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ON CLOSED GEODESICS IN LORENTZ MANIFOLDS

S. Allout, A. Belkacem, and A. Zeghib

Abstract. We construct compact Lorentz manifolds without closed geodesics.

1 Introduction

It is well known that (non-trivial) closed geodesics in compact Riemannian manifolds
always exist (see for example [Kli78]). There has been, then, a lot of activity around
the semi-Riemannian counterpart, mainly the Lorentzian case. Before going further,
let us first introduce the following definition. A (non-trivial) geodesic γ : I →M in a
semi-Riemannian manifold (M,g) is called weakly closed if there exists s, t ∈ I with
t �= s, such that γ(s) = γ(t) and γ̇(s) is proportional but not equal to γ̇(t) and called
closed if γ̇(s) = γ̇(t). Observe that weakly closed geodesics are necessarily isotropic
and incomplete.

Our first result provides an example of a compact semi-Riemannian manifold
without closed or weakly closed geodesics. More precisely, let SOL and Euc be the
identity components of the isometry groups of the Minkowski and the Euclidean
planes respectively and put G = SOL× Euc. Then

Theorem 1.1. There exists a left invariant metric on G, of signature (2,4), and a

cocompact lattice Γ⊂G such that Γ\G is without closed or weakly closed geodesics.

The study of closed geodesics in semi-Riemannian manifolds received more at-
tention in the Lorentzian case. The first result we want to mention in this direction
is due to Tipler [Tip79] where it is shown that a compact spacetime with a covering
space containing a compact Cauchy surface admits closed timelike geodesics. The
compactness assumption of the Cauchy surface is necessary as shown by Guediri
[Gue02] where he provides examples of compact flat Lorentz space forms without
closed timelike geodesic, but they admit, however, closed lightlike geodesics.

In [Gal86], Galloway shows that every compact two-dimensional Lorentzian mani-
fold contains at least one closed non-lightlike or (weakly) closed lightlike geodesic. He
also constructed a three-dimensional example without closed non-spacelike geodesics.
Galloway’s result doesn’t ensure existence of closed geodesics in Lorentzian sur-
faces. This was settled later by Suhr in [Suh13] where he shows that every compact
Lorentzian surface contains at least two closed geodesics, one of them is non-lightlike
and then constructs examples showing optimality of this bound.

Galloway in [Gal84], Guediri in [Gue02, Gue07], Sánchez in [San06] and Flores
et al. in [FJP11] provide many existence (and non-existence) results of closed time-
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like geodesics in compact Lorentzian manifolds. See also [C+21, Mas92, Mas93] for
further investigations.

The question whether a compact Lorentzian manifold admits closed geodesics
remained open (see Question 9.1.1 in the recent survey [BM21]). The following ex-
amples provide a negative answer:

Theorem 1.2. Let G be either SL(2,R) or SOL. Then there exists a left invariant

Lorentzian metric on G such that every compact quotient Γ\G is without closed

geodesics. However, Γ\G admits a countable collection of weakly closed null geodesics.

Unlike the locally homogeneous case, closed geodesics always exist in the homo-
geneous setting. More precisely

Theorem 1.3. A compact homogeneous semi-Riemannian manifold (M,g) admits

closed geodesics. If, in addition, (M,g) is Lorentzian then it admits both timelike

and spacelike closed geodesics.

1.1 Organization of the paper. Section 2 is dedicated to the proof of Theorem
1.3. In Sect. 3 we present some background about geodesics of left invariant metrics
needed for the constructions later. We prove Theorems 1.2 and 1.1 in Sects. 4 and 5
respectively.

2 The homogeneous case: proof of Theorem 1.3

The main purpose of this section is to show existence of closed geodesics in the case
of compact homogeneous semi-Riemannian manifolds.

Lemma 2.1. Let X be a Killing vector field on a compact semi-Riemannian man-

ifold (M,g). The X-orbits of critical points of the function p �→ g(X(p),X(p)) are

geodesics. If X generates a precompact one-parameter subgroup of Isom(M,g) then

it can be approximated by a Killing field X ′ whose flow defines a circle action. It

follows that (M,g) has closed geodesics. Moreover, (M,g) has a spacelike (resp. time-

like) closed geodesic if X ′ is spacelike (resp. timelike) somewhere.

