1)).
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e Any isometry of M* preserving V* and commuting with the sub-
mersion acts trivially on (V*)+/RV*. This will be used in an
essential way in Section [7]

Let (M, g,V) be a Brinkmann spacetime of dimension n + 1. Define
the vector bundle

E:=V+/RV - M,
which is equipped with a positive definite metric induced by g,
gE([X]7 [Y]) - g(X7Y)'

A linear orthonormal frame r, of E' at a point p € M is an ordered
orthonormal basis 7, = (e1 +V, ..., en—1+ V) of the vector space E, for
the Riemannian metric gg. So (ey,...,e,—1) is a g-orthonormal family
of vectors contained in V.

Let M™ be the set of all orthonormal frames of E at all points of M,
and denote by

T MY — M

the natural projection which maps r, to p. This is a O(n — 1)-principal
bundle. For each r € M*, let GG, be the subspace of T, M* consisting
of vectors tangent to the fiber through r. The Levi-Civita connection
associated to g gives a connection on M* i.e. a horizontal O(n — 1)-
invariant distribution H such that for every r € M*, T,M* = H, ®
G, (direct sum). Denote by w the connection form: it is a o(n — 1)-
valued 1-form on M*, and by o : o(n — 1) — x(M*) the Lie algebra
homomorphism that maps a € o(n — 1) to the fundamental vector field
on M™* associated to a.

Observe that in dimension 3, M* = M.

2.2.1. Preliminary facts. Let ¢’ be the 1-parameter group generated
by V. The flow of V induces an action on L(M), the bundle of or-
thonormal frames at points of M. Since the flow of V' acts isometrically
and preserves V, this flow preserves V1 and induces an action on the
linear frames of E. Therefore, for each ¢, ¢ induces a transformation v
of M*. Thus we obtain a global 1-parameter group of transformations
Yt of M*, which induces a vector field on M* that we will denote by V*.

Fact 2.2. If V is parallel then V* is horizontal, i.e. it is the hori-
zontal lift of V.

Proof. Fix an orthonormal frame r, of E, at a point p € M, and
consider the orbit ¢,(t) of V such that ¢,(0) = p. Write r, = (X1(p) +
V,...,Xn_1(p)+V). Forevery i = 1,...,n—1, consider a curve tangent
to F whose tangent vector at p is X;(p), and denote again by X; its
tangent vector field. Consider an extension of X; in a neighborhood of
the curve, which is tangent to F and invariant under the flow of V. \yg
denote this extension by X;. Since V is parallel, the restriction of X;
to the integral curve ¢,(t) of V through p is the parallel transport of
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Xi(p) along ¢p(t). It follows that the curve c(t) = (¢})«(rp) in M* is
exactly the horizontal lift of ¢,(t) such that ¢(0) = rp, and this proves
the fact. q.e.d.

Fact 2.3. Let f € Iso(M,g,V). Then f induces a bundle automor-
phism f* of M* (which commutes with the action of O(n — 1)), called
the lift of f to M™*. Moreover, f* preserves the fundamental vector fields
on M*, preserves V*, and preserves the horizontal distribution H.

Proof. Since f preserves V', clearly f induces an action on M*. This
(left) action commutes with the (right) action of O(n — 1) on M*. In
particular, df* preserves the fundamental vector fields on M*. Indeed,
f* commutes with R4 for every A € O(n — 1). So for every s € R and
every @ € 0(n — 1), f* 0 Rexp(sa) = Rexp(sa) © f*- Taking the derivative
with respect to s at s = 0 yields df*(o(a)(r)) = o(a)(f*(r)), for every
a € o(n —1). Hence the claim. Next, the fact that f* preserves V*
follows directly from the fact that f preserves V. Now, let X* € T, M*
be a horizontal tangent vector at ro € M*. And let r(s) be a horizontal
curve in M™* tangent to X* at rg. It is a horizontal lift of the curve
v(s) = m(r(s)) on M. Consider the curve f*(r(s)). Since 7(s) is a
parallel frame field along 7(s), and f is isometric, the curve f*(r(s))
is a parallel frame field along f(y(s)). It follows that f*(r(s)) is a
horizontal lift of f(v(s)). Hence df*(X) = &L f*(r(s)) is a horizontal
vector. q.e.d.

2.2.2. A Brinkmann spacetime structure on M?*. In this para-
graph, we will prove the following proposition:

Proposition 2.4. There is a natural O(n — 1)-invariant Lorentzian
metric g* on M* for which (M*,g*,V*) is a Brinkmann spacetime.

We can define a O(n — 1)-invariant Lorentzian metric on M* in the
following way: let hg be the positive definite inner product on o(n — 1)
given by the Killing form. And set for X* Y* € T, M*:

9r (X7, Y7) 1= () (dem(X7), dpm(Y7)) + ho(w(X7), w(Y7)).
So
o for every r € M*, d.w : H, — T, M is a linear isometry.

e the vertical and the horizontal subspaces of T,.M* are orthogonal
for every r € M*.

Fact 2.5. V* is a null Killing vector field for (M*, g*) that preserves
the distribution H.

Proof. Here, we only need that V is a Killing vector field. Applying
Fact to the flow ¢' of V shows that the flow ¥ of V* preserves
any w-constant vertical vector field on M*. Next, let X* € I'(T'M*) be
a horizontal vector field on M*. Write ¢, o dm = dmw o 1,. Again, it
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follows from Fact that the distribution A is invariant by the flow
of V*. So 9!(X*) is a horizontal vector field that projects to ¢L o
dn(X*). Hence, g (4 (X*), g1 (X*)) = g(¢! o dr(X*), 6 o dr(X*)). On
the other hand, ¢g*(X*, X*) = g(dn(X*),dn(X*)) = g(¢L o dr(X*), ¢\ o
dm(X*)), since the flow ¢! of V is isometric. This yields g*(X*, X*) =
g(PL(X™*), L (X*)) for every horizontal vector field X*. This proves that
V* is Killing, and ends the proof. q.e.d.

Fact 2.6. V* is parallel for the Levi-Civita connection induced by g*.
To prove Fact we will use the following observation.

Observation 2.7. A wvector field K is parallel if and only if it is
Killing, and the 1-form w := g(K, ) is closed.

Proof. or any two vector fields X and Y, we have dw(X,Y) = X -
g(K,)Y)-Y  -g(K,X)—g(K,[X,Y]). If K is a Killing vector field, this
simplifies to dw(X,Y) = 2¢(Vx K,Y'), which implies that K is parallel
if and only if w is closed. q.e.d.

Proof of Fact[2.6, Set w:= g(V,-) and w* := g*(V*,-).

Since the vector field V* is the horizontal lift of V', the pullback of
w by 7 satisfies 7*(w) = w*. As w is a closed form, w* is also closed.
Consequently, by Observation the vector field V* is parallel. g.e.d.

2.2.3. Partial transversal parallelism. Define the new vector bun-
dle
E* = (V)Y /RV* — M*,

We will construct a transversal parallelism to V*, tangent to the folia-
tion F*. This is a parallelism on the vector bundle E*.

Recall the decomposition T, M* = H, & G, for every r € M*. The
bundle E* naturally inherits a decomposition into the sum of a horizon-
tal and vertical sub-bundles.

Notation: Let p : V1 — E and p* : (V*)X — E* denote the
canonical projections. Let dr : E* — E be the projection induced by
drm:TM* - TM.

Take Y7,...,Yny a basis of the Lie algebra o(n — 1), and consider
o(Y1),...,0(Yn) the associated vertical vector fields on M*. They be-

long to I'(T'F*) and induce a frame field ([o(Y1)],...,[c(Yn)]) on the
vertical sub-bundle of E™*.
Define a frame field [X7],...,[X_;] on the horizontal sub-bundle of

E* as follows. Let r = (r1,...,r,—1) € M*. For each i, choose X;(r) €
V4L (m(r)) such that p(X;(r)) = r;. Let X}(r) be the unique horizontal
vector at r such that d,m(X/(r)) = X;(r). Observe that if two vectors
in V+ have the same p-projection to E, their horizontal lifts to (V*)*
have the same p*-projection to E*. So [X[(r)] := p*(X[(r)) € E*(r)
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is well defined (independent of the choice of X;(r)). It is the unique
horizontal vector in E*(r) that projects to r; through dr.

The vector fields ([o(Y1)],...,[c(Yn)], [X7],...,[X}:_,]) define a par-
allelism on E*, such that dr([X}](r)) = r;.

Let f € Iso(M,g,V). By Fact the differential of f* preserves V*,
hence acts on E*. We denote by df* the induced map on E*. Similarly,
we use df for the map induced on E by df.

Fact 2.8. The lift of a Brinkmann isometry of (M, g,V) to M* in-
duces a Brinkmann isometry of (M*, g*, V*) which preserves the paral-
lelism on E*.

Proof. Let f € Iso(M,g,V). By Fact df* preserves the vertical
vector fields o(Y;), which are w-constant. On the other hand, we have
mo f* = fomw. Moreover, f* preserves the horizontal distribution H
by Fact and dm : H — T'M is an isometry. Thus, the restriction of
df* to (H,g‘*ﬁ) is isometric. Finally, we obtain f* € Iso(M*, g*, V*), by
definition of g*. We will now prove that the induced map on E* preserves
the parallelism on it. First, df* preserves the vector fields [¢(Y;)]. Now,
let r == (ri,...,mn—1) € M*. Set Y* := df*([X}]), and ' = f*(r).
We have df (dn([X}](r)) = df (r;) = r}. Writing 7o f* = f o yields
dr o 4P ((X7)) = d@f o dr(X?]). Hence dm(Y; () = 1! = dr([X7](r)).
So [X/](r") and Y;*(r") are horizontal vectors in E*(r’) with the same
dr-projection to E(p(r’)), so they are equal. This yields df*([X}](r)) =
[X/](f*(r)), which ends the proof. q.e.d.

