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Abstract
We study compact complex manifolds M admitting a conformal holomorphic Ri-
emannian structure, invariant under the action of a complex semisimple Lie group 
G. We classify all such manifolds on which G acts transitively and essentially. In 
particular, we show that they are conformally flat.

1  Introduction

Throughout this paper, M will denote a compact connected complex manifold of 
dimension n. A holomorphic Riemannian metric g on M is a holomorphic field 
of non-degenerate complex quadratic forms on TM. Locally, it can be written as ∑

gij(z)dzidzj , where (gij(z)) is an invertible symmetric complex matrix depend-
ing holomorphically on z. It is the complex analogue of a pseudo-Riemannian metric. 
Unlike the real case, there are only a few compact complex manifolds admitting a 
holomorphic Riemannian metric. A first natural example is given by the flat standard 
model 

∑
dz2

i  on Cn. Since this metric is invariant under translations, any complex 
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torus admits a holomorphic Riemannian metric. Actually, up to finite cover, complex 
tori are the only compact K hler manifolds admitting such a structure (see [13]).

Consider a cover {Ui} of M, along with holomorphic Riemannian met-
rics gi on each Ui, such that gi = fijgj  on Ui ∩ Uj , for some holomorphic maps 
fij : Ui ∩ Uj −→ C. Two such covers ({Ui} , gi)i and ({Vj} , hj)j  on M are 
said to be conformally equivalent if, for every i,  j, there is a holomorphic map 
ϕij : Ui ∩ Vj −→ C such that, gi = ϕijhj  on Ui ∩ Vj . A conformal holomorphic 
structure on M is then a conformal class of a cover ({Ui} , gi)i. It is said to be confor-
mally flat if it is locally conformally diffeomorphic to Cn. Contrary to the real case, 
conformal holomorphic Riemannian structures do not necessarily derive from holo-
morphic Riemannian ones. For instance, the complex projective space CP1 admits a 
conformal holomorphic Riemannian structure, but has no holomorphic Riemannian 
metric. Another example is provided by the Einstein complex space Einsn(C) (see 
Example 1.1.1 below). Indeed, the Fubini-Study metric induces a K hler metric on 
Einsn(C) (see [17, Example 10.6]). Thus, by [13] (see also [5, 7]), it does not admit 
a holomorphic Riemannian metric.

Let G be a Lie group acting on M and preserving some conformal holomorphic 
Riemannian structure.

Definition 1.1  The action is said to be essential if G does not preserve any holomor-
phic Riemannian metric on M.

This paper aims to classify pairs (M, G), where G is a complex semisimple Lie group 
acting essentially and transitively on M. Before going any further, let us start by giv-
ing some examples of such pairs.

1.1  Constructions

1.1.1  The Complex Einstein Universe Einsn(C)

On Cn+2, consider the standard holomorphic Riemannian metric q = dz2
0 + ... + dz2

n+1 
and let Con+1(C) = {z ∈ Cn+2 : q(z, z) = 0} be its light-cone. The complex quad-
ric Qn(C) = (Con+1 − {0})/C∗ ⊂ CP n+1 is the projectivization of the light-cone 
[17, Example 10.6]. The geometry of complex quadrics was amply studied in the 
literature in [11, 12, 14, 15, 19].

The induced metric on Con+1 is degenerate, with kernel the tangent space of C∗

-orbits. It follows that the metric becomes non-degenerate on Qn(C), but it is defined 
up to a constant. Therefore, a holomorphic conformal structure is well defined on 
Qn(C). The group PSO(n + 2,C), which acts transitively on Qn(C), preserves 
naturally this holomorphic conformal structure. In fact, it is the unique holomorphic 
conformal structure on Qn(C) preserved by SO(n + 2,C). Moreover, the action of 
PSO(n + 2,C) is essential. It is called the complex Einstein universe, and denoted 
Einsn(C). A conformally flat holomorphic conformal structure is then equivalent to 
giving a (PSO(n + 2,C), Einsn(C))-structure.

The stabilizer (of some point) is a parabolic group P1. In fact, PSO(n + 2,C) 
acts transitively on Gr0

k, the space of isotropic k-planes. This requires k ≤ the inte-
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ger part of n/2 + 1. Let Pk be the stabilizer of this action. The parabolic groups Pk 
are exactly the maximal parabolic subgroups of PSO(n + 2,C) (maximal meaning 
that only one root space corresponding to a simple root is not contained in such a 
subgroup). In our investigation in Section 6.2.2, we will, in particular, see that only 
Gr0

1 = Qn(C) admits a PSO(n + 2,C)-invariant holomorphic conformal structure.

1.1.2  The Sp(2n,C)-case

The symplectic group Sp(2n,C) preserves the (complex) symplectic form 
ω((x1, . . . , x2n), (y1, . . . , y2n)) =

∑n
i=1 xiyn+i −

∑n
i=1 yixn+i. So its diagonal 

action on C2n × C2n preserves the quadratic form on C4n:

	
q((x1, . . . , x2n), (y1, . . . , y2n)) =

n∑
i=1

xiyn+i −
n∑

i=1
yixn+i

This determines an embedding Sp(2n,C) → SO(4n,C).
Observe that GL(2,C) acts on C2n × C2n by (x, y) → (ax + by, cx + dy). This 

action commutes with the Sp(2n,C)-action and more generally with the diago-
nal action of GL(2n,C). In particular, SL(2,C) preserves the quadratic form q, as 
q(ax + by, cx + dy) = ω(ax + by, cx + dy) = (ad − bc)ω(x, y).

Consider now the open simply connected subset D = DSp(2n,C) of the quadric 
Q4n−2(C) corresponding to the projectivization of the open subset of the q-light-
cone, {(x, y) | q(x, y) = 0,Cx ̸= Cy}. The group PSp(2n,C) acts transitively and 
faithfully on it, and we aim to understand its isotropy group, say Q.

Let X  be the space of ω isotropic 2-planes of C2n. We have a well defined 
PSp(2n,C)-equivariant map π : D → X , associating to (x,  y) the 2-plane 
Cx ⊕ Cy. The π-fiber of an ω-isotropic 2-plane p is the set of all its bases (b1, b2), 
that is Cb1 ⊕ Cb2 = p. By its true definition, the PGL(2,C)-action preserves the π
-fibres. In fact π is a PGL(2,C)-principal fibration. In particular, PGL(2,C) acts prop-
erly and freely on D.