Proof. For the proof of the first statement see [KN63] Proposition 5.7 or [FJP11]
Lemma 2.3 for more details. If X generates a precompact one-parameter subgroup I

then its closure in Isom(M,g) is a compact connected torus T
k and it follows that I

can be approximated by closed one-parameter subgroups. The rest follows from the
compactness of M . �

Corollary 2.2. A compact homogeneous semi-Riemannian manifold (M,g), whose
identity component of its isometry group is compact, admits both timelike and space-

like closed geodesics.

Now, suppose that (M,g) is homogeneous and let G = Isom0(M,g) be the identity
component of the isometry group with Lie algebra g = s� r where s is the semisimple
Levi factor and r is the solvable radical.
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If G admits a non-trivial compact semisimple Levi factor K, then applying Lemma
2.1 one deduces existence of closed geodesics. Indeed, K contains many closed one-
parameter groups. In fact, the set of linear lines in the algebra k of K, generating
closed one-parameter subgroups, is dense in the projective space P(k).

On the other hand, if s has no compact factor then by [BGZ19] (Theorem A.)
the G-action is locally free i.e the isotropy subgroup Γ ⊂ G is discrete. Moreover,
the left invariant metric on G, obtained by pulling-back the metric g to G, is in
fact bi-invariant. Therefore, geodesics in G are right and left cosets of one-parameter
subgroups. We distinguish two cases:

• Case s �= {0}: let u ∈ s be an elliptic element, that is, adu : s → s is C-
diagonalizable with imaginary eigenvalues. Elliptic elements u in s always exist and
the adu-action on g = s� r is also elliptic (in fact for any representation s→ gl(V ),
the image of an elliptic element is elliptic). The right (or left) invariant Killing field
Xu determined by u is equi-continuous i.e it generates a precompact flow. Indeed,
adu preserves a positive definite inner product on g and, hence, the left action of
exp(tu) on G/Γ preserves a right invariant Riemannian metric. Finally, by applying
Lemma 2.1 we deduce existence of closed geodesics.

• Case s = {0}: so g = r is solvable and, as discussed above, M = G/Γ with
G endowed with a bi-invariant semi-Riemannian metric. Therefore, one-parameter
groups in G are geodesic and if γ ∈ Γ belongs to a one-parameter group I , then I

projects to a closed geodesic in G/Γ. The exponential map for solvable groups fails
to be surjective in general but it is, however, a diffeomorphism for nilpotent (simply
connected) groups. Since every lattice in a solvable group intersects the nil-radical
in a lattice, we deduce existence of closed geodesics in our case.

The Lorentzian case. If (M,g) is a homogeneous compact Lorentzian manifold we
can in fact deduce existence of both timelike and spacelike closed geodesics. Indeed,
if the identity component G of its isometry group is compact, then this follows from
Corollary 2.2. If G is non-compact, then it follows by a classification in [Zeg981] that
(M,g) is covered by a metric product H ×N where N is a compact homogeneous
Riemannian manifold and H is a Lie group endowed with a bi-invariant metric.
This Lie group is either ˜SL(2,R) or an oscillator group i.e an elliptic extension
S

1
�Heis2n+1 of the Heisenberg group Heis2n+1 (let us mention, in fact, that general

non necessarily transitive actions of Lie groups on compact Lorentz manifolds were
also classified in [AS971, AS972, Zeg982]). We deduce:

• Closed spacelike geodesics : if N is non-trivial then we have closed spacelike
geodesics. Suppose N is trivial, so M =H/Γ with Γ⊂H a cocompact lattice. If H =
˜SL(2,R) then any one-parameter subgroup intersecting Γ in a hyperbolic element
projects to a closed spacelike geodesic. If H = S

1
�Heis2n+1 then for the bi-invariant

metric the subgroup Heis2n+1 is degenerate (i.e lightlike) and totally geodesic. Since
Γ intersects Heis2n+1 in a lattice, we deduce existence of closed spacelike geodesics.