Corollary 2.9. Let f € Iso(M,g,V). The differential of (the induced
Brinkmann isometry) f* € lso(M*,g*,V*) at a fized point r € M*
induces an element of the orthogonal group of (T,M*,g}) preserving

V*(r) and acting trivially on (V*(r))*/RV*(r).

Proof. This is a straightforward consequence of Fact [2.8] q.e.d.

2.3. Totally geodesic surfaces in a Brinkmann spacetime. To-
tally geodesic submanifolds appear only in special contexts. A generic
pseudo Riemannian manifold does not admit any geodesic submanifold
of dimension > 1. In a Brinkmann spacetime, we will find many such
submanifolds.

2.3.1. Existence. Let (M, g, V) be a Brinkmann spacetime. Consider
the associated Grassmann 2-plane bundle Gry(M), obtained by re-
placing each fiber T, M by Gro(T,M), the Grassmannian of the 2-
dimensional vector subspaces of T, M. Denote by 7 : Gro(M) — M
the natural projection. Define a sub-bundle X of Gra(M) in the follow-
ing way: for each x € M, the fiber at z is

Xm = {pz € GTQ(M)M Ve pz}-
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Proposition 2.10. For any p, € X, there is a totally geodesic flat
surface through x in M whose tangent space at T is p,.

Proof. Let © € M and p € X such that w(p) = z. Write p =
Vect(Q, V). Let v be the geodesic in M tangent to @, and denote again
by @ its tangent vector field. Take the image of v by the flow of V. This
defines in a neighborhood of x a surface S, tangent to p at . Extend
the vector field @ by the flow of V' := Vis,- This defines a vector field
(again denoted by) @ tangent to S, which commutes with V’. Since
V is parallel, we have V»Q = VoV’ = 0, where V is the Levi-Civita
connection of g (to define these properly, we consider an extension of
@ in a neighborhood of S}, then Vi () and VgV both vanish along S,
independently of the extension). Furthermore, Vo@Q = 0, since V' acts
isometrically on M, sending geodesics to geodesics. It follows that for
any vector fields X and Y tangent to S,, VxY is also tangent to S,
which proves that S, is totally geodesic in M. Observe that S, is ex-
actly exp,(p) in a neighborhood of z, since radial geodesics tangent to
pr are contained in S,. Finally, it is a well known fact that a surface
admitting a parallel vector field is actually flat. q.e.d.

2.3.2. Flat bands in (M, g, V). Remember here that V' is assumed to
be complete.

Definition 2.11 (Flat bands). Let S be a simply connected surface.
We say that S is

1) a degenerate flat band if S is isometric to (R x I,dy?), (z,y) €
R x I, where [ is an open interval of R.

2) a Lorentzian flat band if S is isometric to (R x I, 2dzdy), (x,y) €
R x I, where [ is an open interval of R.

In this case, the vector field V := 0, is a null parallel vector field on S.

Length of a flat band. Let (S,V) be a flat band, with V' its parallel
null vector field. The foliation associated to V admits a transverse
Riemannian metric as a foliation of S, invariant by the action of V' (in
fact by any vector field tangent to V' in the case of a degenerate band).
Fix an orientation on S, together with a leaf ly of V.

1) Suppose S is a degenerate flat band. Here, a geodesic transversal
to V is spacelike. We define the forward (resp. backward) length of
the band to be the length of (any) maximal geodesic v : [0,T[— S
transversal to V' such that «(0) € lp, and (V,%) is positively (resp.
negatively) oriented. We denote them by [7(S) and I~ (S) respectively.

2) If S is a Lorentzian flat band, w = (V,.) is a closed 1-form that
defines the foliation of V. Integrating w along curves transversal to V'
defines a transverse Riemannian structure. Let v be a maximal geodesic
transversal to V' defined on [0, T[, such that v(0) € ly, and set [(S) :=
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| fg (V,4)dt|. We define the forward (resp. backward) length of the
band to be I(S) if (V%) is positively (resp. negatively) oriented. We
denote them again by [T (S) and [~ (S) respectively.

We say that S is an infinite flat band if both [T (S) and [~ (S) are infinite.

Fact 2.12. Let S be a totally geodesic surface in M saturated by V.
Then the universal cover of S is a flat band.

To prove this, we need the following lemma.

Lemma 2.13. Let S be a simply connected surface, equipped with a
flat and torsion free connection V. Suppose that S admits a complete
parallel vector field V. Then there is a diffeomorphism ¢ : S — R x I,
(z,y) € Rx I (I is an interval of R), where R x I is equipped with its
affine structure, and ¢,V = 0.

Proof. The surface S admits a (Aff(R?), R?)-structure. We shall prove
that the developing map D : S — R?, which is a (Aff(R?), R?)-local
diffeomorphism, is actually a global diffeomorphism onto its image.

e D is a diffeomorphism on the orbits of V: since V parallel and
complete, an orbit of V is a complete geodesic. So D sends such an
orbit on a geodesic of the affine space R?, i.e. on a line segment in R2.
But we know that a local diffeomorphism on a manifold of dimension 1
is actually a global diffeomorphism, so D sends an orbit of V' diffeomor-
phically onto a line (a complete geodesic) in R?. In particular, D sends
the distribution defined by V on a 1-dimensional distribution of R? of
constant direction. So we can suppose that D sends V' on the constant
vector field e; = 9,,.

e For any maximal geodesic v transversal to V', the open subset U of S
obtained by taking the image of « by the flow of V' is an injective domain
for the developing map, hence isomorphic to the band Rx Iy C R?, where
Iy is an open interval of R: here again, D sends < into a line segment
in R?, hence sends U bijectively to the saturation of that segment by
the flow of e;, i.e. to a band R x Iy C R?. Another parametrization
of v defines an isomorphism onto another band R? x I; of R?, affinely
equivalent to R? x I.

e If Uy and Uy are two open sets in S as before, then D(U; NUs) =
R x I1 2 C R x R, where I 2 is an open interval of R.

The space of the leaves of V is a manifold of dimension 1 diffeomorphic
to R. An atlas for this space is given by a countable set of geodesics
(7i)iez transversal to V, such that 7; N vy; # 0 if and only if |i — j| = 1.
Denote by U; the open set defined by taking the image of ~; by the flow
of V. We get an atlas (U;, D; := Djy,) on S such that for any 4,j € Z,
U;NU; # 0 if and only if |i — j| = 1, and for all (z,y) € D;41(U; NUit1),

Djo Di—-i-ll(xay) = (v 4+ o, iy + Bi), N > 0,04, 8 € R.
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So §'is diffeomorphic under D to the quotient of [],., R x I; by (z,y) €
Ci+1 ~ f,(l‘,y) (S Ci, where OZ = DZ(Ul N Ui+1) and fz = Di @) D;Jrll.
Such a manifold is isomorphic to Rx I, equipped with its affine structure,
where [ is an open interval of R (that could be either R, |—o0, 0], ]0, +o0],
or |0, 1]). q.e.d.

Proof of Fact[2.13 Denote by S the universal cover of S , and by V and
V the lifts of the corresponding objects to S. Tt follows in particular
from the previous lemma that a geodesic in S transversal to V cuts all
the leaves of V. The surface S can be either Lorentzian or degenerate.
Denote its metric by g. In the first case, take v a null geodesic transver-
sal to V such that §(%,V) = 1. It cuts all the leaves of V. So the
developing map in the previous lemma sends S diffeomorphically onto
aband R x I C R2, such that D,V = 8, and (D1)*§ = 2dzdy. In the

second case, take a geodesic 7y transversal to V such that g(¥,%) = 1.
Again, ~y cuts all the leaves of V. Then D sends S diffeomorphically onto
a band R x I C R?, such that D,V = 9, and (D71)*g = dy>. q.e.d.

3. A synthetic proof of completeness of the lightlike geodesic
foliation

In this section, we use the equivalence between the existence of d-
dimensional totally geodesic submanifolds in M and the integrability of
some distribution on the Grassmann d-plane bundle Gry(M) over M
(which extends the notion of a geodesic line field on the projective bun-
dle) to define a 2-dimensional foliation on some sub-bundle of Gra(M).
We will see that some properties of this foliation allow to study com-
pleteness properties of M.

The affine connection on 7'M defines a connection on Gra(M), so
that the tangent bundle decomposes T'Gra(M) = H & Vr, where Vr is
the (canonical) vertical sub-bundle and H is the horizontal sub-bundle
(determined by the connection).

The geodesic plane field on Gra(M). The geodesic plane field 7 on
Gra(M) is defined for any x € M, p € Gra(M), by the unique horizontal
subspace 7, C H, (of dimension 2) which projects on p via d,m. This is
equivalent to defining 7, as follows: consider a curve z(t) in M such that
2'(0) € p, and parallel transport p along x(¢). This defines a horizontal
curve a(t) = (x(t),p(t)) in Gro(M), whose infinitesimal generator at 0
gives a vector in H,, that projects into p. The subspace 7, is the one
obtained by considering all such curves in M tangent to p at 0.
This defines a 2-dimensional horizontal distribution 7 on Gre(M).

A curve a(t) = (z(t),p(t)),t € I, is tangent to 7 if:

o r/(t)epforalltel,

e p(t) is parallel along x(t).
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The leaves of 7. A leaf F' of 7 is a submanifold of dimension 2 of
Gro(M) that projects into a plane field along a surface S in M, which
is parallel along any curve contained in S. This is equivalent to saying
that there exists a surface S in M, with F' = {z — T,S,z € S}, and S
is totally geodesic.