Let p = Ce1 ⊕ Cen+1 ∈ X  where (ei) is the canonical basis of C2n. Its stabilizer 
Q′ in PSp(2n,C) preserves the fiber Y = π−1(p) and acts transitively on it, since 
the PSp(2n,C)-action on D is transitive and commutes with π. So, on Y , we have 
two commuting transitive actions of Q′ and PGL(2,C). But, Y  itself is identified 
with PGL(2,C), acting on itself on the left (since this action is free and transitive). It 
follows that Q′ acts on the right on Y  via a homomorphism Q′ → PGL(2,C). Since 
PGL(2,C) is semisimple, this homomorphism splits, up to finite index, and thus, up 
to finite index Q′ = PGL(2,C) ⋉ Q, where Q is the kernel of Q′ → PGL(2,C).

Clearly, Q acts trivially on Y . In fact Q is the stabilizer for the PSp(2n,C)-action 
on D of any point of the fiber Y . Therefore, D as a homogeneous space can be identi-
fied with PSp(2n,C)/Q.

Since X  is compact, Q′ is a parabolic subgroup of PSp(2n,C), and in particular 
the normalizer of Q is parabolic. To finish, take H to be a semi-direct product Γ ⋉ Q, 
where Γ is a co-compact lattice in PGL(2,C). Then H ⊂ Q′ with identity component 
H0 = Q, M1 = PSp(2n,C)/H  is compact and covered by D = PSp(2n,C)/Q.
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1.1.3  The SL(n,C)-case

Given an n-dimensional complex vector space E. The diagonal action of GL(E) 
on E × E∗ preserves the quadratic form q(x, f) = f(x). In addition, the 
PSL(E)-action is transitive and faithful on Q(E × E∗), the projectivization of 
{(x, f) | f(x) = 0, (x, f) ̸= (0, 0)}.

Let Q be the stabilizer of a point in the open simply connected subset DSL(n,C) 
of the quadric Q(E × E∗) corresponding to the projectivization of the open sub-
set of the q-light-cone, {(x, f) | f(x) = 0, x ̸= 0, f ̸= 0}. It has codimension 1 in 
its normalizer P. To see this, let e1, . . . , en be a basis of E and e∗

1, . . . , e∗
n its dual 

bases. Consider p the point in the projective space corresponding to (e1, e∗
n) ∈ D. Its 

stabilizer Q consists of matrices of the form 

(
λ ut v
0 D C
0 0 1

λ

)
, where u is a vector of 

dimension n − 2, λ, v are scalars, D is a (n − 2) × (n − 2)-matrix, and C is a vec-
tor of dimension n − 2, such that det D = 1. Its normalizer Q′ consists of matrices 

of the form 

(
λ ut v
0 D C
0 0 λ′

)
, with λ(det D)λ′ = 1. This is the stabilizer of the flag 

(Ce1,Ce1 ⊕ . . . ⊕ Cen−1) and hence is parabolic. The quotient group Q′/Q has 
dimension 1. More precisely, up to a finite index, Q′ is a semi-direct product L ⋉ Q, 

where L ∼= C∗ is represented as matrices of the form 

(
α 0 0
0 α−2 0
0 0 α

)
. If Γ is a lattice 

in C∗, then, H = Γ ⋉ Q yields a compact quotient M2 = PSL(n,C)/H  covered by 
D = PSL(n,C)/Q.

Remark 1.1  (Uniqueness) Although we will not need it, let us observe that in both 
cases the invariant domains D are unique. More precisely, there are unique (irre-
ducible) representations Sp(2n,C) → SO(4n,C) and SL(n,C) → SO(2n,C). Both 
have a unique dense invariant domain DSp(2n) (resp. DSLn ).

1.2  Rigidity, Main Result

D’Ambra and Gromov conjectured in [2] that compact pseudo-Riemannian confor-
mal manifolds with an essential action of the conformal group are conformally flat. 
This conjecture, often known as the pseudo-Riemannian Lichnerowicz conjecture, 
was later disproved by Frances in [8]. Additionally, this conjecture has been studied 
under signature restrictions, in the works of Zimmer, Bader, Nevo, Frances, Zeghib, 
Melnick and Pecastaing (see [3, 10, 18, 20–22, 24]). The present paper is the second 
in a series, exploring the Lichnerowicz conjecture in the homogeneous context. In 
[4], we provided a positive affirmation of the conjecture when the non compact semi-
simple component of the conformal group is the M bius group. This article deals with 
the homogeneous Lichnerowicz conjecture in the complex (or real split) cases. More 
precisely, we will show that the examples constructed in Section 1.1 are essentially 
the only ones:
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Theorem 1.2  Let M be a compact connected complex manifold endowed with a faith-
ful conformal holomorphic Riemannian structure, invariant under an essential and 
transitive action of a complex semisimple Lie group G. Then, M is conformally flat. 
Furthermore:

- If M is simply connected, then, we have one of the following situations: 
(1)	 G = PSO(n + 2,C) and M = Einsn(C) with n ≥ 1 (in particular, for n = 1, 

G = PSL(2,C) and M = CP1, and for n = 2, G = PSL(2,C) × PSL(2,C) 
and M = CP1 × CP1) or;

(2)	 G is the exceptional group G2 and M = Eins5(C).
- If M is not simply connected, then it fits into one of the examples in Section 1.1. In 
particular: 
(1)	 G = PSp(2n,C) and M is a quotient of a PSp(2n,C)-homogeneous open 

subset in Eins2n−2(C) (n ≥ 3). The fundamental group π1(M) is a co-compact 
lattice in PGL(2,C) (i.e. the fundamental group of a closed hyperbolic 3-mani-
fold).

(2)	 G = PSL(n,C) and M is a quotient of a PSL(n,C)-homogeneous open subset 
in Eins2n−2(C) (n ≥ 3). The fundamental group π1(M) is infinite cyclic.

Remark 1.3  Let us observe, following a suggestion by the referee, that it is also pos-
sible to construct essential conformally flat but non-homogeneous examples. For this, 
note that in our previous homogeneous examples M, the fundamental group π1(M), 
up to a finite index, is Z (in the case of SL(n,C)) or is isomorphic to the fundamental 
group of a compact hyperbolic 3-manifold (in the case of Sp(2n,C)). The identity 
component of the conformal group of M is the centralizer of π1(M) in the general 
conformal group of the Einstein complex universe. One can then deform π1(M) 
within the latter group in order to obtain a small centralizer. We hope to provide 
details elsewhere, showing that one can choose this centralizer to have a small dimen-
sion while still acting essentially on M.

