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1. Introduction

Any simply connected solvable 3-dimensional Lie group is a semi-direct product GA of R2 by R, where 
A is a 2 × 2 real matrix and R acts on R2, via t ↦→ exp tA. Over C, the matrix A is always diagonalizable 
except in two cases, B =

(︁ 0 1
0 0

)︁
or C =

(︁ 1 1
0 1

)︁
, up to conjugacy and rescaling. Now, GB is the well-studied 
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3-dimensional Heisenberg group Heis, and the group GC is the object of our study here. Its Lie algebra 
appears as type IV in the Bianchi classification and is generated by a basis B = {e1, e2, e3} of R3 satisfying 
the bracket relations

[e1, e2] = e2, [e1, e3] = e2 + e3, [e2, e3] = 0. (1.1)

The conjugacy class of C =
(︁ 1 1

0 1

)︁
accumulates to the identity matrix I =

(︁ 1 0
0 1

)︁
, and in a precise sense, GC

accumulates to Ho = GI . The group Ho can be identified with the homothety group of the plane, that is, 
transformations z ∈ C ↦→ az + b, a ∈ R+, b ∈ C. Therefore, for these reasons, we shall call our Lie group 
GC the pseudo-homothety group of dimension 3, and use the letters Psh for the group and 𝔭𝔰𝔥 for its Lie 
algebra.

A matrix realization of the Lie algebra 𝔭𝔰𝔥 is given by

𝔪 = span
{︄
E1 =

(︄0 0 0
0 1 1
0 0 1

)︄
, E2 =

(︄ 0 0 0
−1 0 0
0 0 0

)︄
, E3 =

(︄ 0 0 0
−1 0 0
−1 0 0

)︄}︄
, (1.2)

where the Lie bracket is the usual commutator of matrices. Indeed, we have [E1, E2] = E2, [E1, E3] =
E2 + E3, and [E2, E3] = 0, and, more precisely, (1.2) yields a linear representation of 𝔭𝔰𝔥. Moreover, by 
making use of the exponential map, we obtain that the Lie group Psh is isomorphic to the matrix group

M =
{︄(︄ 1 0 0

−x2 − x3 ex1 x1ex1

−x3 0 ex1

)︄
: x1, x2, x3 ∈ R

}︄
, (1.3)

that is, Psh is isomorphic to R3, with global coordinate system (x1, x2, x3), and multiplication given by the 
matrix multiplication of (1.3).

The present article aims to study left-invariant Lorentzian metrics on Psh. This is the first part of 
a program aiming to understand geodesic completeness and isometry groups of left-invariant Lorentzian 
metrics on 3-dimensional non-unimodular Lie groups. The case of our present Lie group Psh seems, from 
the properties described below, to be of particular interest.

From the metric point of view, Heis and Ho have antagonistic properties. For instance, any Lorentzian 
metric on Heis is complete [9], while, on the other hand, any Lorentzian metric on Ho is incomplete [10,13]. 
One might be tempted to think that our group Psh behaves like Ho from this point of view, that all of 
its Lorentzian metrics are incomplete, or at least, that complete metrics are rare. Our main (somewhat 
surprising) result is the following.

Theorem 1.1. There is a one-parameter family of left-invariant Lorentzian complete metrics on Psh whose 
geodesics have bounded velocity. Furthermore, up to automorphism and scaling, there is a unique complete 
left-invariant Lorentzian metric on Psh with geodesics of unbounded velocity.

Having special metrics is, by any means, here by their completeness and geodesic velocity (un)bounded-
ness, an interesting phenomenon that deserves to be highlighted.

The analysis of the geodesic flow for left-invariant metrics on Lie groups reduces, via the Euler-Arnold 
formalism, to the study of a quadratic homogeneous vector field on its Lie algebra. We shall call this vector 
field the geodesic field, see Sec. 2 for the definition and some background and techniques.

