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ON HOMOGENEOUS HERMITE-LORENTZ SPACES∗
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Abstract. We define naturally Hermite-Lorentz metrics on almost-complex manifolds as special
case of pseudo-Riemannian metrics compatible with the almost complex structure. We study their
isometry groups.
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1. Introduction.

Simplest pseudo-Hermitian structures. Let us call a quadratic form q on
a complex space of dimension n + 1 of Hermite-Lorentz type if it is C-equivalent
to the standard form q0 = −|z0|2 + |z1|2 + . . . + |zn|2 on Cn+1. In other words, q is
Hermitian, and as a real form, it has a signature −−+ . . .+. Here, Lorentz refers to
the occurrence of exactly one negative sign (in the complex presentation). Classically,
this one negative sign distinguishes, roughly, between time and space components. (A
“complex-Lorentz” form could perhaps be an equally informative terminology?)

One can then define Hermite-Lorentz metrics on almost complex manifolds. If
(M,J) is an almost complex manifold, then g is a Hermite-Lorentz metric if g is a
tensor such that for any x ∈M , (TxM,Jx, gx) is a Hermite-Lorentz linear space.

Hermite-Lorentz metrics generalize (definite) Hermitian metrics, and they are
the nearest from them, among general pseudo-Hermitian structures, in the sense that
they have the minimal (non-trivial) signature. Our point of view here is to compare
Hermite-Lorentz metrics, on one hand with (definite) Hermitian metrics in complex
geometry, and on the other hand with Lorentz metrics in (real) differential geometry.

H-structure. Let U(1, n) ⊂ GLn+1(C) be the unitary group of q0. Then, a
Hermite-Lorentz structure on a manifold M of real dimension 2n+2 is a reduction of
the structural group of TM to U(1, n). They are different from “complex Riemannian”
metrics which are reduction to O(n+ 1,C).

Kähler-Lorentz spaces. As in the positive definite case, the Kähler form ω
is defined by ω(u, v) = g(u, Jv). It is a J-invariant 2-differential form. A Kähler-

Lorentz metric corresponds to the case where J is integrable and ω is closed. A
Kähler-Lorentz manifold is in particular symplectic.

Conversely, from the symplectic point of view, a symplectic manifold (M,ω) is
Kähler-Lorentz if ω can be calibrated with a special complex structure J . Let us
generalize the notion of calibration by letting it to mean that J satisfies that g(u, v) =
ω(u, Jv) is non-degenerate, i.e. g is a pseudo-Hermitian metric. Now, the classical
Kähler case means that g is Hermitian and in addition J is integrable. So Kähler-
Lorentz means that g is “post-Hermitian” in the sense that it has a Hermite-Lorentz
signature.
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Holomorphic sectional curvature. Differential geometry can be developed for
general pseudo-Hermitian metrics exactly as in the usual Hermitian as well as the usual
pseudo-Hermitian cases. In particular, there is a Levi-Civita connection and a Rie-
mann curvature tensor R. For a tangent vector u, the holomorphic sectional cur-

vature K(u) is the sectional curvature of the real 2-plane Cu; K(u) = g(R(u,Ju)Ju,u)
g(u,u)2

(this requires u to be non isotropic g(u, u) �= 0, in order to divide by the volume
u∧Ju). So, K is a real function on an open set of the projectivization bundle of TM
(which fibers over M with fiber type Pn(C)).

In fact, K determines the full Riemann tensor in the pseudo-Kähler case [20, 4]
(but not in the general pseudo-Hermitian case). In particular, the case K constant
in the definite Kähler case corresponds to the most central homogeneous spaces: Cn,
Pn(C) and Hn(C) (the complex hyperbolic space). Kähler-Lorentz spaces of constant
curvature are introduced below.

1.1. Examples. We are going to give examples of homogeneous spaces M =
G/H , where the natural (generally unique) G-invariant geometric structure is a
Kähler-Lorentz metric.