1.3  Organization of the Article

The paper is organized as follows: in Section 2, we provide an algebraic formula-
tion of our initial problem using Lie algebra terminology. Section 3 delves into a 
detailed examination of the structure of the isotropy subalgebra. We will specifically 
distinguish between three different cases based on the size of the isotropy subalge-
bra. Sections 4, 5, and 6 are dedicated to proving the classification theorem in these 
distinct cases.

2  Algebraic Formulation

Assume that M is endowed with a conformal holomorphic Riemannian structure G, 
invariant under the action of a complex semisimple Lie group G. We will assume, in 
addition, that G acts transitively and essentially on (M, G).
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Let x0 be a fixed point of M, and denote by H its stabilizer in G, so that Tx0M  is 
identified with g/h. The conformal structure G defines a conformal class of a non-
degenerate complex bilinear symmetric form g on g/h which in turn gives rise to a 
conformal class of a degenerate complex bilinear symmetric form ⟨., .⟩ on g admit-
ting h as its kernel. More precisely, the form ⟨., .⟩ is defined by

	 ⟨X, Y ⟩ = g (X∗(x), Y ∗(x)) ,

where X∗, Y ∗ are the left-invariant fundamental vector fields associated with X and 
Y.

Consider P = H
Zariski, the Zariski closure of the isotropy group H. It preserves 

the conformal class of ⟨., .⟩. More precisely, there is a morphism δ : P −→ C∗, such 
that for every p ∈ P  and every u, v ∈ g,

	
⟨Adp(u), Adp(v)⟩ = δ(p) ⟨u, v⟩ =

(
det (Adp)|g/h

) 2
n ⟨u, v⟩ .� (1)

In particular, the group P normalizes H.
Differentiating Eq. 1, we obtain a linear function, that we continue to denote δ, 

from p, the Lie algebra of P, to C, such that for every p ∈ p and every u, v ∈ g

	 ⟨adp(u), v⟩ + ⟨u, adp(v)⟩ = δ(p) ⟨u, v⟩ .� (2)

In particular, if p ∈ p preserves the metric, then δ(p) = 0, and

	 ⟨adp(u), v⟩ + ⟨u, adp(v)⟩ = 0.� (3)

Since p is a complex uniform algebraic subalgebra of the semisimple algebra g, there 
exists a Cartan subalgebra a of g, together with an ordered root system ∆ = ∆− ⊔ ∆+ 
and a root space decomposition g =

⊕
α∈∆− gα ⊕ g0 ⊕

⊕
α∈∆+ gα = g− ⊕ a ⊕ g+ 

such that a ⊕ g+ ⊂ p [6, Corrolaire 16.13].

Definition 2.1  Two elements α, β of ∆ ∪ 0 are said to be paired if gα and gβ  are not 
⟨., .⟩ −orthogonal.

Note that, because ⟨., .⟩ is nontrivial, there always exist two paired elements (possibly 
the same) α, β of ∆ ∪ 0. Any such elements α and β verify α + β = δ. This shows 
that, for any element α, there is at most one β (depending whether gα ⊂ h or not) 
paired with it. More precisely,

Fact 2.1  If α is a root such that gα ⊈ h, then δ − α is also a root, and gδ−α ⊈ h as 
well.

Moreover:

Proposition 2.2  We have: 
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(1)	 h is a nontrivial ideal of p;
(2)	 p ⊊ g;
(3)	 The restriction of δ to a is a nontrivial linear form.

Proof  1) By [4, Proposition 2.6], h is non trivial.

2) Suppose the contrary. Since h is a nontrivial ideal of p, Eq. 3 is verified for every 
u, v ∈ g, and every p ∈ h, which contradicts the essentiality of the action.

3) Now as g− and g+ are nilpotent subalgebras, we have that δ is trivial on 
(p ∩ g−) ⊕ g+. If δ were trivial on a, then δ would be trivial on p = (p ∩ g−) ⊕ a ⊕ g+ 
which clearly contradicts the essentiality hypothesis. □

Definition 2.2  The restriction of δ to a is called distortion.

In the rest of this paper we will abandon our original group formulation and instead 
adopt the following Lie algebra one:

	● There is a root space decomposition as above,
	● There is a distortion δ : a −→ C,
	● The pairing condition of two weight spaces implies their sum is δ,
	● The essentiality is translated into the fact that δ ̸= 0, and the compactness of G/H 

is replaced by the fact that a ⊕ g+ normalizes h.

Remark 2.3  Although we are working with complex semisimple Lie algebras, what 
matters to us primarily is the associated root system and the properties it satisfies. 
This is more than sufficient for our purposes. In this sense, our focus is essentially on 
the underlying real Lie algebra structure, and our results apply perfectly in the real 
split case.

We finish this section by the following useful definition:

Definition 2.3  We say that a subalgebra g′ is a modification of g, if g′ projects sur-
jectively onto g/h. Equivalently, M = G′/(G′ ∩ H), where G′ is the connected sub-
group of G associated to g′.

3  Structure of the Isotropy Subalgebra: A Synthetic Study

In this part, we will study in detail the structure of the subalgebra h. Let us start with 
the following proposition:

Proposition 3.1  We have: 

(1)	 If a ⊂ h, then the Borel subalgebra b = a ⊕ g+ is contained in h;
(2)	 If a ⊈ h, then δ is a root paired with 0. In particular, gδ  is not contained in p. 

Moreover, the subalgebra a ∩ h has codimension one in a.
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Proof  Suppose first that a ⊂ h. Then g+ = [a, g+] ⊂ [h, p] ⊂ h. This implies that the 
Borel subalgebra b = a ⊕ g+ ⊂ h.

On the contrary, if a is not contained in h, then 0 is paired with δ and hence 
δ is a root. Let p ∈ gδ ∩ p and u = v in a. Substituting this into Eq. 2, we obtain 
δ(u) ⟨p, u⟩ = 0 for every p ∈ gδ  and u ∈ a. Thus by density we get ⟨a, gδ⟩ = 0 which 
contradicts the fact that δ is paired with 0. So, gδ ∩ p = ∅

As gδ  is of dimension one and h is the kernel of ⟨·, ·⟩, we obtain that a ∩ h is of 
codimension one in a. □

3.1  Case One: a ⊈ h

Proposition 3.2  Up to modification, g is simple.