In Sec. 3, we will show that, under the action of R∗×Aut(𝔭𝔰𝔥), there are six equivalence classes of metrics 
on 𝔭𝔰𝔥, two of them in families. Representatives of these equivalence classes are usually called normal forms. 
Completeness is constant on the orbits of this group action, and it is the first step to prove our main 
Theorem 1.1, cf. Sec. 5. The geodesic fields of all metric normal forms can be found in Table 1, where we 
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also summarized the following interesting facts. All geodesic fields have an invariant plane and, besides the 
energy, they have another non-polynomial first integral, which is defined on the complement of the invariant 
plane. In the complete case, the “hidden” non-trivial first integral was the key to the proof by establishing 
certain boundedness properties. Indeed, as stated in Theorem 1.1, there is a family of metrics whose integral 
curves of the geodesic field are all bounded; but, also remarkably, there is another complete metric with 
unbounded integral curves that happen to all lie on the invariant plane.

Up to covering and quotient, out of the six 3-dimensional unimodular Lie groups, there are only two that 
have incomplete metrics, SL(2, R) and E(1, 1), as shown in [4]. As it turns out, the set of complete metrics 
is closed for both of these groups. It was reasonable to conjecture that this was always the case, at least 
for 3-dimensional Lie groups. In Sec. 6, we will see that our Lie group Psh provides a (non-unimodular) 
counter-example.

Proposition 1.2. The set of complete metrics on Psh is neither open nor closed.

Kundt metrics have been intensively studied in general relativity and have attracted the interest of 
mathematicians in recent years. We would like to observe that the study of geodesic fields provides a 
natural context to investigate the existence of left-invariant Kundt metrics, as explained in Sec. 6. We 
present a concise outline of the existence of Kundt structures on Psh and exhibit one that is complete and 
another one that is a plane wave.

2. Preliminaries

We include here a brief account of background material, for the sake of clarity of exposition, and also to 
fix notation and terminology.

2.1. The Euler-Arnold theorem

As is well-known, left-invariant metrics on a Lie group G are in one-to-one correspondence with non-
degenerate symmetric bilinear forms on its Lie algebra 𝔤. The Euler-Arnold formalism allows us to treat 
questions concerning geodesics (here understood as the geodesics of the Levi-Civita connection) also at the 
Lie algebra level, as follows.

Let I be an open interval in R and γ : I −→ G be a smooth curve in G. Using left translations, we can 
define the associated curve v : I −→ 𝔤 in the Lie algebra 𝔤 of G, for every t ∈ I, as

v(t) = Dγ(t)Lγ−1(t)γ̇(t).

Notice that for matrix Lie groups v(t) = γ−1(t)γ̇(t).
We have the following theorem, first proved by Euler for the group SO(3), and then established in full 

generality by Arnold in his seminal work on applications of differential geometry of Lie groups to the 
hydrodynamics of perfect fluids.

Theorem 2.1 (Arnold, [1,2]). Let (G, q) be a semi-Riemannian Lie group. The curve γ : I −→ G is a geodesic 
if and only if the associated curve v : I −→ 𝔤 satisfies, for every t ∈ I, the equation

v̇(t) = ad†
v(t)v(t), (2.1)

where ad† denotes the formal adjoint of adv(t) with respect to q.
v(t)
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The system of ODE in (2.1) is called the Euler-Arnold equation and its associated vector field in Rn is 
called the Euler-Arnold vector field. For simplicity of language, we will sometimes refer to this vector field 
as the geodesic field. Remark that the geodesic field is quadratic and homogeneous.

Recall that a vector field is said to be complete if all its integral curves have the real line R as maximal 
domain of definition, and incomplete otherwise. Clearly, a left-invariant metric on a Lie group is geodesically 
complete if and only if its associated Euler-Arnold vector field is complete.

2.2. First integrals

It is easy to see that q(v, v) (sometimes referred to as the energy) is a first integral, that is, q(v, v) is 
constant along any solution of (2.1). If G can be equipped with a bi-invariant metric then another first 
integral is granted for every metric, [4]; however, in general, there is no guarantee that another one exists.

2.3. Idempotents

A technique that is very useful in the search for incomplete integral curves of quadratic homogeneous 
vector fields is that of idempotents.

Definition 2.2. Let F be a quadratic homogeneous vector field on Rn. A non-trivial solution of F (vo) = vo
is called an idempotent.