Let p € Gra(M),. It results from the above that there exists a leaf
of 7 through p if and only if p is the tangent space at x of a totally
geodesic surface in M through x, which in turn is equivalent to exp, (p)
being a totally geodesic submanifold of M in a neighborhood of x.

A domain of integrability of 7. Let (M, g, V) be a compact Brink-
mann spacetime. Consider the sub-bundle X defined in Section and
let p € X. Since V is parallel, if there exists a leaf of 7 through p, then
it is entirely contained in X. By Proposition [2.10] and Fact [2.12] we
have the following fact.

Fact 3.1. The distribution 7x is integrable, and a mazimal leaf of
T through p € X projects under m on a maximal totally geodesic flat
surface Sy in M saturated by V. Moreover, the universal cover of S, is
a flat band.

Notation. We denote by G the 2-dimensional foliation on X tangent
to 7.

Completeness of the leaves of F. Question: do the leaves of X
project onto complete surfaces in M7 We will see that the answer is yes
when the projection is a surface contained in a leaf of F.

The sub-bundle X is compact, as a bundle over a compact manifold
with compact fiber (the fiber of X at x is isomorphic to the projective
space of T, M/V , hence to RP"~1). Observe that for p € X, the surface
S, tangent to p is contained in a leaf of F if and only if p C VL.

Define Y C X as follows:

Y = {pEX,pCVL}.

Then Y is a closed submanifold of X (hence compact), which is G-
invariant. A leaf of Y projects into a surface in M contained in a leaf

of F.
The flow of V induces a flow on Gry(M). Denote by V the infini-

tesimal generator of this flow. Since V is parallel, V is also the unique
horizontal vector field on X which projects to V' under dr.

Fact 3.2. Let S be a leaf of G and denote by S its projection on M.

If S is contained in Y, then the universal cover of S is an infinite flat
band.

Proof Let W be a smooth vector field on Y such that for any p € Y,
W € T,G and W is transversal to V (to be more accurate, it is a direc-
tion ﬁeld that we can always construct, and a vector field up to a double
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cover). By definition, g(dpw(/W), V) = 0. Since Y is compact, W is com-
plete. Furthermore, there is o > 0 such that g(d,7(W),d,m(W)) > a >
0 for every p € Y. Let S be a leaf of G. Since 7 restricted to S is a

—

diffeomorphism onto its image, we can define Wg := d7r(VV| g)- Denote

by Wg (resp. V) the lift of Wy (resp. V) to the universal cover S.
So S is a flat band foliated by 17, and equipped with a vector field ﬁ/\;
transversal to V. To see that it is an infinite band, let ¢ be an integral
curve of Wy defined on [0, 77, it cuts all the leaves of V. Set I(c) =
fOT(ﬁc(t) (Wg, Ws))Y/2dt the length of c. We have I(c) > a*/2 - T. How-
ever, W is complete, so W; is complete, which yields I(c) = c0. q.e.d.

Corollary 3.3. The leaves of F are complete.

Proof. Let v be a maximal geodesic tangent to F. Let S, be the
maximal totally geodesic surface in M tangent to p := span(y/(0),V)
(it exists by Fact . Then, by Fact the universal cover of S, is
an infinite flat band. Then the completeness of v is equivalent to the
fact that v cuts all the leaves of V', and this is true since the geodesics
of a flat band are straight lines. q.e.d.

4. The geodesic equation

Let v be a geodesic in M. Fix Rosen local coordinates (u,v,x!,...,

2" 1) €I x J x B,_1(0,1). The geodesic equations are given by

(3) & +T8(u,x)i's? + T8 (u,2)ifa=0 Vke{l,...,n—1}

(4) B+ I (u, ) &'d7 + Ty (u, @) ' = 0,

(5) i =0,

where the I'¢; ’s are the Christoffel symbols of the Levi-Civita connection
of the metric.

Since V' is parallel, g(%, V) is constant along v. We distinguish two
different situations: either g(%, V) = 0or g(%, V) # 0. In the first case, v
is contained in a leaf of F and u = ug is constant along . In the second
case, one can suppose without loss of generality that g(§,V) = 1; this
yields & = 1, hence u = ¢ (up to translation of the geodesic parameter).

We see that when ~ is tangent to F, the coefficients in the geodesic
equations are time independent, and the previous equations become

u = uo,
i+ T (ug, x) i'd/ =0 Vk € {1,...,n},
o + T3 (uo, ) '3l = 0.

They are autonomous equations.
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Denote by h,, the Riemannian metric induced by g on each slice B, :=
{u} x {0} x B,—1(0,1). The equation on z(¢) can be written in the
following way:

(6) VL i(t) = Alt,2) - (1)

T

where V? is the Levi-Civita connection of the Riemannian metric Pty
where either u(t) = ug or u(t) =t, and A(t,x) € Gl,,—1(R) is given by

_ [Tk (t,z) if~v is not tangent to F
At x) = {O otherwise.

5. Analysis of the geodesic equation

Let (M, g, V') be a compactly Brinkmann-homogeneous manifold. Re-
call that this means that there is a compact subset IC whose orbit by the
Brinkmann isometry group Iso(M, g, V') covers all the space. Observe
that in this case, V is a complete vector field.

Let H be a smooth (n — 1)-dimensional distribution on M, such that
for every p € M, H, is a non-degenerate Riemannian subspace of 1), M
tangent to F. This can be defined by taking an auxiliary Riemannian
metric g, and setting H := V190 N V49, For every p € M, there exists
an open neighborhood O, of 0 in H), such that the exponential map
exp, : Hp, C T, M — M restricted to H) is a diffeomorphism from O,
onto its image in M. Set S, := exp,(O,): it is an (n — 1)-submanifold
through p.

Let also Z be a smooth vector field on M such that g(Z,Z) = 0,
g(Z,V)=1and Z € H* (it is well defined up to taking a double cover
of M). Both H and Z are globally defined on M.

For every p € M, consider a normal coordinate system (z!,...,
on S,. If p = > (2%)?%, then for r, > 0 sufficiently small, By(r,) =
{q € Sp,p(¢q) < rp} is a normal neighborhood of p in S, diffeomor-
phic to B,_1(0,7p), an open ball of R"™! of center 0 and radius rp.
Then, taking 7, smaller if necessary, p admits a Rosen coordinate chart
(u,v, 21, ..., 2" 1) € I, x J, x B,_1(0,7p), where I, and J, are intervals
of the form | — I, 1,[, I, > 0. This chart is defined as in Fact on an
open neighborhood U, of p by

fp iIp x Jp x Bp—1(0,7p) = U, C M

n—1
(U, U? l’) = wu o ¢’U (eprO (Z mi6i> ) I ei = al‘ia
i=1

with f(0,0,0) = p, where ¢, is the flow of V', and 1), is the local flow
of a vector field Z, € I'(TU,) which coincides with Z on f,({0} x {0} x
Bp1(0,79)) C U, and satisfies g(Zp, V) = 1 (see Fact 2.1). This new
vector field Z,, is a perturbation of Z in the neighborhood U, of p.

n—l)
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A continuity argument on the compact K shows that there exists
ro > 0 such that for any p € K, we can take B,_1(0,7,) above to be the
open ball of radius rg. Also, there exists a positive constant [y such that
for every p € K, one can take I, and J, above to be the same interval
of length 2l.

Henceforth, to each point p € K, we associate a Rosen coordinate
chart U, C M as before. We can assume without loss of generality that

3lo = 1o = 1. Each chart U, determines vector fields X7,..., X" | Z,
on U, such that
(7) Zy=Z+a,V+WXV+. 400 XP

where ap,b§ € C*(Up,R). By compactness, we can assume that the
functions a,, bf are bounded on U, uniformly with respect to p € K.

Define for a,b,c € {u,v,1,...,n — 1}, the map Fiqpc): M x I x J x
Bn-1(0,1) = R, Fgpe)(p,u,v,2) = (Ug)p(u, ), where (I'g;), is the
Christoffel symbol associated to the pull-back of the metric g7, by the
diffeomorphism f;,. Since f;, depends smoothly on p, Fi, 4 ¢) is a smooth
map for every a,b,c € {u,v,1,...,n—1}.

Notation: Denote by hf, the Riemannian metric induced by the
pull-back of the metric g, by f, on each slice {u} x {0} x Bn_1(0,1).

Lemma 5.1. Let I = J =|—2,2[ and consider the space D = I x J x
B—1(0,1) equipped with a metric g = 2dudv+g;;(u, z)dzidz? (u,v,x) €
D. For everyu € I, the slice {u} x {0} x B,,_1(0, 1) inherits a Riemann-
ian metric hy that depends smoothly on u. Let c(t) = (u(t),v(t),x(t))
be a geodesic in D, such that if c(t) is not tangent to O, we set
g(¢(t),0y) = 1. Then, there exists € > 0 and C > 0 such that for any ini-
tial conditions (u(0) = 0,2(0) = 0,2(0) € R"1) with ho(i(0),2(0)) >

1, z(t) exists on |0, ||x(§0)||0]' And for all t € [0, Wo}’
1£(®)]lo
: <V1+Ct,
1:(0)lo
and .
||37(t)Ht <V1+Ct,
1£()lo
which yields
[E4QIIF
: <1+ Ct,
12(0)lo

where ||.||¢ is the norm for the metric hy ).