Proof  Assume that g = g1 ⊕ g2 is the direct sum of a simple Lie algebra g1 ⊈ h and 
a semisimple Lie algebra g2 ⊈ h. Thus there exist a root α of g1 and a root β of g2 
such that gα ⊈ h and gβ ⊈ h. Therefore, δ − α, δ − β are also roots of g. But the 
roots of g are the disjoint union of the those of g1 and g2. This implies that δ would 
be a root of both g1 and g2, which is a contradiction. □

By [16, Proposition 2.17], for every root α, there exists an element Hα ∈ a such that 
B(Hα, .) = α, where here B is the non-degenerate Killing form of a.

Let p ∈ g−δ , and choose 0 ̸= u ∈ gδ such that [p, u] = Hδ . Applying Eq. 3 with 
p, u = v we obtain ⟨Hδ, u⟩ = 0 and hence ⟨Hδ, gδ⟩ = 0. However, by Proposition 
3.1, δ is a root paired with 0. Therefore:

Fact 3.3  Hδ ∈ a ∩ h.

Now we have the following important Lemma:

Lemma 3.4  Let α be a root, which we will assume to be positive. Then: 

(1)	 If δ(Hα) ̸= 0, gα is contained in h;
(2)	 If δ(Hα) = 0 and δ − α is a root, a ∩ h = H⊥

α , where the orthogonality is with 
respect to the Killing form B. In particular, such an α is unique.

(3)	 If δ(Hα) = 0, g−α ⊕ CHα ⊕ gα preserves ⟨., .⟩. Moreover, if gα ⊂ h, then 
g−α ⊕ CHα ⊕ gα ⊂ h.

Proof  First, assume that δ(Hα) ̸= 0. Thus gα = δ(Hα)gα = [Hδ, gα]. But h is an 
ideal of p, Hδ ∈ h and gα ⊂ p. Therefore, gα ⊂ h.

Assume, on the contrary, that δ(Hα) = 0 and δ − α is a root. Take H ∈ H⊥
α  so that 

α(H) = 0. On the one hand, using Eq. 3, with p ∈ gα, u = H  and v ∈ gδ−α gives us 
⟨H, [p, v]⟩ = 0. However, according to [16, Corollary 2.35], [gα, gδ−α] = gδ , imply-
ing H ∈ a ∩ h. On the other hand, Proposition 3.1 tells us that H⊥

α  and a ∩ h have 
the same dimension. Thus, H⊥

α = a ∩ h.
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To finish, assume just that δ(Hα) = 0. Then CHα ⊕ gα preserves ⟨., .⟩. Thus its 
orbit under the action of g−α ⊕ CHα ⊕ gα

∼= sl(2,C) is compact and hence trivial 
by [4, Lemma 2.7].

If gα ⊂ h, then, since h is an ideal of the subalgebra preserving the confor-
mal class of ⟨., .⟩, we have g−α ⊕ CHα ⊕ gα  =  [CHα ⊕ gα, g−α ⊕ CHα ⊕ gα] 
= [[gα, g−α ⊕ CHα ⊕ gα] , g−α ⊕ CHα ⊕ gα] ⊂ [[h, p] , p] ⊂ [h, p] ⊂ h. □

For every root α, let us fix two elements uα ∈ gα and u−α ∈ g−α such that 
[uα, u−α] = Hα. Let α, β be two roots such that α + β is a root. By [16, Corol-
lary 2.35], we have that [gα, gβ ] = gα+β . Therefore, there is a non zero complex 
number kα,β  such that [uα, uβ ] = kα,βuα+β . Now, if α is a root such that gα ⊈ h, 
then δ − α is also a root. By assuming α negative if necessary, we use Eq. 3, with 
p = u−α, u = uα and v = uδ  to obtain: ⟨uα, uδ−α⟩ = 1

kα,δ
⟨Hα, uδ⟩. As a conse-

quence we obtain the following uniqueness property:

Proposition 3.5  If a ⊈ h, then the conformal class of ⟨., .⟩ depends only on a ∩ h and 
gδ .

3.2  Case Two: a ⊂ h

In this case, δ is no longer a root, but rather a sum of two roots. We have:

Proposition 3.6  Up to modification, g is:

	● Simple, or
	● The direct sum of two rank-one complex simple Lie algebras.

Proof  Assume we are not in the first case. So, one can write g = g1 ⊕ g2 as the direct 
sum of simple Lie algebra g1 ⊈ h and a semisimple one g2 ⊈ h. Hence, there is a root 
α of g1 and a root β of g2 such that gα ⊈ h and gβ ⊈ h. Now, if we were not in the 
second case, there would exist a third root γ ̸= α, β such that gγ ⊈ h. Consequently, 
δ − α, δ − β, and δ − γ are also roots of g. However, this is impossible since the 
roots of g are the union of the roots of g1 and g2. □

4  The Sp(n,C) Case

In this part, we will prove Theorem 1.2 when a ⊈ h and g+ ⊈ h. By Proposition 
3.2, up to modification, the Lie algebra g is simple. The root systems associated to 
a simple complex Lie algebra are well known and classified. They are of An, Bn, 
Cn, and Dn types, as well as the exceptional ones E6, E7, E8, F4, and G2. Up to 
isomorphism, they are described by means of the canonical basis of Rn. Detailed 
descriptions of these root systems, along with their associated canonical simple roots, 
can be found in [16]. From now until the end of the paper, we will assume, up to 
isomorphism, that the root system ∆ is a canonical root system endowed with its 
canonical order. The notations and terminology used here follow [16, Appendix C].
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In this case δ is a root, and there exists a positive root α such that gα ⊈ h. Hence, by 
Fact 2.1, δ − α is also a root. By Lemma 3.4, we have that δ(Hα) = 0, a ∩ h = H⊥

α  
and α is unique. We have:

Proposition 4.1  Let β be a positive root different from α. If β is not orthogonal to α, 
then g−β ⊈ h.

Proof  Assume that g−β ⊂ h. As β ̸= α, then by Lemma 3.4, gβ ⊂ h and hence 
CHβ = [g−β , gβ ] ⊂ a ∩ h = H⊥

α . This means that β is orthogonal to α. □

Now, we have the following proposition:

Proposition 4.2  Up to the action of the Weyl group, the pairs of roots (−δ, α) such 
that: α is orthogonal to δ and δ − α is a root are:

	● Bn: (−δ, α) = (e1, e2);
	● Cn: (−δ, α) = (e1 + e2, e1 − e2);
	● F4: (−δ, α) = (e1, e2) or 

(−δ, α) =
( 1

2 (e1 + e2 − e3 − e4), 1
2 (e1 + e2 + e3 + e4)

)
.