It was proved in [12] that for a quadratic homogeneous vector field, we can always find either a singularity 
(i.e. F (vo) = 0) or an idempotent.

Moreover, as explained in [4], an idempotent vo yields an incomplete solution of the system v̇ = F (v), 
since the solution with initial condition vo is given by t ↦−→ u(t)vo, with u such that u̇ = u2 and u(0) = 1.

2.4. Incompleteness in dimension 1

The ODE u̇ = u2 is the typical prototype of an equation with incomplete solutions, the velocity of an 
integral curve grows quadratically and the curve reaches infinity in finite time. Heuristically, an ODE of the 
form u̇ = u2 + δ with δ > 0 should also be incomplete as the velocity grows even faster. We can formalize 
this statement with the following lemma.

Lemma 2.3. Let (E) be an ordinary differential equation of the form

ẋ(t) = ax2(t) + α(t),

such that a > 0 and α ∈ C∞(R); t ↦→ α(t) ≥ 0. Let γ : I → R be a nonzero maximal integral curve of (E), 
then γ must be incomplete.

Proof. Suppose, aiming at a contradiction, that I = R. We start by assuming that γ is bounded, i.e. there 
exists M1, M2 ∈ R such that M1 ≤ γ(t) ≤ M2. Since γ̇(t) = aγ(t)2 +α(t) ≥ 0 then γ is non-decreasing, and 
thus γ has two horizontal asymptotes

lim
t→−∞ γ(t) = c1 , lim

t→+∞ γ(t) = c2, c1, c2 ∈ R,

which, in turn, implies that lim
t→±∞ γ̇(t) = 0. Hence, γ ≡ 0 which contradicts the fact that γ is nonzero 

maximal integral curve, therefore, γ cannot be bounded. Without loss of generality, we suppose that γ
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is not upper-bounded, and we estimate the time it takes for γ to tend to +∞. Let x0 = γ(t0) > 0 and 
x = γ(t) > 0, then

t(x) − t(x0) =
t∫︂

t0

dt =
x∫︂

x0

1(︁
dx
dt

)︁dx =
x∫︂

x0

dx

ax2 + α
≤

x∫︂
x0

dx

ax2 = 1
ax0

− 1
ax

.

Thus, lim
x→+∞ t(x) ≤ 1

ax0
+ t(x0). Hence, γ tends to infinity in finite time and is, therefore, an incomplete 

integral curve of (E). □
2.5. Action of the automorphism group

Let Sym(𝔤) be the space of symmetric bilinear forms on 𝔤 and Sym∗(𝔤) the subset of all non-degenerate 
ones. The automorphism group of the Lie algebra 𝔤,

Aut(𝔤) = {φ ∈ GL(𝔤) : [φu, φu] = φ[u, v] ∀u, v ∈ 𝔤}

acts on Sym∗(𝔤), as follows. Any φ ∈ Aut(𝔤) induces a map

Sym(𝔤) −→ Sym(𝔤), m ↦−→ φ.m

where (φ.m)(u, v) = m(φ−1u, φ−1v), ∀u, v ∈ 𝔤,

which naturally restricts to a map Sym∗(𝔤) −→ Sym∗(𝔤).
Not too surprisingly, completeness of the flow of the geodesic field is invariant under rescaling and under 

the action of the automorphism group. The first statement is clear, the geodesic field remains unchanged 
by rescaling. The second was proved, for instance, in [8]. Concretely, all semi-Riemannian metrics in each 
orbit of Sym∗(𝔤) by the action of Aut(𝔤) are either complete or incomplete.

It is of interest to show that idempotents are also invariant under this action. More precisely, we have 
the following.

Lemma 2.4. Let m and n be two elements in Sym∗(𝔤) such that n = φ.m for some φ ∈ Aut(𝔤). Then xo is 
an idempotent of the geodesic field of m if and only if φ(xo) is an idempotent of the geodesic field of n.