Proof. The first inequality is the hardest to prove. Consider in the
ball B,,_1(0,1) of R* 1

(8) i* = —Ffj(u, ) dd + Ag(u, ),
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for k =1,...,n — 1, with initial conditions x(0) = 0, and #(0) € R"*~!
such that ho(i(0),£(0)) > 1. If ¢(t) is tangent to J;, then w(t) is
identically zero (we assumed u(c(0)) = 0). Otherwise, u(t) = t.
Consider «a(t) := ¢(A7't), with A := [|#(0)||o, and its component
y(t) == z(a(t)) = (A~). Then u(a(t)) = A~lu, since u(t) is a linear
function of t. And y(t) satisfies the equation
9) g () = —T5 A )y + AT AW )y
with initial conditions y(0) = 0 and ho(y(0),9(0)) = 1.
Write Ff’j()\_lu, y) = Ffj (0,y)+ A_luFi];()\_lu, y), where Fl’; are con-
tinuous and u € [0, 1].
Consider

o, .. .
But

Vi = (i"(t) + T55(0,1)§"57 ) O, with 0y, = B
Thus, from Equation @D,

V95 = 5 (uFE O )+ A\, 9)) 0
hence
0 . 2 kiyv—1 Lieg -1 .3 .

(10) 5o, 9) = L ho((uFG (A" w, 9)y'y" + Ain(A™ w, y)§") O, 9)-

There exists € > 0 such that for any initial conditions (y(0) =
0,9(0) € R*™1), with ho(9(0),5(0)) = 1, y(t) is defined on [0, €] and
y(t) has a uniformly bounded hy norm. We will use Equation (10]) to
get a finer control of the hy norm of ¢§(t) for ¢ € [0,¢]. A continuity
argument on the coefficients involved in the equation ensures the exis-
tence of constants € > 0 and rg > 0 such that all the coefficients are
bounded on [0,€] x I x By,_1(0,7¢).

We denote again ¢ instead of ¢/. Therefore, there is a constant C' > 0
such that:

2ho ((wFEON " u, 9)0'9 + AN, y)§,9)) 0k, §) < C, t €0, €.
Hence

0 C
—ho(y,9) < = :
athO(yay> = A? le [076]

Thus
Ro(i(0) 9(6) < St+1, ¢ € [0,¢] (since ho(3(0),5(0) = 1).

This gives

ho(&(t), £(t)) €
(11) To(2(0). £(0)) <VI+Ct te [0, A],

which yields the first inequality.
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Let us now assume u = ¢, and compare the h; and the hg-norms of
x(t), for t € |0, mo]' Consider the function I(t,w) := Z;((zuuzuu)), for
t € 0,1] and w € R"~L. Observe that I(t,aw) = (¢, w), hence we can
li(t,w)=1(0,w)] _

: =

assume hg(w,w) = 1. By smoothness and compactness,

w is bounded by some constant, say the same C' as above. So

he(a(t), (1))
ho(a(h),2(0) = V1T qe.d.

Lemma 5.2. Let v be a geodesic of M, and set p := ~(0). If v
is not tangent to F, we parameterize in such a way that g(%,V) = 1.
Let (u,v,x) be the system of coordinates on the Rosen chart fp_l(Up) =
I xJx By,_1(0,1). If x(t) is defined on [0,T], then y(t) is defined on
[0,T"], with T" := inf(1,T).

Proof. Tt follows from Equation on u(t) that either u(t) = 0 or
u(t) = t. Consider the interval [0,7] on which z(t) is defined. Then
u(t) is defined on the same interval, and |u(T) — u(0)| < 3|I|, where
|I| denotes the length of I. Then on [0,7”], both the z(¢) and the u(t)
components are defined.

It appears from Equation (4)) that v(t) is defined on the same interval
as x(t). Set [ := |v(0) —v(T")|. However, v(t) may well leave the interval
J before z(t) leaves the ball B;,,—1(0,1), so that )y, is not defined on
[0,7"]. To prove that ~ is defined on [0,7"], we will use the fact that
the flow of V' acts isometrically on M. Denote by ¢* the flow of V. Set
R:= 1|J|.

Assume that | > R. Let gy := v(ag) € Up such that g < 8§g =
v(ag) < R. The translate Wy := ¢*(U,) of the Rosen chart at p is a
Rosen chart at ¢ (p). We denote by (u1,v1,z1) := (u,v,x) 0 ¢p~° the
determined Rosen coordinates in the new chart. Consider the geodesic
71 such that v1(0) = go and 7;(0) = +'(a). Then wy(t), v1(t) and
x1(t) are defined on [0, 7" — ap], with v1(t) = v(t+ap) — v(p). Since by
definition R—v(agp) < %, the geodesic 71 extends )y, on Wi, beyond U,.
If | —v(aw) < R, then |v1(T" — ap) — v1(0)| < R. In this case, all the
components of 71 are defined on [0, 7" — ap], and 71 extends 7y, which
proves that 7 is defined on [0, 7”]. If not, consider ¢; := v(a1) € W1 \U,
such that sg + g < 81 := v(aq) < sgp+ R. Doing this, we obtain a
sequence qo,q1, - - -,,- .. such that g1 := v(ip1) € Wiz1 ~ W; and
S; —}—g < 8i+1 = v(aiy1) < s; + R. And we have v(o;) > w.
At some moment, we will have [ — v(a,) < R, it suffices to take n :=
[2(4—1)]+1. So the sequence above is finite. At each step, we can then
extend Nopuli_o w; 25 before on Wj11. The condition | — v(ay,) < R
ensures that the process will stop at W,,, and Vu,uur=t w; extends on

W, to be defined on [0, T"]. q-e.d.
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Theorem 5.3. A compactly Brinkmann-homogeneous Brinkmann
spacetime is complete.

Proof. Step 1: Let v be a geodesic in M. If v is not tangent to
F, we parameterize in such a way that g(§,V) = 1). Assume p :=
~v(0) ¢ K. By assumption, there exists a Brinkmann isometry, i.e. ¢ €
Iso(M, g, V'), such that the new geodesic a(t) := p(y(t)) satisfies a(0) €
K and g(&,V) = 1. We write the geodesic equation for «(t) in the
Rosen chart U, associated to o(p) € K. Since g(&,V) = 1, we can
apply Lemma to estimate the time existence of «(t), which is the
same for y(t). We do this systematically, when we deal with a point not
contained in K.

Since we will use different Rosen charts, we will write (ugq,vq,zq)
for the Rosen coordinates of a Rosen chart f;*(U,). We have (ug,vg,
xQ)(Q) = (07 0, 0)

So let p € K, and v such that v(0) = p. Write (uy(t),vp(t),z,(t)) =
(up, vp, 2p) (7(1))-

The geodesic equation in the Rosen chart f, L(U,) gives the following
equations in the ball B,,_1(0,1) of R*~%;

(12) 5&’; = —F,’fj(u, ap)ihid + Age(u, xp)d,

for k =1,...,n — 1, with initial conditions (z,(0) = 0,4,(0) € R"™1),
and either u,(t) = 0 or u,(t) =t.

We will use the same notation ||.||; introduced in Lemma When
we write ||Z,(t)||¢, this means that the vector (t) is decomposed in
the basis (Z,,V,X7,..., X?_|) associated to U,, and we compute the
hﬁ (#~norm of its x,-component in this basis.

e There exists € > 0 such that for any p € K, and any initial condition
(z,(0) = 0,d,(0) € R™™1) such that |4,(0)]lo < 1, the solution z,(t) is
defined on [0,¢]. Indeed, since K is compact, the subset of vectors
X € ToR™ ! such that hb(X,X) <1 for some p € K, is a compact set
in TyR™ !, hence, the choice of € is uniform with respect to this data.

e On the other hand, by Lemma there exist ¢ > 0 and C > 0
such that for any initial conditions (x,(0) = 0,4,(0) € R"!) with

l(0)lo = 1, 2, (t) exists on [0, ], and
¢ AT
(13) vt € [0, , } 2 <1+Ct.
[&p(0)llo )" ll2p(0)lo
This gives for ¢ € [0, m],

[Zp(®)]le < 112,(0)]lo(1 + C?)

/

< ||2p(0)[|o + CH%”)”OW

= [l&p(0)]lo + €'C.
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If we look again at the proof of Lemma it follows from the com-
pactness of K and the smoothness of the maps F{,; ) defined at the
beginning of this section that the choices of ¢ and C are actually uni-
form with respect to p € K.

Notation: From now on, and since there will be no confusion, we will

denote simply ||, (t)| := ||Zp(t)|l¢, for p € K.

Step 2: Set sp = 0 and qp := y(sp). By Step 1, v(t ) (Ugo (1), vgy (1),
Zgq,(t)) is defined on [0, s1], with s; = inf(1,inf(e, NI (0)”

240 (s)l < [l ()] + €'C.

Set g1 := (s1).

Next, set «a(t) := (¢t + s1), and put a(t) = (uq, (t) Vg, (), g, (t)) In
the local chart f;1(Uy,). Write Equation (3) on f,'(U,,) with initial
conditions x4 (0) =0 and iq,(0) € R*1 equal to the x4, -component of
4(s1) in the frame associated to the local chart Uy,. Then, (¢t + s1) is
defined on [0, s2], with so = inf(1, €, m)

1

e Compare between ||Zg4,(s1)| and ||Z4, (0)| (here, we compare be-
tween the norms of the x-components of 4(s1) in the two frames asso-
ciated respectively to Uy, and Uy, ).