• Closed timelike geodesics : In all cases, elliptic elements in the Lie algebra h of
H exist and are timelike with respect to the bi-invariant metric. They give rise to
closed timelike geodesics.
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3 The geodesic equation for left invariant metrics

To a C1-curve γ : I → G in a Lie group G, one associates the curve Dγ : I → g in
the Lie algebra g as follows: for t ∈ I the velocity vector γ̇(t) lives in Tγ(t)G which
is identified with g via the left translation Lγ(t). Put Dγ(t) = (Lγ(t))−1

∗ (γ̇(t)). One
observes that Dγ is constant if and only if γ is the restriction to I of a parameterized
left coset of a one parameter group.

Suppose that G is endowed with a left invariant semi-Riemannian metric, or
equivalently, g is endowed with a semi-Riemannian inner product 〈., .〉. Then a C2-
curve γ : I →G is a geodesic if and only if Dγ solves the first order ODE, introduced
in [Arn66], which we refer to as the geodesic equation (also called the Euler-Arnold
equation):

ẋ(t) = ad∗
x(t)(x(t)). (1)

In other words, one has the vector field on g given by x �→ ad∗
x(x) and γ is a

geodesic if and only if Dγ is a parameterized trajectory of the generated (local) flow.
Clearly this vector field is 2-homogeneous.

It is known that the geodesic equation (1) admits at least one radial solution
ad∗

vv = λv with v �= 0. Indeed, the fact that the geodesic vector field given by (1) is
2-homogeneous implies that it induces a map ψ : P+(g)→ P

+(g) if it does not vanish
on g−{0}, where P

+(g) is the space of half lines from the origin. In this case, ψ has
even degree since it satisfies ψ(x) = ψ(−x) which implies that it has fixed points.
Also, observe that λ �= 0 implies that v is null.

Recall that 〈., .〉 is bi-invariant if and only if ad∗
x = −adx for all x ∈ g, which

implies that equation (1) becomes ẋ= 0. In this case all solutions are constant which
means that geodesics in G are nothing but left cosets of one-parameter groups.

Moreover, the case when the algebra g is quadratic i.e g admits a bi-invariant
semi-Riemannian inner product 〈., .〉, the geodesic equation for any given metric on
g can be simplified. More precisely, let (g, 〈., .〉) be such an algebra and q is any
inner product on g, then there is a unique 〈., .〉-self-adjoint isomorphism Aq : g→ g

such that q(v,w) = 〈v,Aq(w)〉 for all v,w ∈ g. The geodesic equation for q can be
rewritten as follows (see [EFR23] Proposition 4.2):

Aq(ẋ) = [Aq(x), x] =−adx(Aq(x)). (2)

Remark 3.1. Let K be a compact semisimple Lie group with Lie algebra k and
Killing form κ. Let A be a κ-self-adjoint isomorphism and q(., .) = κ(.,A.) the asso-
ciated semi-Riemannian inner product. Consider the left invariant metric generated
by q. By Lemma 2.1 the left action of any one-parameter subgroup I = exp(tu) ad-
mits an orbit Ig which is a geodesic. Thus, the one-parameter subgroup g−1Ig is a
geodesic. In other words, it corresponds to a singular solution of the geodesic equa-
tion (2) which means [Au′, u′] = 0 where u′ = Ad(g−1)u. Therefore, every u ∈ k is
conjugate to u′ ∈ k such that u′ and Au′ commute.
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3.1 Dynamics of the geodesic flow. The fact that the vector field given by the
ODE (1) is 2-homogeneous, implies that the scaling action sends solution to solution,
up to affine reparameterization. This induces a (singular) foliation by curves on the
projectivization P(g) seen as the “dynamics” of the geodesic flow on the projective
space. Similarly, we have a directed foliation on the spherization π : g→ P

+(g). In
the case of Lorentzian signature, this “flow” on P

+(g) leaves invariant two conformal
copies of the hyperbolic space H

n−1, a conformal copy of the de Sitter space dSn−1,
and two conformal Riemannian spheres π(C+), π(C−) where C+ and C− are the half
null cones.