Proof. Let n = φ.m and let †m and †n denote the formal adjoints with respect to m and n. Suppose 
that the geodesic field of m has an idempotent xo, i.e., ad†m

xo
xo = xo. Then m(xo, adxo

y) = m(xo, y), 
for all y ∈ 𝔤, and so, n(φ(xo), φ(adxo

y)) = n(φ(xo), φ(y)). Since φ is an automorphism of 𝔤, then 
n(φ(xo), adφ(xo)φ(y)) = n(φ(xo), φ(y)) and, therefore, we have n(ad†n

φ(xo)φ(xo), φ(y)) = n(φ(xo), φ(y)). 
Hence, ad†n

φ(xo)φ(xo) = φ(xo). The converse is clear, since n = φ−1.m. □
Representatives of the orbits of Sym∗(𝔤) under the action of R∗ × Aut(𝔤), where R∗ acts as scaling, are 

usually called metric normal forms.

3. Normal forms of left-invariant metrics on Psh

The classification of normal forms of left-invariant metrics in dimension 3 has been considered more or 
less implicitly in several articles, for instance [3,11]. We include some details here for our Lie algebra 𝔭𝔰𝔥, 
for clearness of exposition and illustration of the method.

The automorphism group Aut(𝔭𝔰𝔥) can be obtained by direct computation using the definition and our 
preferred basis B in (1.1) as the matrix group
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Aut(𝔭𝔰𝔥) =
{︄(︄1 0 0

a c d
b 0 c

)︄
: a, b, c, d ∈ R, c ̸= 0

}︄
.

As can be seen, Aut(𝔭𝔰𝔥) is 4-dimensional and has two connected components. Consider the generic 3 × 3
matrix

m =
(︄
m1 m2 m3
m2 m4 m5
m3 m5 m6

)︄
,

which is assumed to represent a non-degenerate symmetric bilinear form in the basis B. The image of m

under the automorphism φ−1 =
(︃

1 0 0
a c d
b 0 c

)︃
is given by φtmφ where t denotes the matrix transpose.

Observe that the restriction of m to the derived subalgebra 𝔡 of 𝔭𝔰𝔥 is transformed only by the subgroup 
{φ ∈ Aut(𝔭𝔰𝔥) : a = b = 0}. Moreover, the (non)degeneracy on 𝔡 = span{e2, e3} and whether e2 is isotropic 
or not are both preserved by Aut(𝔭𝔰𝔥). We thus have two cases to consider, which will include subcases.

Case 1: m|𝔡 is non-degenerate i.e. m4m6 −m2
5 ̸= 0.

Subcase 1.1: e2 is non-isotropic i.e. m4 ̸= 0.
We have two possibilities here, which depend on the signs of both m4 and the chosen scale (which in 

turn depends on the second and third leading principal minors).

Q1,r =
(︄1 0 0

0 1 0
0 0 r

)︄
, with r ̸= 0 and Q2,s =

(︄1 0 0
0 −1 0
0 0 s

)︄
, with s ̸= 0.

Subcase 1.2: e2 is isotropic i.e. m4 = 0.
We also have two possibilities here, which depend on the signs of both m5 and the chosen scale (which 

in turn depends on the second and third leading principal minors).

Q3 =
(︄1 0 0

0 0 1
0 1 0

)︄
and Q4 =

(︄1 0 0
0 0 −1
0 −1 0

)︄
.

Case 2: m|𝔡 is degenerate i.e. m4m6 −m2
5 = 0.

Case 2.1: e2 is non-isotropic i.e. m4 ̸= 0.

Q5 =
(︄0 0 1

0 1 0
1 0 0

)︄
.

Case 2.2: e2 is isotropic i.e. m4 = 0.

Q6 =
(︄0 1 0

1 0 0
0 0 1

)︄
.

Remark 3.1. As is well known, any left-invariant Riemannian metric on a Lie group is geodesically complete. 
We note that, for Psh, every left-invariant Riemannian metric is such that its associated bilinear form at 
the identity belongs to the orbit of Q1,r for some r > 0.