From we have that

Zag =T+ agyV +HOXP o400 X0,
Zg =Z+aqV+ 0 X{ -+ 000 X0,
where a4, and bg-i are bounded functions. So on Uy, NU,, we can write
for i € {0,1}:
7(25 + Si) = Zqi + ijqz' (t)V + J;; (t)qul +oeee Cbgi_l(t)ngifl

which gives
(14) ’)/(t—‘r—SZ) -7 = (a’%‘ _|_/l'}ql V+ququz +Z$J qu

Computing the norms for the Lorentzian metric g in both sides of Equa-
tion , at the point ¢ = s; when ¢ =0, and at £ = 0 when ¢ = 1, and
using the triangle inequality, we obtain

n—1
[|Zgo (s1)Il — g(¥(51) — Z,7¥(s1) — | <g quoX}]O,Zb?OX]‘?O

N

n—1
g, (O)I] = g(i(s1) = Z,3(s1) = Z)2| < g qulxgl,ijlx;ﬂ
j=1
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which yields the existence of a constant B > 0 such that

ll#go (sl = ll4, ()l < B.
This constant B > 0 is independent of s;.

Concluding: We get a sequence 7y(ty,), such that ¢, := > 7" ; s;, where
s; is
— either equal to € or to 1 for infinitely many i,
— ors; = m, for all but a finite number of ¢, with the following
inequalities

l#g: (siv )l = 24, (O[] < B

[42q, (si1) | < [l2q, ()] + €'C.
In this case, the sequence ||Z4,(0)| is (B + €¢/C))-dense in the interval
(li740 (O)11, +00[, hence Sy = oo,

So in all cases, > s; = 0o, and ~ is then complete. q.e.d.

6. Proof of Theorem an adapted Cartan structure

The aim of the present section is to prove the existence of a core
as in Theorem the algebraic description which completes the proof
will be given in the next section. The exposition is largely inspired by
Sections 4 and 5 of [18], and also by [39] which provides a natural and
efficient approach to Gromov’s theory on rigid transformation groups
(see [22]) via Cartan connections.

6.1. Null frames. Let (F,(,)) be a linear Lorentzian space of di-
mension n + 1. A frame (eg,...,e,) is said to be orthonormal if all
the vectors e; are orthogonal and 1 = —(eg,e0) = +(e1,€1) = ... =
(én,en). This frame is said to be null if all Lorentzian products van-
ish but 1 = (eg,e,) = (e1,e1) = ... = (en—1,en—1) (in particular e
and e, are lightlike). There is a simple correspondence between or-
thonormal and null frames, mainly, if (ep,...,ey,) is orthonormal, then
(Wrﬁe", €9, ..., Cnl, L\E%) is a null frame.

Let (M, g) be a Lorentzian manifold. Classical connections, as well
as Cartan connections, are usually developed on the orthonormal frame
bundle, but there is no harm to consider null frames instead. So let
M be the space of null frames (in all tangent spaces of M). This is a
O(1, n)-principal bundle (n 4+ 1 = dim M).

6.2. Adapted Cartan structure.

6.2.1. Construction. Let V' be a (non-singular) null vector field on
M and consider V' C M be those null frames starting with V. This is
a H-principal bundle, where H is the subgroup of O(1,n) preserving a
lightlike vector.
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Consider the Lorentzian quadratic form Q = zox, + 22 +---+ 22 |,
for which the canonical basis is null. Elements of the orthogonal group
O(Q) preserving ep have matrices of the form:

1 A1 . An—1 *
0 a1qp -+ aip-1 ¥
0 Qp—11 " Qp-1np-1 *
0 0 e 0 1

where \ = ()\1, R 7)\17,—1) S Rn1 and o = (Oéij)lgi,jgn—l S SO(TL — 1),
and the x-entries are completely determined by A and a.

It follows in particular that H is isomorphic to SO(n — 1) x R~}
which is the Euclidean group Euc,_1, the (affine) isometry group of the
Euclidean space R™ 1.

The Levi—Civ/i‘Ea connection associated to g gives rise to a bundle
connection on M, i.e. a horizontal O(1,n)-invariant distribution #.
This yields a “tautological” parallelism of TM. From the point of view
of Cartan connections, this parallelism is expressed as a vectorial dif-
ferential/l\—form w which establishes, for any = € M , an isomorphism
wz : T3M — po, where po is the Lie algebra of the Poincaré group
Poii, = O(1,n) x R"*L. Furthermore, w is O(1,n)-equivariant, and
sends the tangent space of fibers identically to o(1,n) C po. We also
have that the horizontal H is sent by w to R"*1 see [39] [18].

Fact 6.1. The horizontal H is tangent to 1% iff V' is parallel, iff, w
sends V to the Lie subalgebra h x R*1 C po.

Proof. Let X € Hy,u € V, and 7 a curve in M such that v(0) = 7(u)
and +/(0) = d,7(X). The horizontal lift of v starting at u is the curve
u(t) such that wu(t) is a parallel frame field along v with u(0) = v and
u/(0) = X. Then V is parallel along ~ if and only if the horizontal curve
u(t) € V for every t. It follows that if V is parallel, then X € T,V,
for every X € H,. Now, suppose that the horizontal distribution H is
tangent to ‘7, then for every curve ~, the horizontal lift u(t) starting at
weVis everywhere tangent to XA/, and hence contained in ‘7, proving
that V is parallel.

On the other hand, w, ({0} x R"*1) is a horizontal subspace of T, M
of dimension n + 1, hence w; ({0} x R"*!) = H,. Knowing that V is
an H-principal bundle on M, it follows that w sends V to h x R if
and only if H is tangent to V. q.e.d.

Henceforth, we will assume V' a parallel vector field.

In a different but related manner, parallel submanifolds of M are
defined in [39] by the fact that w send all their tangent spaces to the
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same subspace of po. This is the case of V. In fact (V, M, w|v) is a

Cartan geometry, say, a sub Cartan geometry of (]\/4\ , M,w) in a natural
sense.

6.2.2. Curvatures. The curvature of the Cartan connection w is de-
fined by the Cartan-Maurer formula Q = dw + 1/ 2[w w]. Observe that
the curvature of V is just the restriction of that of M.

Using the parallelism, the M curvature is encoded in a O(1, n)-equiva-
riant map

K+ M — Wy = Hom(A%(po/o(1,n)), po) = Hom(AZR™ "1, po).
The associated curvature map ry for V is just the restriction of k. It

is H-equivariant and takes values in Wo = Hom(A2R"+1 p x R,
Similarly, the parallelism allows one to express the differential dx as a
vectorial map D'k : M — Hom(po, Wy) = Wi, and in the same way, we
have Dlmf, ‘M - Hom(h x R™+1, W(‘)/) = WY/. One defines inductively
Dik, Diﬁ,"}, W; and Wiv, for ¢ > 1.
To put all these curvatures together, for any [, consider

nl:(n,Dln,...,Dln):]\/Z%WOXV\A><~--><Wl:yl,

and analogously,

K = (kp, D'kig, ..., D'rg) : M = Wy x W x - x W/ =Y.

6.2.3. Pseudo-group (resp. pseudo-algebra) of local (resp. in-
finitesimal) isometries. A local isometry of (M,g) is a triplet (Uy,
Us, f) where U; and Us are open in M and f is an isometry U; — Us
(for the restricted metrics). Here, we will restrict ourselves to local
isometries preserving the vector field V. Define a local Killing field as
a pair (U, X) where U is open and X is a Killing field defined on U.
Again, we will assume that X commutes with V.

Let G be the collection of all these local isometries, and g that of
all these local Killing fields. Let also G° © G be the subset of local
isometries given by composition of local flows of local Killing fields. It
plays the role of the identity component of G.

It is quite delicate, and this is not our purpose here, to formulate all
these concepts (of pseudo-groups and pseudo-Lie algebras), but let us
observe that it is straightforward to define orbits of G and also of gl
(see for instance [25] and related references for a rigorous treatment of
pseudo-groups). One can in particular see that G has connected orbits.
One can also use G to define locally homogeneous spaces by the fact
that G has one orbit. - R

Observe here that G acts locally on M, by preserving V', the Cartan
connection w, its restriction Wi and therefore all the previously defined
curvature maps.
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6.3. A closed partition P; of M.Fix [ (to be chosen later, big

enough). The K?lv levels determine a partition, say P; into closed subsets.
This projects to a partition P; of M, but no longer by closed subsets,
a priori. If we want the Pj- -parts to be closed in M we have to be sure
that the H-saturation of a 731 -part is closed in M. But this is nothing

but the /<cl -inverse image of an H-orbit in yl . This is guaranteed by:

Fact 6.2. The H-orbits in yf' are closed.

Proof. Remember H is a semi-direct product SO(n — 1) x R*~1. Tt is
enough to show closeness of N-orbits, where N := R" ! is the nil-radical
of H. Let us now observe that the N-representation in :)JZV is unipo-
tent. This can be shown explicitly, or deduced from the fact that this
is nothing but the restriction to N of the O(1, n)-representation in ).
Now, N is unipotent in O(1,n) and hence, because O(1,n) is semisim-
ple, for any representation of O(1,n), N acts unipotently. Finally, we
use Kostant-Rosenlicht theorem which says that unipotent groups have
closed orbits ([5, Proposition 4.10]). q.e.d.

6.3.1. P, is somewhere a trivial fibration. Let U be the (open)
subset of M where f = /<al has a maximal rank. Consider f (]\//f ~U ) as
a subset of ylV . Since f is H-equivariant and M is compact, f (1\7 U )
can be written as the H-saturation of a compact subset K C ylV )

Now J)IV admits a H-equivariant stratification y,V =YyDoY1D---D
Y%, such that the H-action of each Z; = Y; —Y;,1 defines a fibration. Let
m be the smallest integer such that A = f(ﬁ) N Zym # 0. In particular
f7(A) is open in U.

Let K’ = KN Z,,. This is closed in Z,, and hence its saturation
B = H.K is also closed in Z,,, since the H-orbits determine a fibration.
By Sard Theorem, B has a vanishing Hausdorff measure of exponent
the maximal rank of f . In particular B N A has empty interior in A,
and thus U’ = le(A — B) is open, and is mapped by f into the regular
values set of f.