A solution in g, of the geodesic equation (1), is called direction-periodic if it
projects to a closed (possibly singular) trajectory in the spherization P

+(g). Observe
that both closed and weakly closed geodesics are direction-periodic.

3.2 Compact quotients. Let Γ ⊂G be a cocompact lattice and consider the com-
pact quotient M = Γ\G. The left invariant metric on G descends to M . Projections
to M of left invariant vector fields are fundamental vector fields of the right G-action
on M . The tangent bundle TG of G, under left translations, is identified with G× g.
Therefore, we have a trivialisation TM →M ×g. For a curve (x(t), v(t)) in TM , one
associates the curve v(t) in g, and this applies in particular to the case v(t) = ẋ(t).
A curve x(t) in M is a geodesic if and only if ẋ(t) solves the equation (1) on g.

Let Φt be the geodesic (local) flow. Then Φt(x,u) = (φ(t, x,u), u(t)), where u(t)
is a solution of the geodesic equation (1). In particular, the map (x,u) ∈ TM �→
u ∈ g semi-conjugates the geodesic (local) flow on TM to the (local) flow of the
geodesic equation (1). Let us pass to the projectivization of the tangent bundle
P(TM) = M × P(g). The (singular) foliation on P(TM) induced by Φt projects to
the (singular) foliation induced by the flow of the geodesic equation (1) on P(g).

Let v ∈ g be a constant solution of the equation (1) i.e ad∗
vv = 0. Let Iv = exp(tv)

be the associated one-parameter group in G. The left cosets of Iv are therefore
geodesics. In other words, the orbits of the right action of Iv on both G and M = Γ\G
are geodesics. Furthermore, a left coset gIv projects a closed geodesic in M if and
only if gIvg−1 ∩ Γ is a lattice in gIvg

−1.
On the other hand, if v ∈ g is a non-trivial radial solution, i.e ad∗

vv = λv with
λ �= 0, then the left cosets of the one-parameter group Iv = exp(tv) are geodesics but
only up to parameterizations. Thus, the orbits of the right action are, up to repa-
rameterizing, geodesics. Similarly, a left coset gIv projects a weakly closed geodesic,
up to parameterizing, in M if and only if gIvg−1 ∩ Γ is a lattice in gIvg

−1.

4 No closed geodesics: proof of Theorem 1.2

In this section we construct a left invariant Lorentzian metric on G = SL(2,R) or SOL
with the property that every compact quotient Γ\G admits no closed geodesics but
they admit, however, a countable collection (up to reparameterizations) of weakly
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closed null geodesics. For further details on the structure of Lie algebras and lattices
in Lie groups we refer to [Kir08] and [Rag72].

4.1 SL(2,R) case. Endow the algebra sl(2,R) with its Killing form 〈., .〉 and let
e,h, f be a basis of sl(2,R) such that [f, e] = h [h, e] =−e [h, f ] = f . Then

〈e, e〉= 〈e,h〉= 〈h, f〉= 〈f, f〉 = 0 and 〈e, f〉= 〈h,h〉= 2.

Let A be the 〈., .〉-self-adjoint isomorphism of sl(2,R) whose matrix with respect to
e,h, f is

A=

⎛

⎜

⎝

1 1 0
0 1 1
0 0 1

⎞

⎟

⎠
.

Let q be the Lorentzian metric given by q(v,w) = 〈v,Aw〉 for all v,w ∈ sl(2,R). We
have seen in (2) that the geodesic equation for q is Av̇ = [Av,v].

Lemma 4.1. The plane P = span(e,h) is invariant under the geodesic flow. More

precisely, the geodesic vector field on P has the form v = (x, y) ∈ P �→ y2e.

Proof. Put v = xe+ yh, then [Av,v] = [(x+ y)e, yh] + [yh,xe] = [ye, yh] = y2e. Thus
A−1[Av,v] = y2e. �

One observes, in fact, that the plane P is an A-invariant subalgebra of sl(2,R)
isomorphic to the algebra of the affine group of the real line. This subalgebra, as
Lemma 4.1 shows, is lightlike and totally geodesic for the Lorentzian metric q.