1.1.1. Universal Kähler-Lorentz spaces of constant holomorphic curva-

ture If a Kähler-Lorentz metric has constant holomorphic sectional curvature, then
it is locally isometric to one of the following spaces:

1. The universal (flat Hermite-Lorentz) complex Minkowski space Minkn(C) (or
C1,n−1), that is Cn endowed with q0 = −|z1|2 + |z2|2 + . . .+ |zn|2.

2. The complex de Sitter space dSn(C) = SU(1, n)/U(1, n−1) 1 It has a positive
constant holomorphic sectional curvature.

3. The complex anti de Sitter space AdSn(C) = SU(2, n− 1)/U(1, n− 1). It has
negative curvature.

• As said above, Hermite-Lorentz metrics are generalizations of both Hermitian
metrics (from the definite to the indefinite) and Lorentz metrics (from the real to the
complex). Let us draw up in the following table the analogous of our previous spaces
in both Hermitian and Lorentzian settings.

Kähler-Lorentz spaces Hermitian (positive definite) (Real) Lorentz
of constant curvature counterpart counterpart

Minkn(C) C
n

Minkn(R)

dSn(C) = P
n(C) = dSn(R) =

SU(1, n)/U(1, n-1) SU(1 + n)/U(n) SO
0(1, n)/SO0(1, n− 1)

AdSn(C) = H
n(C) = AdSn(R) =

SU(2, n− 1)/U(1, n− 1) SU(1, n)/U(n) SO(2, n− 1)/SO0(1, n− 1)

(Of course, we also have as Riemannian counterparts of constant sectional curva-
ture, respectively, the Euclidean, spherical and hyperbolic spaces, Rn, Sn and Hn).

• The Kähler-Lorentz spaces of constant holomorphic sectional curvature are
pseudo-Riemannian symmetric spaces (see below for further discussion). They are

1Here U(1, n − 1) as a subgroup of SU(1, n) stands for matrices of the form(
λA 0
0 λ−1

)
, |λ| = 1, A ∈ SU(1, n− 1).

In general U(1, n−1) designs a group isomorphic to a product U(1)×SU(1, n−1), where the embedding
of U(1) depends on the context.
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also holomorphic symmetric domains in Cn. Indeed, dSn(C) is the exterior of a ball
in the projective space Pn(C). It is strictly pseudo-concave. The ball of Pn(C) is
identified with the hyperbolic space Hn(C), and then dSn(C) is the space of geodesic
complex hypersurfaces of Hn(C).

As for AdSn(C), it can be represented as the open set q < 0 of Pn(C), where
q = −|z0|

2 − |z1|
2 + |z2|

2 + . . .+ |zn|
2.

1.1.2. Irreducible Kähler-Lorentz symmetric spaces. Let M = G/H be a
homogeneous space. Call p the base point 1.H . The isotropy representation at p is
identified with the adjoint representation ρ : H → GL(g/h), where g and h are the
respective Lie algebras of G and H . The homogeneous space is of Hermite-Lorentz
type if ρ is conjugate to a representation in U(1, n) (where the real dimension of G/H
is 2n+ 2).

The space G/H is symmetric if −IdTpM belongs to the image of ρ. This applies
in particular to the two following spaces:

CdSn = SO0(1, n+ 1)/SO0(1, n− 1)× SO(2)

CAdSn = SO(3, n− 1)/SO(2)× SO0(1, n− 1).

Complexification. The isotropy representation of these two spaces is the com-
plexification of the SO0(1, n−1) standard representation in R

n, i.e. its diagonal action
on Cn = Rn + iRn; augmented with the complex multiplication by U(1) ∼= SO(2).

If one agrees that a complexification of a homogeneous space X is a homogeneous
space CX whose isotropy is the complexification of that of X , then CdSn and CAdSn

appear naturally as complexification of dSn(R) and AdSn(R) respectively. In contrast,
dSn(C) and AdSn(C) are the set of complex points of the same algebraic object as
dSn(R) and AdSn(R). As another example, the complexification of Sn is not Pn(C)
but rather the Kähler Grassmanian space SO(n+ 2)/SO(n)× SO(2)?!