Proof  As δ is orthogonal to α we have:

	 |δ − α|2 = |δ|2 + |α|2 .� (4)

First, assume that our root system is of type An, Dn, E6, E7, or E8. In these cases, all 
the roots have the same length. Putting this in Eq. 4 gives us a contradiction.

Now, if we are in the G2 type, then we have 12 roots: six of them have length 2 
and the other six have length 6. Again, these do not verify Eq. 4.

Finally, in all the remaining types (Bn, Cn and F4), we can easily verify that such 
pairs exist. We then use the action of the Weyl group to conclude. □

We are left with three types of root systems, namely Bn, Cn and F4.

Proposition 4.3  The pair (−δ, α) exists only in the root systems of type Cn .

Proof  We first prove that the Bn case is impossible. Assume n > 2, (−δ, α) = (ei, ej), 
and let β = ej + ek with i ̸= j ̸= k. As δ − β = −ei − ej − ek is not a root, we have 
that gβ ⊂ h. On the other hand −ek is orthogonal to δ and gek

⊂ h, so by Lemma 3.4, 
g−ek

⊂ h. Thus [gβ , g−ek
] = gα ⊂ h which is a contradiction. So n must be equal to 

2, and B2 = C2 [23, Pages 26-27].

As for the F4 case, the same proof works. □
The only remaining case is the Cn type. In this case, we have only one possibility 

for the pairs (−δ, α), namely:

Proposition 4.4  (−δ, α) = (e1 + e2 , e1 − e2 ).
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Proof  By contradiction, assume that (−δ, α) = (ei + ej , ei − ej) for some 
1 ≤ i < j ≤ n such that i ̸= 1 or j ̸= 2. If i ̸= 1, then β = e1 − ej ̸= α is a posi-
tive root which is not orthogonal to α. Thus, by Proposition 4.1, g−β ⊈ h, and hence 
δ + β = −ei − 2ej + e1 is also a negative root, which is clearly false. If, in contrast, 
j ̸= 2, then take β = e2 − ej , and the same proof works. □

The fact that we already have an example of such type (Example 1.1.2), together 
with the uniqueness property in Proposition 3.5 gives us:

Corollary 4.5  If a ⊈ h and g+ ⊈ h, then G = Sp(n,C) and M = M1 . In particular, 
M is conformally flat.

5  The SL(n,C) Case

In this part, we will prove Theorem 1.2 when a ⊈ h and g+ ⊂ h. In this case, δ is a 
negative root. Let α be a positive root such that δ − α is also a root. Consequently, 
gδ−α ⊂ h. If this were not the case, then δ − α would be paired with α, leading to 
a contradiction. Now, on the one hand gδ = [gδ−α, gα] ⊂ h ⊂ p. On the other hand, 
according to Proposition 3.1 (2), gδ ∩ p = {0}. This leads to a contradiction. Thus:

Proposition 5.1  The negative root δ is the minimal root.

As a consequence, we get:

Proposition 5.2  The only possible type is An . In particular, −δ = e1 − en+1 .

Proof  First, assume that we are in the Bn type. In this case, we have δ = −e1 − e2. 
Here e1 − e2, ei for i ≥ 3 are all orthogonal to δ. Using Lemma 3.4, this implies that 
He1−e2  and Hei  for i ≥ 3 belong to a ∩ h. As Hδ ∈ a ∩ h (see Fact 3.3), we get that 
a ∩ h = a, which contradicts Proposition 3.1.

The same proof works for the Cn and Dn types.
In the exceptional case E6, −δ = 1

2 (e8 − e7 − e6 + e5 + e4 + e3 + e2 + e1). On 
the one hand δ + α1, δ + α3, δ + α4, δ + α5 and δ + α6 are not roots. So g−α1 , 
g−α3 , g−α4 , g−α5 , g−α6  are all in h. This shows that Hα1 , Hα3 , Hα4 , Hα5 , Hα6  are 
all in a ∩ h. On the other hand, Hδ ∈ a ∩ h. But δ, α1, α3, α4, α5, α6 are linearly 
independent. Thus a ∩ h = a, which contradicts Proposition 3.1.

In the exceptional case E7, −δ = e8 − e7. In this case, for every 1 ≤ i ≤ 7, 
δ + αi is not a root. This means that all the g−αi  are in h. Hence g = h, which is a 
contradiction.

In the exceptional case E8, −δ = 1
2 (e8 + e7 + e6 + e5 + e4 + e3 + e2 + e1), and 

the same proof as in exceptional case E6 works here too.
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Now let us consider the exceptional case G2. Here −δ = 2e3 − e2 − e1. Conse-
quently, δ + α1 is not a root, and hence g−α1 ⊂ h. Thus Hα1 ∈ a ∩ h. Together with 
the fact that Hδ ∈ a ∩ h, we conclude that a ∩ h = a, which is in contradiction with 
Proposition 3.1.

To conclude, let’s consider the exceptional case F4. Here, we also have 
−δ = e1 + e2. Consequently, δ + α1, δ + α2, and δ + α3 are not roots. This implies 
that g−α1 , g−α2 , g−α3  are all in h, and therefore Hα1 , Hα2 , and Hα3  are in a ∩ h. 
Together with the fact that Hδ ∈ a ∩ h, we deduce that a ∩ h = a, which once more 
contradicts Proposition 3.1. □

In the remaining An case, the subalgebra a ∩ h is completely determined by the 
root δ. Indeed, −δ = e1 − en+1, and so a ∩ h is generated by the vector He1−en+1  
and all vectors Hei−ej , where i < j ∈ {1, ..., n + 1}\{1, n + 1}. The uniqueness 
property in Proposition 3.5, along with the existence of such Example (as in Example 
1.1.3) gives us:

Corollary 5.3  If a ⊈ h and g+ ⊆ h, then G = SL(n,C) and M = M2 . In particular, 
M is conformally flat.