Corollary 4.2. All solutions with initial conditions in P are complete with trajec-

tories affine lines parallel to Re.

One checks that the vector v0 = (3
8 ,

−1
2 ,1) with respect to the basis e,h, f is null

and satisfies Av0 = [Av0, v0] and Rv0,Re are the only radial directions. Therefore,
the line Rv0 is invariant under the geodesic flow and the geodesic vector field on Rv0
is λv0 �→ λ2v0. Hence, every solution in Rv0 − {0} is incomplete. More precisely, for
λ > 0 the solution through λv0 is defined on a maximal interval of the form (−∞, b)
and for λ < 0 it is defined on a maximal interval of the form (a,+∞). For more details
about completeness of left invariant metrics on SL(2,R) see [BM08] or [EFR23].

Now, define the map σ : sl(2,R) →Rv0 to be the projection on Rv0 with respect
to the new basis e,h, v0. We have

Proposition 4.3. The projection σ is equivariant with respect to the geodesic flow.

Proof. Let v =w + cv0 with w ∈ P = ker(σ), then

[Av,v] = [A(w + cv0),w + cv0] = [Aw,w] + c([Av0,w] + [Aw,v0]) + [cAv0, cv0].
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Figure 1: The dynamics on P
+(sl(2,R)).

Since P is an A-invariant subalgebra we have σ(A−1[Av,v]) = A−1[Aσ(v), σ(v)] if
and only if ([Av0,w] + [Aw,v0]) ∈ P . Put v0 = z + αf for z ∈ P , then

[Av0,w] + [Aw,v0] = [αf +w1,w] + [Aw,z + αf ]

for w1 ∈ P . So it remains to show that ([f,w] + [Aw,f ]) ∈ P . This follows from the
fact that Aw−w ∈Re and [f, e] = h ∈ P . �

Corollary 4.4. A solution of the geodesic equation with initial condition v ∈
sl(2,R) is complete if and only if v ∈ P , i.e, σ(v) = 0. It is R+ (resp. R−) incomplete

if σ(v)> 0 (resp. σ(v)< 0).

Remark 4.5. The dynamics on P
+(sl(2,R)) has exactly four fixed points e+, e−, v+

0
and v−0 corresponding to the half lines through e and v0. The plane P corresponds
to a circle P

+(P ). Every point in P
+(P ) different from e− and e+ converges in the

future to e+ and to e− in the past. The three invariant circles P
+(P ), π(C+), and

π(C−) divide the sphere P
+(sl(2,R)) into four invariant open disks, where π(C+)

and π(C−) are the spherizations of the half null cones (see Figure (1)). Each of these
open disks is invariant and solutions are unbounded inside it (i.e they converge to the
boundary of the disk). Indeed, a bounded solution forces the existence of a constant
one (i.e radial) inside the disk which is impossible.

Proposition 4.6. Let g be the left invariant metric on SL(2,R) generated by q and

Γ ⊂ SL(2,R) be a cocompact lattice. Then (Γ\SL(2,R), g) is without closed geodesics.

It admits, however, a countable collection of weakly closed geodesics.

Proof. Let δ be a closed or weakly closed geodesic in (Γ\SL(2,R), g) and ˜δ its maximal
lift to SL(2,R). Since the only closed orbits in P(sl(2,R)) are the constant ones, then
˜δ is mapped to a constant solution dδ ∈ P(sl(2,R)) which shows that ˜δ is a leaf of
the left invariant line field generated by dδ. Hence, δ is, up to reparameterization,
the projection of a left coset of the one-parameter group tangent to dδ. The line
dδ is either Re or Rv0. But Re is nilpotent i.e it generates a parabolic subgroup of
SL(2,R), hence the projection of each of its left cosets is dense in Γ\SL(2,R) (the
right action of a parabolic subgroup on Γ\SL(2,R) is nothing but the horocyle flow).
If dδ =Rv0 then it is hyperbolic and δ is, up to parameterization, the projection of a
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left coset gH of the hyperbolic one-parameter group H generated by Rv0. Moreover,
a left coset gH projects to a closed orbit if and only if gHg−1 intersects Γ non-
trivially. Thus weakly closed null geodesics are in one-to-one correspondence with
conjugates of H intersecting Γ non-trivially. This is a countable collection and all of
them are incomplete. �

Remark 4.7. The left action of an elliptic one-parameter subgroup K on SL(2,R) is,
by assumption, isometric. Let X be its associated right invariant Killing vector field.
The length function p ∈ SL(2,R) �→ g(X(p),X(p)) is without critical points. Indeed,
the X-orbit of a critical point is a closed geodesic which projects to a closed geodesic
in Γ\SL(2,R) and this contradicts the previous proposition. On the other hand, the
vector field Y on Γ\SL(2,R) that generates the right action of K has constant length
function, since it is the projection of a left invariant vector field, but clearly it is not
Killing. The right K-action on Γ\SL(2,R) defines a fibration by (non-geodesic) circles
which is locally homogeneous (the left action is defined locally on Γ\SL(2,R) and
sends circle to circle). In particular, these circles have constant geodesic curvature
and when K converges to the parabolic one-parameter group generated by e, these
fibrations converge to a foliation by dense null geodesics.

4.2 SOL case. The construction will be similar to the SL(2,R) case. Let SOL be
the solvable unimodular three-dimensional group R�R

2 where R acts on R
2 via the

representation t �→
(

et 0
0 e−t

)

. This is the identity component of the isometry group

of the quadratic form (x, y) �→ xy on R
2. Its Lie algebra sol has a basis e1, e2, h with

brackets [h, e1] = e1 [h, e2] =−e2. Let q be the Lorentzian inner product satisfying

q(e1, e1) = q(e1, e2) = q(h, e2) = q(h,h) = 0 and q(e1, h) = q(e2, e2) = 1

Therefore, with respect to this basis we have

ade1 =

⎛

⎜

⎝

0 0 −1
0 0 0
0 0 0

⎞

⎟

⎠
ade2 =

⎛

⎜

⎝

0 0 0
0 0 1
0 0 0

⎞

⎟

⎠
adh =

⎛

⎜

⎝

1 0 0
0 −1 0
0 0 0

⎞

⎟

⎠

and one checks that

ad∗
e1 =

⎛

⎜

⎝

0 0 −1
0 0 0
0 0 0

⎞

⎟

⎠
ad∗

e2 =

⎛

⎜

⎝

0 1 0
0 0 0
0 0 0

⎞

⎟

⎠
ad∗

h =

⎛

⎜

⎝

0 0 0
0 −1 0
0 0 1

⎞

⎟

⎠
.

It is clear that the abelian subalgebra P = span(e1, e2) is invariant under the
geodesic flow and the geodesic vector field on P has the form v = (x, y,0) ∈ P �→ y2e1
since for v = xe1 + ye2 we have ad∗

vv = (xad∗
e1 + yad∗

e2)(xe1 + ye2) = y2e1. One also
checks easily that the equation ad∗

vv = λv for some λ ∈R admits exactly Re1 and Rh

as solutions with ad∗
e1e1 = 0 and ad∗

hh = h. Therefore, the null line Rh is invariant
under the geodesic flow and every solution in Rh− {0} is incomplete.
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Similar to the SL(2,R) define the projection σ : sol→Rh with respect to the basis
e1, e2, h. Then

Proposition 4.8. The projection σ is equivariant with respect to the geodesic flow.

Proof. Let v = xe1 + ye2 + zh, then

ad∗
vv = (xad∗

e1 + yad∗
e2 + zad∗

h)(xe1 + ye2 + zh) = (y2 − xz)e1 − yze2 + z2h.

Therefore, σ(ad∗
vv) = z2h= ad∗

zhzh= ad∗
σ(v)σ(v) �

One observes that the situation is similar to the previous case of sl(2,R), the
dynamics on P

+(sol) is as described in Remark 4.5. One concludes

Corollary 4.9. Let g be the left invariant metric on SOL generated by q and Γ ⊂
SOL be a cocompact lattice. Then (Γ\SOL, g) is without closed geodesics. It admits,

however, a countable collection of weakly closed geodesics.