Now, saturate everything by the H-action; that is, instead of con-
sidering levels f~'(z), consider inverse images f~'(Hz). Since Hz is
closed in Y, f ~1(Hz) projects onto closed submanifolds in M.

Project everything on M and get an open set U’ C M with a sub-
mersion f : U — Z,,/H. Thus, on U’, we have a partition into closed
(in M) submanifolds (not necessarily connected) given by the levels of
a global submersion.

Let K be the so-defined foliation, i.e. with leaves the connected com-
ponents of the f-levels. Let 7 be a small transversal to a leaf C', so
that fj, is injective. Let U" be the saturation of 7 by K. Now, fjy» is
a submersion with connected levels. We already know that these levels
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are compact. It turns out that this implies that fig» : U” — f(U") is a
bundle map (see [47]). In conclusion, we have proved:

Fact 6.3. There is an open subset B C M where the Pj-classes are
submanifolds of M, closed in M, and form a trivial fibration.

6.4. Reduction. Let us now take | = dim O(1,n) and denote P; simply
by P (actually it is enough to take [ = dim H = dimSO(n—1)+(n—1)).
From [39], we have:

Proposition 6.4 ([39]). On the open set B C M defined in Fact[6.3,
the GO-orbits coincide with the fibers. In particular each fiber is lo-
cally homogeneous (and closed in M ). Furthermore, a finite index sub-
pseudo-group of G preserves B and has the same orbits as G.

6.4.1. Existence of a core N, Proof of Theorem If some fiber
in Proposition [6.4] is somewhere non-degenerate, i.e. the restriction
of the metric to it is of Lorentzian type, then it is everywhere non-
degenerate by local-homogeneity. Take N to be this fiber. If all fibers
are degenerate, then consider a transversal (to the fibration) curve c,
and let N be its saturation (by the fibration). So N is a Lorentzian
manifold with boundary, diffeomorphic to a product F' x [0, 1], where F
is closed in M. The local isometry pseudo-group G° preserves and acts
transitively on the lightlike geodesic factors F' x {u}.

7. Further results on the core N

Our goal is to study the V-dynamics on M, by first replacing M by
M* (as introduced in Par. , and then replacing M (which is in fact
M*) by its core N. This section is devoted to justifying these reductions
and proving the global algebraic structure of the core N stated in the
second part of Theorem

7.1. Passing to M* and getting a unipotent isotropy. Consider
M* the Stiefel manifold of orthonormal frames of V- /RV | as described
in Section We can do for it the same analysis as that for M from
the point of view of its pseudo-Lie algebra of local Killing fields. We
will however here just lift the g -action to it (where g is the pseudo-Lie
algebra of local Killing fields of M).

Fact 7.1. Let B* be the inverse image of B (defined in Proposi-
tion in M* endowed with the local G°-action. Then the GY orbits
in B* are closed submanifolds in M™, and so they form a fibration.

Proof. For x € M, let G2 denote its stabilizer in G°. Its (faithful)
representation in 7, M makes it a subgroup I, of H = SO(n—1) x R"~1.
A standard fact from Gromov’s rigid transformation groups theory [22],
or its Cartan connections variant states that I, is algebraic. From this,
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one infers (see |28, Theorem 4.3 of Chapter VIII]) that, up to a finite
index, I, has the form K xRF, where K is a closed subgroup of SO(n—1).
Next, one can check that if z* € M* projects on z, then the G0.z* fibers
over G¥.x with fiber K. This implies in particular that the GO orbits on
M?* are closed. q.e.d.

The interest of working on M™* lies in the following fact brought up
in Par. 2.2}

Fact 7.2. The G%-action on M* has unipotent isotropy.

Proof. The elements of the orthogonal group preserving a lightlike
vector are given by SO(n — 1) x R*~!, and it follows from Corollary
that the isotropy group of the G%-action on M* lies in the R"~! factor,
which is unipotent in O(1,n). q.e.d.

7.2. Equicontinuity on N implies equicontinuity on M.

Fact 7.3. If the flow of V acts equicontinuously on the core N, then
it acts equicontinuously on M

Proof. The fact is actually true for any isometric flow ¢! acting on a
compact Lorentzian manifold (M, g): if it preserves a closed Lorentzian
submanifold N and acts equicontinuously on it, then it acts equicon-
tinuously on M. Indeed, the hypothesis means that ¢! preserves a Rie-
mannian metric A on TN. Construct a Riemannian metric A’ on T'M
along N given as h' = h @ gp. . Observe here that we used the fact
that g is spacelike on T-N. Now, it is known that for flows preserving
affine connections, equicontinuity along a closed invariant subset (not
necessarily a submanifold) implies everywhere equicontinuity (see for
instance [49]). q.e.d.

Fact 7.4. In the local co-homogeneity one case, if the flow of V acts
equicontinuously on a fiber of N, then it acts equicontinuously on N
(and hence on M).

Proof. Let F be such a fiber. If ¢' preserves a Riemannian metric h,
then it preserves E the orthogonal of V' with respect to h. This F is
spacelike (with respect to g). Consider E*, its orthogonal with respect
to g. It has dimension 2 and contains V. There is a well defined lightlike
vector field U in E+ such that g(U,V) = 1. Since ¢! preserves V, it
preserves U too. Thus, ¢! acts equicontinuously on TNip. As in the
previous proof, this implies that ¢! is equicontinuous on N. q.e.d.

7.3. Completeness in the universal cover M.

7.3.1. Summarizing up. Let (M,g,V) be a compact Brinkmann
spacetime. In Par. we associated to it a natural Brinkmann space-
time (M™*, g*, V*) with a Lorentzian submersion M* — M, such that
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V* is the lift of V, which we proved to be horizontal. Given the hor-
izontality of V*, it is clear that the equicontinuity of V* implies the
equicontinuity of V. Thus, we can reduce the proof of equicontinuity to
that of V*.

On the other hand, for any Brinkmann spacetime, we constructed in
Section [6] a core N (contained in some open subset B C M), whose
properties are outlined in the first part of Theorem [1.5] Using the
fact that N is a closed V-invariant submanifold of M, we proved in
the previous paragraph that equicontinuity on N implies equicontinuity
on M. Next, we lifted B to M*, and lifted the G%action to it. By
doing so, we obtained in Fact a V*-invariant closed submanifold N*
of M™, which is either locally homogeneous or has local cohomogeneity
one. In the local cohomogeneity one case, N* is diffeomorphic to a trivial
fibration, whose fibers are lightlike, tangent to V*, locally homogeneous
and closed in M* (see Par. . Based on all these facts, it follows
that the equicontinuity of V* on N* implies the equicontinuity of V'
on M.

All these developments justify replacing M by M*, and then M™* by
the core N*. So, henceforth, we will assume that our initial Brinkmann
spacetime (M, g, V') is such that:

(i) Either M is locally homogeneous, or has a local co-homogeneity
one type. In the local co-homogeneity one case, the leaves of F are
assumed to be locally homogeneous and compact.

(7i) The isotropy is unipotent.

We have the following algebraic description:

Proposition 7.5. Let (M,g,V) be a compact Brinkmann spacetime
satisfying property (i) above. Let G be the identity component of the
isometry group Iso(M,g, f/) of the universal cover, endowed with the lift
of the Brinkmann structure. Then, either M has the form T'\ G/I, or
it is a trivial fibration M — [0, 1], and each fiber has the form I'\ G/1,,

where I, depends on the parameter u € [0, 1].

In particular, the core N (constructed in Section @ of any compact
Brinkmann spacetime, is itself a compact Brinkmann spacetime that
satisfies property (i). So this proposition yields the global algebraic
structure of N stated in the second part of Theorem

The remaining part of the section is devoted to the proof of Propo-
sition Here, we also assume that M satisfies (ii), allowing a more
precise algebraic description.

Remember the notations of the objects in (M, g): V the Brinkmann
parallel vector field, V the 1-dimensional foliation that it determines, F
the codimension 1 lightlike geodesic foliation tangent to V. We denote
by V, V, :7:— the lift of the corresponding objects toNJ\;[ . If Fis a leaf of
F, then F is a connected component of its lift in M.
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The universal cover M is either locally homogeneous or topologically
of the form F x [0,1], and each F' x {t} is locally homogeneous, and
obviously simply connected. In both cases, the whole M or the factors
F x {t} are (real) analytic. A classical result [36] says, in this case, that
any locally defined vector field X on an open subset U of M, extends
coherently to M. So, the (global) Killing algebra g of M acts either
transitively or with codimension one orbits.

Let us prove that this infinitesimal g-action is complete, i.e. that any
Killing field X € g has a complete flow, or alternatively, that the simply
connected “abstract” group G with Lie algebra g acts (globally) on M.
We start treating the co-homogeneity one case, and show afterwards
how to adapt the proof to the homogeneous case.

7.3.2. The co-homogeneity one case.

Fact 7.6. Let p € F and i C g its stabilizer algebra. Then, i is
abelian and acts unipotently on Tz M.

Proof. The group I determined by i is contained in the subgroup of
the orthogonal group (T M , Gp) preserving V(p), and acting trivially on
V(p)+/RV (p) since the isotropy is unipotent. This group is abelian and
acts unipotently. q.e.d.

Fact 7.7. Letj be the Lie subalgebra preserving the 1-leaf V(p). Then
j =1®3, where 3 = RV (which is contained in the center of g). Fur-
thermore, j is an ideal of g.

Proof. j contains i3 and i has codimension 1 in j, so we have equality.
The Lie algebra g acts, locally, on the quotient space F / V by preserving
a parallelism. The Lie algebra j acts by fixing the point V (p) of F/V and
hence acts trivially on it (an automorphism of a parallelism is trivial if
it has a fixed point). It follows that j is exactly the kernel of the g-action
on F'/V, and hence it is normal. q.e.d.