6  The Case of Parabolic Isotropy

In this part, we assume that the Borel subalgebra b = a ⊕ g+ is contained in h. In this 
case, by [9, Theorem 1.4], M is conformally flat (see [4, Proposition 3.3]). Then, by 
simple connectivity, one shows that M is conformally equivalent to Einsn(C). How-
ever, it is not easy to see what G is in this case. In other words, it is not an obvious 
task to see which semisimple Lie groups act transitively and essentially on Einsn(C). 
In the sequel, we will not use the conformal flatness result from [9, Theorem 1.4]. 
Instead, we will identify G and H and observe, in particular, that G/H is Einsn(C).

There is a subalgebra  of g− such that h = l ⊕ a ⊕ g+. One can describe more 
precisely the subalgebra . Indeed, since the root spaces are 1-dimensional, g+ ⊂ h, 
there is a subset ∆′ of positive roots of ∆ such that l =

⊕
β∈−∆′ gβ  (see [16, Sec-

tion 5.7]). Let Π be the standard basis of the canonical root system ∆. By [16, Propo-
sition 5.90]), there is a subset Π′ of Π such that ∆′ = span(Π′).

6.1  Maximality of the Isotropy Subalgebra

Definition 6.1  The parabolic subalgebra h is said to be maximal if |Π′| = |Π| − 1.
Let α be a simple root in Π such that g−α ⊈ h (note that this always exists since M 
is non-trivial). Then δ + α is also a negative root such that gδ+α ⊈ h. Actually we 
have more:

Proposition 6.1  The negative root δ + α is the minimal root.
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Proof  Assume, by contradiction, that there is a positive root β such that δ + α − β 
is a negative root. Thus gδ+α−β ⊈ h, and hence δ − (δ + α − β) = β − α is also a 
negative root, which is impossible. □

As a consequence, we get:

Corollary 6.2  The parabolic subalgebra h is maximal.

Proof  Assume that there are two simple roots α1, α2 ∈ Π\Π′. By Proposition 6.1 
both δ + α1 and δ + α2 are minimal roots of ∆. By uniqueness δ + α1 = δ + α2, 
and hence α1 = α2. □

Remark 6.3  Note that, so far, we have not imposed any restriction on the rank of g, 
and thus Corollary 6.2 remains valid for lower rank semisimple algebras.

6.2  Higher Rank Parabolic Case

We assume, in light of Proposition 3.6, that after modification, the Lie algebra g is 
simple of rank(g) ≥ 3. Thus, by Proposition 3.6, it is simple.

6.2.1  Elimination of Cases: First Step Toward Classification

Let α be the unique simple root in Π\Π′. Then using Proposition 6.1, we obtain:

Proposition 6.4  The simple Lie algebra g is of non exceptional type.

Proof  Assume the converse. We now distinguish several cases depending on the type 
of g: 
(1)	 If g is of type E6. Here, δ + α = − 1

2 (e8 − e7 − e6 + e5 + e4 + e3 + e2 + e1). 
Therefore: 

(a)	 If α = α1, then δ = − 1
2 (e8 − e7 − e6 + e5 + e4 + e3 + e2 + e1) − α1. We 

have g−(α1+e2−e1) ⊈ h. However, δ + α1 + e2 − e1 is not a root, leading to 
a contradiction.

(b)	If α = α2, then δ = − 1
2 (e8 − e7 − e6 + e5 + e4 + e3 + e2 + e1) − α2. 

We have g−(α2+e3−e2) ⊈ h. But δ + α2 + e3 − e2 is not a root, leading to a 
contradiction.

(c)	 If α = ek+1 − ek, then 
δ = − 1

2 (e8 − e7 − e6 + e5 + e4 + e3 + e2 + e1) − (ek+1 − ek). For 
1 < k ≤ 4, we have g−(ek+1−ek−1) ⊈ h. However, δ + (ek+1 − ek−1) lead-
ing to a contradiction. For k = 1, we have g−(e3−e1) ⊈ h. But δ + (e3 − e1) 
is also not a root,since the coefficient of e2 is − 3

2 , so we obtain a contradiction.

(2)	 If g is of type E7. Here, δ + α = − (e8 − e7). Thus: 
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(a)	 If α = α1, then δ = − (e8 − e7) − α1. We have g−(α1+e3+e2) ⊈ h. But 
δ + (α1 + e3 + e2) = (e3 + e2) − (e8 − e7) is not a root leading to a 
contradiction.

(b)	If α = α2, then δ = − (e8 − e7) − α2. We have g−(α2+e3−e2) ⊈ h. But 
δ + (α2 + e3 − e2) = (e3 − e2) − (e8 − e7) is not a root. So we get a 
contradiction.

(c)	 If α = αi with i > 3, then δ = − (e8 − e7) − αi. We have g−(αi+ei−2+e1) ⊈ h. 
However, δ + (αi + ei−2 + e1) = (ei−2 + e1) − (e8 − e7) is not a root, lead-
ing again to a contradiction.

(d)	If α = α3, then δ = − (e8 − e7) − α3. But 
δ + (α3 + e3 − e2) = (e3 − e2) − (e8 − e7) is not a root, which contradicts 
the fact that g−(α3+e3−e2) ⊈ h.

(3)	 If g is of type E8. Here, δ + α = − 1
2 (e8 + e7 + e6 + e5 + e4 + e3 + e2 + e1) 

and exactly the same proof as for the E6 type works.

(4)	 If g is of type F4. Here δ + α = − (e1 + e2). Thus 

(a)	 If α = α1, then δ = −α1 − (e1 + e2). We have g−(α1+e2+e3) ⊈ h. But 
δ + (α1 + e2 + e3) is not a root, leading to a contradiction.

(b)	If α = α2, then δ = −α2 − (e1 + e2). We have g−(α2+e3−e4) ⊈ h. But 
δ + (α2 + e3 − e4) is not a root, leading to a contradiction.

(c)	 If α = α3, then δ = −α3 − (e1 + e2). We have g−(α3+e4) ⊈ h. However, 
δ + (α3 + e4) is not a root, leading to a contradiction.

(d)	If α = α4 then δ = −α4 − (e1 + e2). We have g−(α4+e1−e2) ⊈ h. However, 
δ + (α4 + e1 − e2) is not a root, leading to a contradiction.□

This leads us to the following initial classification of g:

Proposition 6.5  The simple Lie algebra g is of type: 

(1)	 B3 with α = e3 and δ = − (e1 + e2 + e3) or;
(2)	 D4 with α = e3 + e4 and δ = − (e1 + e2 + e3 + e4) or;
(3)	 D4 with α = e3 − e4 and δ = − (e1 + e2 + e3 − e4) or;
(4)	 Bn with n ≥ 3 and α = e1 − e2 and δ = −2e1 or;
(5)	 Dn with n ≥ 3 and α = e1 − e2 and δ = −2e1.