1.1.3. List. There are lists of pseudo-Riemannian irreducible symmetric
spaces, see for instance [7, 6, 19]. (Here irreducibility concerns isotropy, but for
symmetric spaces, besides the flat case, the holonomy and isotropy groups coincide.
In particular, holonomy irreducible symmetric spaces are isotropy irreducible). It
turns out that the five previous spaces are all the Kähler-Lorentz (or equivalently
Hermite-Lorentz) ones.
Our theorem 2.1 below will give in particular a non list-checking proof of this classi-
fication.

Acknowledgments. We would like to thank Benedict Meinke for his careful
reading and valuable remarks on the article.

2. Results.

2.0.4. Convention. It is sometimes a nuisance and with no real interest to deal
with “finite objects”. We will say, by the occasion, that some fact is true up to finite
index, if it is not necessarily satisfied by the given group itself, say H , but for another
one H ′ commensurable to it, that is H ∩H ′ has finite index in both. We also use “up
to finite cover” for a similar meaning.
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2.0.5. Objective. Our aim here is the study of isometry groups Iso(M,J, g) of
Hermite-Lorentz manifolds. They are Lie groups acting holomorphically on M . If
g were (positive definite) Hermitian, then Iso(M,J, g) acts properly on M , and is in
particular compact if M is compact.

This is no longer true for g indefinite.

In the real case, that is without the almost complex structure, there have been
many works tending to understand how and why the isometry group of a Lorentz
manifold can act non-properly (see for instance [3, 12]). The Lorentz case is the
simplest among all the pseudo-Riemannian cases, since, with its one negative sign, it
lies as the nearest to the Riemannian case. For instance, the situation of signature
− − + . . .+ presents more formidable difficulties. With this respect, the Hermite-
Lorentz case seems as an intermediate situation, which besides mixes in a beautiful
way pseudo-Riemannian and complex geometries.

2.1. Homogeneous vs Symmetric. We are going to prove facts characterizing
these Kähler-Lorentz symmetric spaces by means of a homogeneity hypothesis (as
stated in Theorems 2.1 and 2.2 below).

In pseudo-Riemannian geometry, it is admitted that, among homogeneous spaces,
the most beautiful are those of constant sectional curvature, and then the symmetric
ones, and so on... This also applies to pseudo-Kähler spaces, where the sectional
curvature is replaced by the holomorphic sectional curvature.

In general, being (just) homogeneous is so weaker than being symmetric which in
turn is weaker than having constant (sectional or holomorphic sectional) curvature.

For instance, Berger spheres are homogeneous Riemannian metrics on the 3-sphere
that have non constant sectional curvature and are not symmetric. On the other hand
different Grassmann spaces are irreducible symmetric Riemannian (or Hermitian)
spaces but do not have constant sectional (or holomorphic) curvature.

Our first theorem says that in the framework of Hermite-Lorentz spaces, being
homogeneous implies essentially symmetric!

Theorem 2.1. Let (M,J, g) be a Hermite-Lorentz almost complex space, ho-
mogeneous under the action of a Lie group G. Suppose that the isotropy group Gp

of some point p acts C-irreducibly on TpM , and dimC M > 3. Then M is a global
Kähler-Lorentz symmetric space, and it is isometric, up to a cyclic cover, to Minkn(C),
dSn(C), AdSn(C), CdSn or CAdSn.

• The content of the theorem is:

1. Irreducible isotropy =⇒ symmetric,

2. The list of Hermite-Lorentz symmetric spaces with irreducible isotropy are
the five mentioned ones. This fact may be extracted from Berger’s classification of
pseudo-Riemannian irreducible symmetric spaces. Here, we provide a direct proof.

• In the (real) Lorentz case, there is a stronger version, which states that an
isotropy irreducible homogeneous space has constant sectional curvature [8] (the fact
that irreducible and symmetric implies constancy of the curvature was firstly observed
in [9] by consulting Berger’s list).