4. Euler-Arnold vector field of left-invariant metrics on Psh

For each of the normal forms in Sec. 3, we exhibit its corresponding geodesic field as well as some extra 
properties.
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4.1. The geodesic vector field

Let v(t) = x(t)e1 + y(t)e2 + z(t)e3 be a curve on 𝔭𝔰𝔥 equipped with a quadratic form q. The geodesic 
system of ODEs is then

v̇ = ad†
vv,

which can be readily computed by using the fact that ad†
v = Q−1adt

vQ, where Q is the matrix of q and the 
superscript t represents the matrix transpose.

For instance for Q3, we can easily compute that the geodesic field is given by the following system of 
ODEs

F3 =

⎧⎪⎪⎨
⎪⎪⎩
ẋ = −2yz − z2

ẏ = x(y + z)
ż = xz

.

Similar computations will allow us to obtain the geodesic field for every normal form of Sec. 3, see Table 1.

4.2. First integrals

As expected, the energy e(x, y, z) = x2 + 2yz is a quadratic first integral of F3. However, no other 
quadratic first integrals exist. This can be shown by direct computation, by parametrizing all possible 
polynomials of degree at most 2 in the variables x, y, z. Nevertheless, a non-quadratic partially defined first 
integral can be found.

Proposition 4.1. In the subspace of 𝔭𝔰𝔥 given by {z ̸= 0}, the following expression is an invariant of the 
geodesic field of Q3

f(x, y, z) = ln |z| − y

z
.

In other words, f is a first integral of the geodesic field F3 restricted to {z ̸= 0} which is invariant since 
{z = 0} is.

Proof. Clearly, {z = 0} is an invariant plane of F3. It suffices to show that the total time derivative of f is 
zero on {z ̸= 0}:

d

dt
f = ż(t)

z(t) − ẏ(t)z(t) − ż(t)y(t)
z(t)2 = x(t) − x(t) = 0.

The proposition, thus, follows. □
Interestingly, this property is not exclusive of Q3. Analogous computations will show that all normal forms 

have an invariant plane and a non-quadratic partially defined first integral on its invariant complement, see 
Table 1.

4.3. Normal forms

The following table organizes the information discussed in the previous two subsections for all metric 
normal forms of 𝔭𝔰𝔥.
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Table 1
Normal forms of geodesic vector fields on 𝔭𝔰𝔥 and their first integrals.

bilinear form geodesic field invariant plane first integrals

Q1,r ̸=0

(︄
1 0 0
0 1 0
0 0 r

)︄ ⎧⎪⎨
⎪⎩
ẋ = −y2 − rz2 − yz

ẏ = xy

ż = xz + 1
rxy

y = 0
x2 + y2 + rz2

ln |y| − r
z

y

Q2,s ̸=0

(︄
1 0 0
0 −1 0
0 0 s

)︄ ⎧⎪⎨
⎪⎩
ẋ = y2 − sz2 + yz

ẏ = xy

ż = xz − 1
sxy

y = 0
x2 − y2 + sz2

ln |y| + s
z

y

Q3

(︄
1 0 0
0 0 1
0 1 0

)︄ ⎧⎪⎨
⎪⎩
ẋ = −2yz − z2

ẏ = x(y + z)
ż = xz

z = 0
x2 + 2yz
ln |z| − y

z

Q4

(︄
1 0 0
0 0 −1
0 −1 0

)︄ ⎧⎪⎨
⎪⎩
ẋ = 2yz + z2

ẏ = x(y + z)
ż = xz

z = 0
x2 − 2yz
ln |z| − y

z

Q5

(︄
0 0 1
0 1 0
1 0 0

)︄ ⎧⎪⎨
⎪⎩
ẋ = x2 + xy

ẏ = xy

ż = −y2 − (x + y)z
y = 0

y2 + 2xz
ln |y| − x

y

Q6

(︄
0 1 0
1 0 0
0 0 1

)︄ ⎧⎪⎨
⎪⎩
ẋ = x2

ẏ = −x(y + z) − z2

ż = x(x + z)
x = 0

z2 + 2xy
ln |x| − z

x

5. Geodesic (in)completeness of Psh

The aim of this section is to give the classification of geodesic completeness for all left-invariant metrics 
on Psh. As previously discussed in Sec. 2, it suffices (although this is by no means a trivial matter) to 
analyze the completeness of the flow for each of the geodesic vector fields in Table 1.