Proof  For this, we distinguish several cases depending on the type of g. By Proposi-
tion 6.4, it is sufficient to consider the non exceptional types: 

(1)	 If g is of type Bn. Here δ + α = − (e1 + e2). Thus: 

(a)	 If α = ek − ek+1 with k ≥ 2. Since ek is a positive root such that g−ek
⊈ h, 

we would then have δ + ek = − (e1 + e2 − ek+1) is a negative root, which 
is clearly not true;

(b)	If α = e1 − e2. In this case δ = −2e1.
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(c)	 If α = en with n > 3. Since en + e3 is a positive root such that g−(en+e3) ⊈ h, 
we would then have δ + en + e3 = − (e1 + e2 − e3) is a negative root, which 
is clearly not true;

(d)	If n = 3 and α = e3. In this case δ = − (e1 + e2 + e3).

(2)	 If g is of type Cn. Here δ + α = −2e1. Thus: 

(a)	 If α = ek − ek+1, then g−(ek+en) ⊈ h. This implies that 
δ + ek + en = − (2e1 − ek+1 − en) is a negative root, which is clearly not 
true;

(b)	If α = 2en, then g−(en−1+en) ⊈ h. This implies that 
δ + en−1 + en = − (2e1 + en − en−1) is a negative root, which is clearly 
not true.

(3)	 If g is of type Dn. Here again δ + α = − (e1 + e2). Thus: 

(a)	 If α = ek − ek+1 with 2 ≤ k ≤ n − 2. Then g−(ek+en−1) ⊈ h. This implies 
that δ + ek + en−1 = − (e1 + e2 − ek+1 − en−1) is a negative root, which 
is clearly not true;

(b)	If α = en−1 − en and n ̸= 4. Then g−(en−2−en) ⊈ h. This implies that 
δ + en−2 − en = − (e1 + e2 + en−1 − en−2) is a negative root which is 
clearly not true;

(c)	 If n = 4 and α = e3 − e4, then δ = − (e1 + e2 + e3 − e4).
(d)	If α = e1 − e2, then in this case, δ = −2e1.
(e)	 If α = en−1 + en with n ̸= 4. Then δ = − (e1 + e2 + en−1 + en). But 

δ + (e3 + en) = −e1 − e2 − en−1 + e3 is not a negative root
(f)	 If n = 4 and α = e3 + e4, then δ = − (e1 + e2 + e3 + e4).

(4)	 If g is of type An. Here δ + α = − (e1 − en+1) and 
α = ek − ek+1. If n ̸= 3 or k = 1, n, then either g−(ek−1−ek+1) ⊈ h or 
g−(ek−ek+2) ⊈ h. However, neither δ + (ek−1 − ek+1) = − (e1 − en+1 + ek − ek+1) 
nor δ + (ek−1 − ek+1) = − (e1 − en+1 + ek+1 − ek+2) are negative roots. If 
n = 3 and k = 2, then α = e2 − e3 so that δ = − (e2 − e3) − (e1 − e4). In this 
case, ge1−e2 ⊂ h and ge3−e4 ⊂ h. But A3 = D3, so we are in the last case.□

6.2.2  Recovering the Einstein Space

Using the fact that the nilpotent part of h acts isometrically we show:

Proposition 6.6  The simple Lie algebra g is of type: 

(1)	 Bn with n ≥ 3, α = e1 − e2 and δ = −2e1 or;
(2)	 Dn with n ≥ 3, α = e1 − e2 and δ = −2e1.

Proof  Following Proposition 6.5, all we need to prove is that cases (1), (2), and (3) 
are impossible.
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The so(7,C) case. We assume that g is so(7,C). It is a complex simple Lie alge-
bra of type B3. Its standard root decomposition is described in [16, Pages 127-128]. 
In particular, the root spaces are given by, gα = CEα.

We assume that the subalgebra h is generated by a, g+, ge2−e1  and 
ge3−e2 . In this case, g/h ≃ g−e1 ⊕ g−e2 ⊕ g−e3 ⊕ g−e2−e3 ⊕ g−e1−e3 ⊕ g−e1−e2  
and δ = −e1 − e2 − e3.

On the one hand, using Eq. 3 with: 

(1)	 p1 = E(e1−e2), u1 = E−e1 , v1 = E−(e1+e3)
(2)	 p2 = E(e2−e3), u2 = E−e2 , v2 = E−(e1+e2)
(3)	 p3 = E−(e1−e3), u3 = E−e3 , v3 = E−(e2+e3)

gives us: 

(1)	 ⟨u1, adp1v1⟩ + ⟨adp1u1, v1⟩ = 0
(2)	 ⟨u2, adp2v2⟩ + ⟨adp2u2, v2⟩ = 0
(3)	 ⟨u3, adp3v3⟩ + ⟨adp3u3, v3⟩ = 0

On the other hand, we have: adp1u1 = −2u2, adp1v1 = −2v3, adp2u2 = −2u3, 
adp2v2 = −2v1, adp3u3 = −2u1, and adp3v3 = −2v2. This leads to

	 ⟨u1, v3⟩ = −⟨u2, v1⟩ = ⟨u3, v2⟩ = −⟨u1, v3⟩,

and hence ⟨u1, v3⟩ = 0, which contradicts the fact that g−e1  is paired with g−e2−e3 .
The so(8,C) case. We assume that g is so(8,C). It is a complex simple Lie alge-

bra of type D4. Its standard root decomposition is described in [16, Pages 128]. In 
particular, the root spaces are given by, gα = CEα.

We assume that the subalgebra h is gener-
ated by a, g+, ge2−e1 , ge3−e2 , and ge4−e3 . In this case, 
g/h ≃ g−(e1+e2) ⊕ g−(e2+e4) ⊕ g−(e1+e4) ⊕ g−(e2+e3) ⊕ g−(e1+e3) ⊕ g−(e3+e4) , 
and δ = −e1 − e2 − e3 − e4.