Proof. Let δ be a closed or weakly closed geodesic in (Γ\SOL, g) and ˜δ its maximal
lift to SOL. The geodesic ˜δ is mapped to a constant solution dδ ∈ P(sol) for the same
reason as in the sl(2,R) case, which shows that ˜δ is a leaf of the left invariant line
field generated by dδ. The line dδ is either Re1 or Rh. But Re is impossible since Γ
intersects the stable and the unstable lines in R

2 trivially. So dδ = Rh and δ is, up
to parameterization, the projection of a left coset gH of the one-parameter group H

generated by Rh. Moreover, a left coset gH projects to a closed orbit if and only if
gHg−1 intersects Γ non-trivially. Thus weakly closed null geodesics are in one-to-one
correspondence with conjugates of H intersecting Γ non-trivially. �

5 The SOL × Euc case: proof of Theorem 1.1

Let Euc = SO(2) �R
2 be the identity component of the isometry group of the Eu-

clidean plane. Its Lie algebra euc has a basis f1, f2, e with brackets [e, f1] =−f2 and
[e, f2] = f1. We have, with respect to this basis,

adf1 =

⎛

⎜

⎝

0 0 0
0 0 1
0 0 0

⎞

⎟

⎠
adf2 =

⎛

⎜

⎝

0 0 −1
0 0 0
0 0 0

⎞

⎟

⎠
ade =

⎛

⎜

⎝

0 1 0
−1 0 0
0 0 0

⎞

⎟

⎠
.

Let g be the Lorentz metric on euc satisfying

g(f1, f1) = g(f1, f2) = g(e, f2) = g(e, e) = 0 and g(f1, e) = g(f2, f2) = 1.

One checks that

ad∗
f1 =

⎛

⎜

⎝

0 1 0
0 0 0
0 0 0

⎞

⎟

⎠
ad∗

f2 =

⎛

⎜

⎝

0 0 −1
0 0 0
0 0 0

⎞

⎟

⎠
ad∗

e =

⎛

⎜

⎝

0 0 0
0 0 1
0 −1 0

⎞

⎟

⎠
.
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The geodesic equation (1) in this case is: for v = (x, y, z) we have

ad∗
vv =

⎛

⎜

⎝

0 x −y

0 0 z

0 −z 0

⎞

⎟

⎠

⎛

⎜

⎝

x

y

z

⎞

⎟

⎠
=

⎛

⎜

⎝

xy− yz

z2

−yz

⎞

⎟

⎠
.

Therefore, the abelian subalgebra P = {z = 0} is invariant under the geodesic
flow and the geodesic vector field on P has the form (x, y,0) ∈ P �→ (xy,0,0) ∈ P .
Thus, on P , the constant solutions are the only periodic ones.

• Periodic solutions: One sees that the vector field (x, y, z) �→ (xy − yz, z2,−yz)
on the algebra euc is everywhere transverse to the plane distribution {y = 0} outside
the subalgebra P . Hence, there are no periodic solutions in euc except the obvious
constant ones inside the plane P .

• Radial solutions: Suppose that (xy − yz, z2,−yz) = λ(x, y, z) for some λ �= 0.
Since there is no such a solution in P , then we can assume z = 1. Thus, (xy −
y,1,−y) = (λx,λy,λ) which implies −y2 = 1 and this is impossible. Therefore, radial
non-trivial solutions do not exist and constant solutions exist only in P .

• Direction-periodic solutions: The sphere P
+(euc) is divided into four invariant

open disks, bounded by P
+(P ) and the two null circles similar to Figure (1). A closed

trajectory inside some open disk corresponds to a genuine periodic solution which is
impossible as explained above. Therefore, direction-periodic solutions are necessarily
radial.

5.1 The product SOL× Euc. Recall that in Sect. 4.2 we constructed a Lorentz
metric q on sol, endowed with the basis e1, e2, h, having the following properties:

◦ Constant solutions of the geodesic equation are exactly the elements of Re1.
◦ The line generated by h is the only non-trivial radial direction.
◦ There are no direction-periodic solutions except the radial ones.