• The theorem is not true in the Riemannian case. As an example of a compact

irreducible isotropy non-symmetric space, we haveM = G/K, whereG = SO(n(n−1)
2 ),

and K is the image of the representation of SO(n) in the space of trace free symmetric
2-tensors on Rn (see [7] Chap 7).



HERMITE-LORENTZ METRICS 535

2.2. Actions of semi-simple Lie groups. Let now (M,J, g) be an almost
Hermite-Lorentz manifold and G a Lie group acting (not necessarily transitively) on
M by preserving its structure. We can not naturally make a hypothesis on the isotropy
in this case, since it can be trivial (at least for generic points). It is however more
natural to require dynamical properties on the action. As discussed in many places
(see for instance [3, 12]), non-properness of the G-action is a reasonable condition
allowing interplay between dynamics and the geometry of the action. For instance,
without it everything is possible; a Lie group G acting by left translation on itself can
be equipped by any type of tensors by prescribing it on the Lie algebra.

The literature contains many investigations on non-proper actions preserving
Lorentz metrics [1, 2, 3, 12] and specially [21]. We are going here to ask similar
questions in the Hermite-Lorentz case. We restrict ourselves here to transitive ac-
tions, since the general idea, within this geometric framework, is that a G-non-proper
action must have non-proper G-orbits, i.e. orbits with non-precompact stabilizer. The
natural starting point is thus the study of non-proper transitive actions.

Theorem 2.2. Let G be a non-compact simple (real) Lie group of finite center
not locally isomorphic to SL2(R), SL2(C) or SL3(R). Let G act non-properly transi-
tively holomorphically and isometrically on an almost complex Hermite-Lorentz space
(M,J, g), with dimM > 3. Then, M is a global Kähler-Lorentz irreducible symmetric
space, and is isometric, up to a cyclic cover, to dSn(C), AdSn(C), CdSn or CAdSn.

2.3. Some Comments.

2.3.1. Integrabilities. Observe that in both theorems, we do not assume a
priori neither that J is integrable, nor g is Kähler.

2.3.2. The exceptional cases. The hypotheses dimM > 3 and G different
form SL2(R), SL2(C) and SL3(R) are due on the one hand to “algebraic” technical
difficulties in proofs and on the other hand to that statements become complicated in
these cases.

As an example, SL2(C) with its complex structure admits a left invariant Hermite-
Lorentz metric g which is moreover invariant by the right action of SL2(R). So, its
isometry group is G = SL2(C)×SL2(R) and its isotropy is SL2(R) acting by conjugacy.
On the Lie algebra g is defined as: 〈a, b〉 = tr(ab̄), where a, b ∈ sl2(C) ⊂ Mat2(C).
This metric is not Kähler, neither symmetric, although the isotropy is C-irreducible,
and so Theorem 2.1 does not apply in this case.

In the case of SL3(R) one can construct an example of a left invariant Hermite-
Lorentz structure (J, g), with J non-integrable, invariant under the action by con-
jugacy of a one parameter group, and therefore Theorem 2.2 does not apply to the
SL3(R)-case. Notice on the other hand that, although SL3(R) is a not a complex Lie
group, it admits left invariant complex structures. This can be seen for instance by
observing that its natural action on P2(C)×P2(C) has an open orbit on which it acts
freely. We hope to come back to this discussion elsewhere.

2.4. About the proof. The tangent space at a base point of M is identified to
Cn+1, and the isotropy H to a subgroup of U(1, n).

(Henceforth, in all the article, the complex dimension of the manifold M will be
n+ 1).

2.4.1. Subgroups of U(1, n). We state in Proposition 4.1 a classification of such
subgroups (when connected and non pre-compact ) into amenable and (essentially)
simple ones.
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In fact there have been many works in the (recent) literature about these groups,
generally related to the study of the holonomy of pseudo-Riemannian and pseudo-
Kähler spaces. Indeed, A. Di Scala and T. Leistner classified connected irreducible
Lie subgroups of SO(2,m) [13] (which contains our case U(1, n), for m = 2n). On the
other hand, the case of non necessarily irreducible connected subgroups of U(1, n) was
considered by A. Galaev in [15] and Galaev-Leistner in [16]. There, the authors used
the term “pseudo-Kähler of index 2” for our “Kähler-Lorentz” here.