Using Eq. 3 with: 

(1)	 p1 = E−(e2−e3), u1 = E−(e1+e3), v1 = E−(e3+e4)
(2)	 p2 = E−(e1−e2), u2 = E−(e2+e3), v2 = E−(e2+e4)
(3)	 p3 = E(e1−e3), u3 = E−(e1+e2), v3 = E−(e1+e4)

along with the commutation relations: adp1u1 = 2u3, adp1v1 = 2v2, adp2u2 = 2u1, 
adp2v2 = 2v3, adp3u3 = −2u2, and adp3v3 = −2v1, give us

	 ⟨u1, v2⟩ = −⟨u3, v1⟩ = ⟨u2, v3⟩ = −⟨u1, v2⟩,

and hence ⟨u1, v2⟩ = 0, which contradicts the fact that g−(e1+e3) is paired with 
g−(e2+e4).

To finish, assume that the subalgebra h is gener-
ated by a, g+, ge2−e1 , ge3−e2 , and g−e3−e4 . In this case, 



On Homogeneous Holomorphic Conformal Structures

g/h ≃ g−(e1+e2) ⊕ g−(e1+e3) ⊕ g−(e2+e3) ⊕ g−(e1−e4) ⊕ g−(e2−e4) ⊕ g−(e3−e4) , 
and δ = −e1 − e2 − e3 + e4.

Again, we use Eq. 3 with: 

(1)	 p1 = E−(e2−e3), u1 = E−(e1+e3), v1 = E−(e3−e4)
(2)	 p2 = E−(e1−e2), u2 = E−(e2+e3), v2 = E−(e2−e4)
(3)	 p3 = E(e1−e3), u3 = E−(e1+e2), v3 = E−(e1−e4),

together with the commutation relations: adp1u1 = 2u3, adp1v1 = 2v2, 
adp2u2 = 2u1, adp2v2 = 2v3, adp3u3 = −2u2, and adp3v3 = −2v1, to get

	 ⟨u1, v2⟩ = −⟨u3, v1⟩ = ⟨u2, v3⟩ = −⟨u1, v2⟩,

and hence ⟨u1, v2⟩ = 0, which contradicts the fact that g−(e1+e3) is paired with 
g−(e2−e4). □

Now, this last Proposition, together with the fact that we already have examples of 
such types (see Example 1.1.1) gives us:

Corollary 6.7  If a ⊕ g+ ⊆ h and rank(g) ≥ 3 , then M is conformally flat. Moreover, 
G = SO(n + 2 ,C) and M = Einsn(C).

6.3  Classification Theorem: Lower Rank Parabolic Case

In this part we need to deal with the parabolic case where, after modification, the Lie 
algebra g is of rank(g) ≤ 2.

If rank(g) = 1, then M is conformally equivalent to CP1. If g is of type A1 × A1, 
then, up to finite cover, G is SL(2,C) × SL(2,C) and H = P1 × P2 where P1, P2 
are Borel subgroups of G. Hence M is conformally equivalent to CP1 × CP1.

Now we are left with A2, B2 or G2 types. We have:

Proposition 6.8  The Lie algebra g is of type: 

(1)	 B2 with α = e1 − e2 and δ = −2e1; or
(2)	 G2 with α = e1 − e2 and δ = −2(e3 − e2).

Proof  Assume first that g is of type A2. In this case δ + α = − (e1 − e3), and without 
loss of generality we can suppose that α = e1 − e2. As g−(e2−e3) acts isometrically, 
we use Eq. 3 with 0 ̸= p ∈ g−(e2−e3), 0 ̸= u = v ∈ g−(e1−e2) to get ⟨[p, u] , u⟩ = 0. 
But this contradicts the fact that g−(e1−e2) is paired with g−(e1−e3).

In the case where g is of type B2, we have δ + α = − (e1 + e2). If α = e2, then 
δ = −e1 − 2e2. But ge1 ⊈ h thus δ + e1 = −2e2 is a negative root which is a clearly 
false. Thus α = e1 − e2 and δ = −2e1.

Finally, if g is of type G2, then δ + α = 2e3 − e1 − e2. Assume that 
α = −2e1 + e2 + e3, thus δ = −3 (e3 − e1). As g−(e3−e2) ⊈ h, we have 
δ + (e3 − e2) = 3e1 − e2 − 2e3 is a negative root, which is not true. □
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End of proof of Theorem 1.2  Assume first that g is of type B2 . Then by Proposi-
tion 6.8, α = e1 − e2  and δ = −2e1 . As we already have an example of such situa-
tion, we get that G = SO(5 ,C) and M = Eins3 (C).

To finish, we assume that g is of type G2  with α = e1 − e2  and δ = −2 (e3 − e2 ). 
In this case the subalgebra h is generated by a, g+, and g−(−2e1 +e2 +e3 ), so that 
g/h ≃ g−(e1 −e2 ) ⊕ g−(e3 −e1 ) ⊕ g−(e3 −e2 ) ⊕ g−(−2e2 +e1 +e3 ) ⊕ g−(2e3 −e1 −e2 ) . 
Recall that the root space decomposition of g is given by gα = CEα, with in particu-
lar the following commutation relations, among others: 
(1)	

[
E−(−2e1+e2+e3), E−(e1−e2)

]
= −E−(e3−e1);

(2)	
[
E−(−2e1+e2+e3), E−(−2e2+e1+e3)

]
= −E−(2e3−e1−e2);

(3)	
[
Ee3−e1 , E−(e3−e2)

]
= −2E−(e1−e2);

(4)	
[
Ee3−e1 , E−(2e3−e1−e2)

]
= E−(e3−e2);

(5)	
[
Ee1−e2 , E−(e3−e2)

]
= −2E−(e3−e1);

(6)	
[
Ee1−e2 , E−(−2e2+e1+e3)

]
= −E−(e3−e2).

On the one hand, M is identified, as a homogeneous space, to the complex Einstein 
space.

On the other hand, let ⟨., .⟩ be the complex bilinear form defined on g/h by: 
(1)	 g−(e1−e2) is paired with g−(2e3−e1−e2), g−(e3−e1) with g−(−2e2+e1+e2), and 

g−(e3−e2) with itself;
(2)	 ⟨E−(e1−e2), E−(2e3−e1−e2)⟩ = 1;
(3)	 ⟨E−(e3−e1), E−(−2e2+e1+e2)⟩ = −1;
(4)	 ⟨E−(e3−e2), E−(e3−e2)⟩ = 2;
Then it is straightforward to verify that the conformal class of ⟨., .⟩ is uniquely pre-
served by h. Thus M admits a unique conformal holomorphic Riemannian structure 
invariant under the action of the simple Lie group G2 . In addition, this conformal 
structure is flat. Hence M is the Einstein space and G2  admits a representation in 
SO(7 ,C) (see also [1]).
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