In what follows, we will denote by Fk the geodesic vector field associated to the bilinear, symmetric, 
nondegenerate form Qk, for every possible subscript k listed in Sec. 3.

5.1. Incomplete metrics

It was shown in [4] that for a 3-dimensional unimodular Lie algebra, the Euler-Arnold vector field of a 
Lorentzian metric is incomplete if and only if it admits an idempotent; however, a counter-example in the 
non-unimodular case was given for a Lie algebra of Bianchi type VI. Our Lie algebra 𝔭𝔰𝔥, while having some 
of its geodesics fields with idempotents, also provides such counter-examples. It is important to observe here 
that if a metric has no idempotents, then no other idempotents can exist in the same orbit, cf. Lemma 2.4.

5.1.1. Incomplete metrics with idempotents
Q1,r with r < 0: vo =

(︂
1, 0, 1√−r

)︂
is an idempotent of F1,r, for r < 0.

Q2,s with s < 0: vo =
(︂
1, 0, 1√−s

)︂
is an idempotent of F2,s, for s < 0.

Q5: v0 = (1, 0, 0) is an idempotent of F5.

5.1.2. Incomplete metrics with no idempotents
Q4: The null integral curves of F4 satisfy the equation 2yz = x2. Replacing this on the first equation 
of F4 we get the equation ẋ = x2 + z2. By Lemma 2.3, incomplete integral curves exist.
Q6: One of the ODEs of F6 is ẋ = x2. Then, incomplete integral curves exist.
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5.2. Complete metrics

5.2.1. Completeness of the family of metrics Q2,s with s > 0
Let s > 0 and denote by qs the quadratic Lorentzian form on 𝔭𝔰𝔥 associated to Q2,s, i.e. qs(x, y, z) =

x2−y2 +sz2. By inspecting the geodesic field F2,s, in Table 1, we see that the plane {y = 0} is an invariant 
spacelike plane. The curves with initial condition (xo, yo, zo), with yo = 0, satisfy the equation x2+sz2 = co, 
where co = x2

o + sz2
o ≥ 0. Thus, such integral curves are bounded and are, therefore, complete.

Observe that the geodesic field F2,s is invariant under the involution (id, −id, −id). This means that 
if γ(t) = (x(t), y(t), z(t)) is the maximal integral curve with initial conditions (xo, yo, zo), then γ̃(t) =
(x(t), −y(t), −z(t)) is the maximal integral curve with initial conditions (xo, −yo, −zo). Therefore, it is 
enough to analyze the behavior of the integral curves in the upper-half space {y > 0}.

Recall, from Table 1, that F2,s has another non-quadratic first integral, defined for y > 0 by hs(x, y, z) =
ln(y) +s z

y . Therefore, any integral curve γ(t) = (x(t), y(t), z(t)) of F2,s with y(0) = yo > 0 will be supported 
in the intersection of two level sets of qs and hs, that is

{︄
x(t)2 − y(t)2 + sz(t)2 = k

ln y(t) + s z(t)
y(t) = c

, where k, c ∈ R.

From the first equation above, we see that x(t)2 + sz(t)2 = k + y(t)2, which implies that x(t) and z(t) will 
be bounded when y(t) is. Also, since x(t)2 = k + y(t)2 − sz(t)2, then sz(t)2 − y(t)2 ≤ k. From the second 
equation, z(t) = 1

s (c − ln y(t))y(t). Therefore,

y(t)2

s
((c− ln y(t))2 − s) ≤ k.

Since y
2

s ((c − ln y)2 − s) tends to +∞ when y tends to +∞, we conclude that y(t) is bounded, otherwise 
we obtain a contradiction with the inequality above.

Summing up, the integral curves of F2,s are bounded which yields completeness of the metric Q2,s, s > 0.