Corollary 7.8. j is contained in the nil-radical of g.
Proof. Because j is an abelian ideal. q.e.d.

Fact 7.9. Let G be the simply connected Lie group determined by g,
I and J its subgroups tangent to i and j respectively. Then I and J are

closed in G (and are simply connected). Furthermore, F is isomorphic
to G/I.

Proof. Sincej is an ideal in g, J is a normal Lie subgroup of the simply
connected Lie group G, hence closed in G (see for example [35] p. 610]),
and simply connected (see [35, Lemma 1]). Moreover, J is abelian
and simply connected, so the subgroup I (which is simply connected)
is closed in J, and hence in G. By Theorem (or even its partial
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version in Section , the leaf F' is complete, and thus F is complete.
Consequently, the (global) Killing fields tangent to F' are complete ([37,
Ch. 9, Proposition 30]), so, by Palais theorem [38], the infinitesimal
isometric action of the Lie algebra g integrates into a transitive Lie
group action of G. Since I is a closed subgroup of G, one can consider
the homogeneous space G/I, and F' is locally modeled on it (see [35]).
Therefore, we have a developing map d : F — G /I, equivariant for the
left action of GG, and which is then a diffeomorphism. q.e.d.

7.3.3. The locally homogeneous case. Now, in the locally homo-
geneous case, consider b the codimension 1 subalgebra of g preserving
a leaf F of F. The space of leaves F is defined by a closed 1-form
w = g(V, -), so it has an affine structure preserved by the action of g
(see [27, Section 3] for more details). A (local) isometry preserving V
preserves w, hence induces a (local) translation on the (affine) space of
leaves. Therefore, hh preserves in fact individually these leaves, and is
thus an ideal. Its associated subgroup H in G is closed, and as in the
previous case, the isotropy group is closed in H and hence in G. As in
the previous case, we can take the quotient G/I and use completeness

of M to deduce that M is isomorphic to G/I. q.e.d.

8. The degenerate case, the V-foliation on a leaf F

We investigate here the degenerate case, that is, when M has local
co-homogeneity one, and F has moreover all its leaves compact (see

Par. .

In all the section, we fix a leaf F' of F.

8.1. The cocktail of geometries on F. We will exploit existence
of many compatible geometric structures on the compact manifold F,
which we list here:

e A lightlike metric induced from (M, g).

e A connection induced from M, since F' is geodesic.

e The parallel vector field V.

e The 1-foliation V determined by V. It is transversally Riemann-
ian, as it is the case of the characteristic (null) foliation on any
lightlike geodesic submanifold in a Lorentzian manifold (see for
instance [52]).

e The (pseudo) Lie algebra g acting transitively on F' by preserving
all these structures.

e It is a standard technique in transversally Riemannian foliation
theory to lift the foliation to the Stiefel space of transversal or-
thonormal frames, in order to get a transversally parallelizable
foliation. In our situation, we already replaced M by M™*, without
losing its Brinkmann nature, essentially for this aim (Par. .
So the V-foliation on F' is transversally parallelizable.
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Dynamics of the closure foliation (F,V), the holonomy sub-

group I'’. One fundamental result in Riemannian foliation theory is
that taking the closure of a Riemannian foliation V), gives rise to a sin-
gular Riemannian foliation V, which is actually regular in the transver-
sally parallelizable case [34]. Carriere’s Theorem, [10, [11], applies since
dimV = 1, and says that the V-leaves are tori. The goal of this sec-
tion is to show in our rich situation that, essentially, V is given by an
isometric action of a torus.

8.2.1. Notations. Fix p € F' € M, so F is the F(p)-leaf. Consider a
lift p € M of p and let F' = F(p).
Consider now the following objects:

The foliation Y of F given by the closure of the V-leaves, and let
V be its lift to F.

e I, the stabilizer of p in G, then F~ G/I.
e J, the stabilizer of V(p) in G. Remember that J is normal in G

and is furthermore abelian and contained in the nil-radical of G
(Par.[7.3.2).

m: G — Q = G/J, the quotient map. In fact, @ is identified to
the quotient space F'/V.

I'=m(F) C G. This also equals m (M) since M is a product of
F by an interval (Proposition [7.5).

L, the closure in @Q of 7(I"), and LV its identity component.

Set P = 77 1(L) and P° = 7= 1(L"). Then PV is the identity
component of P, and it contains J. Furthermore, 7(I') N LY is
dense in L0,

' =T NP As L° is normal in L, P° and I' are normal in P
and I' respectively.

8.2.2. Algebraic description. Let us give an algebraic description,
i.e. by means of GG, of all the present quantities:

First, F = G/I,

For z € G, the V-leaf of I is ZzI, where Z is the simply connected
Lie group determined by 3 = RV, and we have ZzI = 221 = z.J =
Jx. So it corresponds to the subset Jz of G.

e The quotient leaf-space F'/V = G/J = Q.
e The orbit P(zI) corresponds to the subset of G: Pzl =

P(xIz~ Yo = P.x, since zlx~' Cc 2Jo~' = J C P.

e Similarly P'zI = Pz C G.
e The I'-saturation of a leaf V(xI) corresponds to I'JxI = I'Jz, and

its closure is I Jz = T'Jz = Px. _
The connected component of 21 in I'V(x1) corresponds to Pz =

[0Jz. In other words, the connected component of the lift in F
of the closure of any V-leaf in F, has the form Pz (as a subset in
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G or as a P-orbit of I € G/I). Therefore, the closure foliation v
corresponds to the P%-action.

8.2.3. Structure of L. Observe that: L' =1 «— P’ =] «—
I'NnJ # 1, and all these are equivalent to the fact that all V leaves in
F' are periodic, with the same period. This periodic case is trivial with

respect to our considerations here and so henceforth, we will assume
L0 £ 1.

Fact 8.1. TV is abelian. Furthermore, assume we are not in the
periodic case, then w(T'°) is dense in LY, and m : P° — L° is injective
on T2, and hence L is abelian.

Proof. This follows from Carriére’s Theorem [10) 1] on closure of
orbits of transversally Riemannian flows (i.e. foliations of dimension 1).
With our notation, it says that a leaf of V is a torus, on which V is
diffeomorphic to a minimal (i.e. having dense leaves) linear foliation (of
dimension 1). We are here in a transversally parallelizable case, where
all V-leaves are diffeomorphic. They are all given by P%orbits. Such an
orbit is of the form T'°\ P%/I. Since the V-leaf is a torus, and I'? is the
deck group of its cover PY/I, then I'? is abelian. Now, L? is the quotient
space of the V-foliation when lifted to the universal cover. Since V is
minimal (in the V-leaf), then 7(I'%) is dense in LY. Finally, besides the
periodic case, if we assume I'° N J = 1, then I'” injects in L, and LP is
therefore abelian. q.e.d.

Remark 8.2. The quotient space F / V is identified to the quotient
group @ = G/J. Using the language of transversally Riemannian folia-
tion [34], one says that V is a transversally Lie foliation with structural
group (), which means that V has a transversally geometric structure
modeled on (@, Q) (where the group @ acts by left translation on the
space Q). In general, one reduces the study of transversally Riemann-
ian foliations, first to the transversally parallelizable case. Then, for
closures of leaves, or say when there is a dense leaf, one proves that the
transversally parallelizable foliation is indeed a transversally Lie folia-
tion. Actually, Carriere’s Theorem [10] [11] was proved for transversally
Lie foliations. Here, we have a richer situation, where the ambient man-
ifold itself F' has a (local) geometric structure of type (G,G/I), which
induces a transversally Lie foliation structure of type (@, Q) for V.

8.3. The syndetic hull H (I, P°).

Proposition 8.3. Let C° be the identity component of the centralizer
Z(T%) of TY in P°. Then:

- go is transversal to J (in P°) and hence acts transitively on the

V-leaves,
— CY is abelian and contains TO.
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Definition 8.4 (Syndetic hull). As C° is a connected abelian Lie
group and T C OO is discrete, there exists a unique subgroup of C°
containing I'® and in which T? is a lattice. Since it was defined by
means of PY, it will be denoted by H(I'Y, P°) and called the syndetic
hull of I'? in PP.

Remark 8.5. In the nilpotent case, there is a construction of a
(unique) Malcev envelope which associates to a discrete subgroup (say
of finite type) a syndetic hull where it is a lattice [41]. In our case here,
PV is solvable, a situation where the construction does not extend. Ac-
tually, contrary to “easy life” in semi-simple or nilpotent groups, in
solvable groups and worse, in semi-direct products of type compact by
solvable, there is no way to fill in discrete sub-groups, even Borel density
fails for lattices (compare with [48])!

Proof. We have an exact sequence 1 — J — P° — L0 — 1. Since
J is abelian, the P%-action by conjugacy on J reduces to a L°-action
(on J). For I € L% let Z;(I) be the fixed point set of its action on J.
The trivial factor of the L° representation is thus 7' = (\,c 0 Zs(0).
So T is the intersection of J with the center of P°. For a generic I,
Zj(l) = T. More precisely, there is a finite set of (proper and closed)
subgroups LY,..., LY, such that if | ¢ |J; LY, then Z,(I) = T. Similarly,
one defines Z;(p) for p € P°, specially for p = v € I'?. Since 7(I'Y) is
dense in L°, for v “generic”, Z;(v) = T. By taking the quotient P°/T,
we can assume 1" = 1 (observe, however, that by doing this, i.e. passing
to the quotient space, I'’ could become non-discrete).