Now, put the metric q ⊕ g on the algebra g = sol⊕ euc endowed with the product
basis e1, e2, h, f1, f2, e. We have the immediate observations:

◦ Constant solutions for the geodesic equation on g project to constant solutions
on both factors. Therefore, they consist of span(e1, f1)∪ span(e1, f2).

◦ Non-trivial radial solutions project to radial solutions with the same scaling
factor. Thus, they consist of elements of Rh− {0}.

◦ Direction-periodic solutions are radial and given by the above cases. Indeed,
a direction-periodic solution projects to radial solutions on both factors, so it
either corresponds to constant solutions on both factors or a non-trivial radial
solution on the first factor and the zero solution on the second.

5.2 A compact quotient without closed or weakly closed geodesics. Choose a

hyperbolic element A=
(

λ 0
0 λ−1

)

and an irrational rotation Rα ∈ SO(2) such that
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the 4×4 matrix ϕ=
(

A 0
0 Rα

)

preserves a lattice Γ0 ⊂R
4, that is, ϕ is conjugate to

an element of SL(4,Z). Such a map ϕ exists (see Remark 5.2). Define the semi-direct
product Γ = Z�Γ0 where Z acts on Γ0 via ϕ. The discrete group Γ is, in the obvious
way, a cocompact lattice in G = SOL× Euc. We have

Proposition 5.1. Endow G with the left invariant metric given by q ⊕ g on the

algebra g = sol ⊕ euc. Then the compact quotient Γ\G admits no closed or weakly

closed geodesics.

Proof. Let δ be a (weakly) closed geodesic in Γ\G and ˜δ its maximal lift to G.
Then ˜δ is mapped to a direction-periodic solution in g. Discussion (5.1) shows that
˜δ is mapped, in fact, to a radial direction dδ. Also, we have seen in (5.1) that dδ is
either Rh or any linear line contained in span(e1, f1) ∪ span(e1, f2). We claim that
this is impossible in both cases. Indeed, ˜δ is, as an unparameterized curve, a left
coset gIδ, of the one-parameter group Iδ tangent to dδ, such that gIδg

−1 intersects
Γ non-trivially. But this is impossible because:

� Γ ∩ exp
(

span(e1, f1, f2)
)

= {0} since the action of ϕ on exp(Re1) is expand-
ing and its action on exp(span(f1, f2)) is an irrational rotation. Also, since
exp

(

span(e1, f1, f2)
)

is normal in G then its intersection with Γ, even up to con-
jugacy, is trivial.

� All conjugates of exp(Rh) intersect Γ trivially since the conjugacy action of every
element of Γ on R

4 is either identically trivial or has an irrational rotational part.

We conclude that closed or weakly closed geodesics do not exist in Γ\G. �
Remark 5.2. By Borel-Harish-Chandra’s theorem, the intersection Λ = SO(1,3) ∩
SL(4,Z) is a lattice in SO(1,3). The lattice Λ contains, in particular, many loxodromic
elements. These are the elements of SO(1,3) that have exactly two fixed points when
acting on the boundary at infinity of the hyperbolic space H

3. They admit, then,
hyperbolic and elliptic factors. If the elliptic part of a loxodromic element in Λ has
finite order then its invariant plane P is rational i.e P ∩Z

4 is a lattice in P . Since, up
to conjugacy, there are only finitely many elliptic elements in SL(2,Z), then there is
k such that Ak fixes a plane for every loxodromic element A ∈Λ whose elliptic part
is of finite order. Suppose Λ is torsion free (this is always possible up to finite index).
If all loxodromic elements of Λ have finite order elliptic parts then the (polynomial)
function f : A ∈ Λ �→ det(Ak − Id) vanishes on Λ (since Λ in this case contains only
unipotent and loxodromic elements). But, Borel’s density theorem implies that f

vanishes identically on SO(1,3) which is impossible. Thus, Λ contains (in fact many)
loxodromic elements with irrational elliptic parts.
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