5.2.2. Completeness of the metric Q3
The analysis of this case is very similar to the previous one, with the main difference that there are 

unbounded (complete) integral curves of the geodesic field F3.
It can be readily checked that {z = 0} is a lightlike (i.e. degenerate) invariant plane and that the 

maximal solution of F3 with initial condition (xo, yo, 0) is given by γ(t) = (xo, yoexp(xot), 0). These curves 
are complete and unbounded. The involution (id, −id, −id) leaves the geodesic field invariant and, therefore, 
it suffices to analyze the upper-half space {z > 0}.

From Table 1, we see that q(x, y, z) = x2 + 2yz and h(x, y, z) = ln(z) − y
z are two first integrals of F3. 

Therefore, any integral curve γ(t) = (x(t), y(t), z(t)) of F3 with z(0) = zo > 0 will be supported in the 
intersection of two level sets of q and h, that is

{︄
x(t)2 + 2y(t)z(t) = k

ln z(t) − y(t)
z(t) = c

, where k, c ∈ R.

We will now show, as in the previous case, that these two first integrals imply the boundedness of the 
integral curves in {z > 0}. Let γ(t) = (x(t), y(t), z(t)) and suppose that z(t) is bounded. Since y(t) =
z(t)(ln z(t) − c), then y(t) is also bounded (remark that even if z(t) approaches zero, y(t) remains bounded 
since limz→0 z ln z = 0). Also, x(t)2 = k − 2y(t)z(t), thus x(t) is also bounded since y(t) and z(t) are. It 
remains then to show that z(t) is necessarily bounded. We have that 2y(t)z(t) ≤ k and thus 2z(t)2(ln z(t) −
c) ≤ k. This inequality implies that z(t) is bounded. The proof that Q3 is complete follows.
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5.2.3. A dynamical study of the geodesic field of Q3
We wish to include in our discussion on the flow of the ODE system F3 : v̇ = F (v) the following 

observations on its dynamics.
The vector field F3 admits three singular directions, which correspond to the zeros of F . We denote them 

as w1 = (1, 0, 0), w2 = (0, 1, 0), and w3 =
(︁
0,−1

2 , 1
)︁
. This means that, for any scalar μ ∈ R, F (μ wi) = 0

for all i ∈ {1, 2, 3}.
The eigenvalues of Dλwi

F , with i ∈ {1, 2, 3} and λ ∈ R∗, provide key insights into the dynamics of the 
geodesic field F3. Specifically:

(1) For α > 0, the singularity αw1 has one zero eigenvalue and two equal eigenvalues α. This implies that 
the singularity is repelling. Thus, this singularity corresponds to time −∞ for the corresponding integral 
curves in the invariant plane {z = 0} and in the associated spacelike level {x2 + 2yz = α2}.

(2) For α < 0, the singularity αw1 again has one zero eigenvalue and two equal eigenvalues α, meaning 
that it is attracting. Therefore, this singularity corresponds to time +∞ for the corresponding integral 
curves in the invariant plane {z = 0} and the associated spacelike level {x2 + 2yz = α2}.

(3) For any β ∈ R∗, the singularity βw2 has all eigenvalues equal to zero. Therefore, one cannot conclude that 
the flow near this singularity is qualitatively equivalent to its linearization. Nevertheless, by examining 
the projectivized dynamics around the singularity, it can be seen that both the quadratic flow F3 and 
its linearized flow exhibit “parabolic” behavior.

(4) For any δ ∈ R∗, the singularity δw3 has one zero eigenvalue, and the remaining two are ±δ
√

2i, causing 
an elliptic behavior (see Fig. 1). This elliptic nature of the linearization of F at this singularity explains 
why timelike integral curves are periodic and rotate around the corresponding singularity.

Fig. 1. The geodesic vector field F3 qualitatively rotates around the singular line (shown in black) defined by the singularity w3, 
with the direction determined the sign of the z-coordinate.

Remark 5.1. Notably, D·F has always a zero eigenvalue for every singularity. This zero eigenvalue corre-
sponds to the normal direction of the surfaces defined by the corresponding energy level set at the singularity 
in question.