Let «+ be generic and assume it belongs to two one parameter groups
hi(t) and ho(t) having the same projection in LY, that is 7(hy(t)) =
m(ha(t)). On the one hand, we have m(hy(t)hy'(t)) = 1, and thus
hi(t)hy ' (t) belongs to J. On the other hand, hi(t)hy'(t) commutes
with «. This implies hi(t) = ha(t). Consider now ¢ € P’ commut-
ing with . For any one parameter group hj(t) containing =y, ha(t) =
Ad.(h1(t)) is another one having the same projection in LY (since LY is
abelian, and hence the Ad, -action on it is trivial). This implies that
hi = hg, that is, ¢ commutes with any element hq(t).

From all this, we infer that if v and 7/ are two generic elements of
I'Y) then any one parameter groups h(t) and h/(t) containing v and
+', respectively, commute. Regarding existence of such one parameter
groups h(t), let K be a one parameter group in (the abelian) L° con-
taining 7(7), and consider 7~!(K), which is connected (since .J is con-
nected), and contains 7. Then 7~1(K) is a semi-direct product R x R¥
(L = R¥). Let us refer to Lemma below, for the proof that generic
elements of such a semi-direct product can be reached by one parameter
groups.
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Now, let 1, ...,74 be generic elements of 'Y contained in one param-
eter groups hi(t),...,hq(t), such that the derivatives h/(0),..., R/ (0)
generate a subspace of the Lie algebra of P of dimension d = dim L.
They determine an abelian group A transversal to J and centralizing I'Y.
Let us prove that A contains I'Y. To be precise on the significance of
genericity of elements of I'’, let us denote by U the open dense set
LY — J; LY, where the L? are the subgroups defined above (where the
centralizer does not achieve the minimal dimension). Then, v is generic
if m(y) € U. Therefore, B = 7~1(U) NI is contained in A.

The subgroup D generated by B is contained in ANTY and the pro-
jection 7 sends D to the subgroup generated by 7(I'°) N U. But the last
subgroup equals 7(T'?), since 7(I'°) is dense (in L") and U is open (say,
if X is a dense subgroup of R% and U is open in R?, then for a,b € XNU
close, the translated X NU — b is a neighbourhood of 0 in X, and hence
X NU generates X). It follows that 7 sends D surjectively onto 7 (T°).
But 7 maps bijectively T° to 7(I'%), and D C T'° which implies that
D =T9, that is T'° C A.

Now, if the trivial factor 7' was not trivial, then C°, the identity com-
ponent of the centralizer of I'V is exactly AT. It satisfies all the claimed
properties. q.e.d.

In order to finish the proof, we need:

Lemma 8.6. Let K be a semi-direct product R x R%.  Then, any
generic element of K belongs to a one parameter group. More pre-
cisely, assume that R acts on R? via a representation t — e'* with
a € gl(d,R). Let A\i,...,\; be the purely imaginary eigenvalues of a.
Ift ¢ Ui%ﬁZ, then, for any v € R?, (t,v) belongs to some one
parameter group of K.

Proof. The Lie algebra ¢ of K, is generated by one element Y and
R9, with non-vanishing brackets [Y,u] = a(u), for u € R%. Tt embeds in
aff(R?) = gl(d, R) x R%, the Lie algebra of the affine group Aff(RY), by
sending Y to a and R? to R?. Let K’ be the Lie subgroup of Aff(R9)
determined by this embedding. Then, K is isomorphic to K’, unless e’®
is periodic: there exists g # 0 such that e/©® = 1. In this case, K will
be the (cyclic) universal cover of K’. Such K is a non-linear group, i.e.
cannot be injectively embedded in any GL(n,R). Their prototype is the
Euclid group Eucy = SO(2) x R%. Actually, once treating K’, we can
lift to K, and hence we will assume we are not in this periodic case.

Consider now the map ¢ : (t,z) € RxR? — ¢!(x) = e'z+(e!u—u) €
R?. One checks that t — ¢! is a one parameter group in Aff(RY). Its
infinitesimal generator is the vector field z — X(a) = a(z) + a(u).
Accordingly, the vector field z — a(z) + u has a flow (¢t,z) — ez +
a~'(eu — u), where here a~!(e’® — 1) is understood to be equal to

B,(t) =1+ ga—i— é—g!az +---. Let us see when B,(t) is not surjective. By
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means of a Jordan decomposition, we reduce the question to the case
where @ has a unique (complex) eigenvalue \, that is (a — A1)? = 0.
First, if A = 0, then a is nilpotent and B,(t) is surjective for any ¢. If
A # 0, then a! exists and B, (t) = a~!(e’® — 1). Thus, if det B,(t) = 0,
then e* = 1; in particular, A € v/—1IR and ¢ € 27”\/—71Z In sum, let
A1,..., A\ be the purely imaginary eigenvalues of a. If ¢ ¢ J, %ﬁz,
then, for any v € R?, (t,v) belongs to some one parameter group. q.e.d.

8.4. T seen in the identity component of its centralizer in G.

Proposition 8.7. Remember the definition of C° (in Propositz'on
and that of the syndetic hull H(T°, P%). Define the following subgroups
of G:

— C9: the identity component of the centralizer of T? in G.
— CY0: the identity component of the center of C0.

Then CY% contains H(T'?, P°) and in particular acts transitively on the

V-leaves.
In fact, H(T?, PY) is also the syndetic hull of TV in C%.

Proof. If g € G centralizes I', then it normalizes JI'V (since .J is
normal) and hence normalizes P = JTO. Tt follows that the central-
izer of TV, and hence also its identity component C%, normalizes PP.
But then, C% preserves C° too, since the latter is defined as the iden-
tity component of Z(I'%) in P°. It also preserves the syndetic hull
H(T° P%. But, since it centralizes the lattice T° in H(I', PY), C%
acts trivially on H(I'%, P%). That is H(I? P) c C%° and hence
H(T°, P%) = H(T?, C%9), q.e.d.

9. End of the proof of Theorem

So far, we fixed a leaf F and considered its V and V-foliations. Now,
we consider a small curve p : u € [0,1] — p, transversal to F. This leaf
F, = F(py) comes with its associated foliation V. There is, a priori, no
obvious continuity or even semi-continuity of V. In other words, V is a
foliation on each leaf but not a foliation of M.

We have in particular groups I,, the stabilizers of p,, and J, the
stabilizers of ]}(ﬁu) These two groups depend continuously on w.

There is also PO and I'Y associated to F,,. Again, a priori, they satisfy
no obvious continuity, or even semi-continuity on w.

Fact 9.1. Let uy,up be two parameters € [0,1], P) , P)  T% and T,

their associated groups. Iffgl = F?LQ =19, then T has the same synde-

tic hull in Pgl and PBQ. In particular this syndetic hull acts transitively
on the V-leaves of both F,, and F,,.

Proof. Apply Proposition and observe that C%% is the same for
uy and uy (it is defined by means of I'° only). q.e.d.
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Fact 9.2. We can assume that for a dense set D C [0,1] of parame-
ters u, I'Y is a constant T°.

Proof. Let B(e,n) be the ball of radius n and centered at the neutral
element of I' = 71 (M), with respect to a word metric given by some gen-
erating set. Let X,, = {u € [0,1] / T9NB(e,n) generates T0}. Forn € N
fixed, the subsets T N B(e,n),u € [0,1], of B(e,n) are in finite number.
By Baire’s Theorem, there exists ng such that X,,, contains a non-trivial
interval of parameters. The map u € [0,1] — 'Y N B(e, ng), from [0, 1]
into subsets of B(e,ng), has a finite image. So there is a level whose
closure contains an interval. We will assume it is [0, 1] itself. q.e.d.

Corollary 9.3. All the syndetic hulls H(I'°, P,) coincide, for u €
D C [0,1] a dense set of parameters, say H(I° P,)=H, forue D. In

particular H acts transitively on V-leaves of all points py, u € [0, 1].

Proof. The previous fact implies constancy H = H(I'Y, P,), for u is
a dense subset D C [0,1]. It then follows that H acts transitively on a

dense set of V-leaves. This extends to all leaves. q.e.d.

End of the proof of Theorem[I.6, Consider the cover M’ = M/FO.
Then H acts on it since it centralizes I'?. The F'-leaves of M’ have the
form T°\ G/I. As a class in G, a point ['YxI has an H-orbit HI'zI =
HzlI. This is a torus I’ \ H in M’. Taking HZ (which is still abelian
since Z is contained in the center of G) instead of H if necessary, we may
assume that Z C H. Let 7 be the image of the transversal curve u — py,
considered above, and 7’ a lift in M’. The orbit 7" = H7’ is topologically
a product of a torus by an interval. It embeds to a submanifold 7" in M.
It is Lorentzian and V-invariant, in fact V-invariant. The V-action on T
commutes with the H-one. So, the V-action on each torus is conjugate
to a linear one and hence equicontinuous. With respect to Facts and
[7.4] this T can be thought of as the core N: equicontinuity of V on a
torus in 7' implies equicontinuity on 7', and then equicontinuity on M
(since T is timelike). q.e.d.

Remark 9.4. The case where the foliation F is not minimal, i.e.
when the leaves are compact, is covered by the study we made so far.
Indeed, in this case, the core N contains a closed submanifold of the
form F'x [0, 1], where F'is closed, V-invariant, and locally homogeneous,
hence the results in Section [§| and Section [0] apply.

Remark 9.5. Carriere’s Theorem says that V restricted to a V-leaf
is diffeomorphic to the foliation determined by a minimal linear flow
on the torus. In this general context, the transversally Riemannian
foliation V is given without parametrization. All the investigation in
last sections aimed to check that in our parametric setting, the vector
field V itself is (smoothly) conjugate to a linear one.
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