6. Further remarks

6.1. (Non-)closedness of complete metrics

We know, from [4], that there are, up to covering and quotient, only two 3-dimensional unimodular Lie 
groups with incomplete metrics. They are SL(2, R), the special linear group of degree 2, and E(1, 1) the 
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group of motions of Minkowski 2-space, also known as Sol. Careful reading of the information in [4, Props. 
3 and 5] allows us to conclude that the set of complete metrics in both SL(2, R) and E(1, 1) is closed. See 
also [7] for a detailed description on SL(2, R).

We will now show that this is not the case for our Lie group Psh. In fact, the set of complete metrics is 
neither closed nor open. Fix r ̸= 0, for every n ∈ N, the matrix

An,r =

⎛
⎝1 0 0

0 1
n2 1

0 1 r
n2 + n2

⎞
⎠

is an element in the orbit Q1,r. Taking r = −n4 < 0, the sequence An,−n4 converges to Q3 as n tends to 
+∞. Hence, we have a sequence of incomplete metrics converging to a complete one, showing that the set 
of incomplete metrics is not closed, and thus, the set of complete metrics is not open. Now, fix s ̸= 0, for 
every n ∈ N, the matrix

Bn,s =

⎛
⎝1 0 0

0 − 1
n2 −1

0 −1 s
n2 − n2

⎞
⎠

is an element in the orbit Q2,s. Taking s = n4 > 0, the sequence Bn,n2 converges to Q4 as n tends to +∞. 
Therefore, we have a sequence of complete metrics converging to an incomplete one, showing that the set 
of complete metrics is not closed.

We remark, however, that the set of complete metrics has non-empty interior. More precisely, the orbits 
corresponding to the family Q2,s, s > 0, form an open set in the space of Lorentzian metrics. This can be 
seen from the fact that these are the metrics q such that q(e2, e2) < 0 and q(e2, e2)q(e3, e3) − q(e2, e3)2 < 0, 
cf. Sec. 3.

6.2. Kundt metrics

A Lorentzian manifold (M, g) is said to be a Kundt spacetime if there exists a non-singular vector field 
V on M and a differential one-form α such that

g(V, V ) = 0, ∇XV = α(X)V, ∇V V = 0, (6.1)

for any vector field X orthogonal to V . In [5], the following definition was introduced in order to provide 
an algebraic characterization of the Kundt property for left-invariant structures.

Definition 6.1. Let 𝔤 be a Lie algebra. A Kundt pair on 𝔤 is a pair (⟨−, −⟩, 𝔥), where ⟨−, −⟩ is a Lorentzian 
inner product on 𝔤 and 𝔥 is a degenerate codimension one subalgebra which is stable by the Levi-Civita 
product • and such that for any e ∈ 𝔥⊥, e • e = 0.

In [5, Prop. 3.1], it was, indeed, proved that a Lie group whose Lie algebra has a Kundt pair is a Kundt 
Lie group, that is, a Lie group with a left-invariant Lorentzian metric and a left-invariant vector field V
satisfying the definition of a Kundt spacetime, cf. (6.1).

As mentioned in Sec. 1, the study of geodesic fields provides a natural context to investigate the existence 
of Kundt metrics, as it is not difficult to see that having a degenerate subalgebra which is stable by the 
Levi-Civita product is equivalent to having a degenerate subalgebra which is an invariant plane for the 
corresponding geodesic field.
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A quick check of Table 1 shows that, if 𝔣 = span{e1, e2} and 𝔡 = span{e2, e3}, then we have the following 
Kundt pairs (Q3, 𝔣), (Q4, 𝔣), (Q5, 𝔡), (Q6, 𝔡). Notice that (Q3, 𝔣) is a complete Kundt structure on 𝔭𝔰𝔥.

We remark that Q6 is an incomplete flat metric. In the global coordinates given by (1.3), a frame of 
left-invariant vector fields is given by {X1, X2, X3}, with X1 = ∂x1 , X2 = ex1∂x2 , and X3 = ex1(x1∂x2 +∂x3). 
Thus, our left-invariant metric Q6 is expressed on Psh, in this coordinate system, as

g = e2x1dx2
3 + 2ex1(dx1dx2 + x1dx1dx3).

In the paper [6], another part of our program mentioned in Sec. 1, we show that this is the only Lorentzian 
metric on Psh with 4-dimensional isometry group.
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