A proof of Proposition 4.1 ould be extracted from these references, but for reader
easiness we give here our independent (and we think more geometric) proof! More
important, in our proofs (and hypotheses) of Theorems 2.1 and 2.2, we deal with non-
necessarily connected groups (that is the isotropy H is not assumed to be connected)!
The analysis of connectedness occupies in fact a large part of §4.

2.4.2. Regarding Theorem 2.1, since it acts irreducibly, the possibilities given
for H (more precisely its Zariski closure) are U(1, n), SU(1, n), U(1)× SO0(1, n), and
SO0(1, n) (the last acts C-irreducibly but not R-irreducibly). Geometric and algebraic
manipulations yield the theorem, that is the explicit possible G and H , §5. At one
step of the proof, we show that M is a symmetric space, but we do not refer to the
Berger’s classification to get its form.

Here also, an alternative, but highly more algebraic approach, would be to use
elements of the theory of reductive homogeneous spaces to show that M is sym-
metric, and in a next step to consult Berge’s list, by showing which members of it
are Kähler-Lorentz spaces! Here again, the most difficulty comes from the a priori
non-connectedness of H .

2.4.3. As for Theorem 2.2, the idea is to apply Theorem 2.1 by showing that
H is irreducible (assuming it non-precompact and G simple).

- One starts proving that H is big enough, §6.
– If H is simple, irreducibility consists in excluding the intermediate cases

SO0(1, k) ⊂ H ⊂ U(1, k), for k < n, §7. Here again, theory of reductive homo-
geneous spaces could apply, but not to the general non-amenable (non connected)
case.

• However, the most delicate situation to exclude is the amenable one, §8. Ob-
serve in fact that, in general, homogeneous pseudo-Riemannian manifolds with a
semi-simple Lie group may have, for instance, an abelian isotropy. Take for example
dimH = 1, that is H a one parameter group, and assume its Lie sub-algebra h is non-
degenerate (i.e. non-isotropic) in g, the Lie algebra of G endowed with its Killing form.
The G-action on the quotient spaceG/H will then preserve a pseudo-Riemannian met-
ric given by the restriction of the Killing form on h⊥. (More complicated construction
are surely possible!)

This part of proof, i.e that H can not be amenable (in our Hermite-Lorentz case)
might be the essential mathematical (i.e. from the point of view of proof) contribution
of the present article. Very briefly, amenability allows one to associate to any point
of M a lightlike complex hypersurface, fixed by its isotropy group. Now, the point is
to prove that this determines a foliation, that is two such hypersurfaces are disjoint
or equal. The contradiction will come from that the quotient space of such a foliation
is a complex surface on which the group G acts non-trivially, which was excluded by
the hypothesis that G is different from SL2(R), SL2(C) or SL3(R).

3. Some preparatory facts. Cn+1 is endowed with the standard Hermite-
Lorentz form q0 = −|z0|2 + |z1|2 + . . . + |zn|2. The Hermitian product is denoted
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〈, 〉.
Recall that u is lightlike (or isotropic) if q(u) = 0. A C-hyperplane is lightlike if

it equals the orthogonal Cu⊥ of a lightlike vector u.
It is also sometimes useful to consider the equivalent form q1 = z0z̄n + z̄0zn +

|z1|2 + . . .+ |zn−1|2.
As usually, U(q0) is denoted U(1, n), and SU(1, n) its special subgroup.
The Lorentz group SO0(1, n) is a subgroup of SU(1, n); it acts diagonally on

Cn+1 = Rn+1 + iRn+1, by A(x + iy) = A(x) + iA(y).

3.1. Some SO
0(1, n)-invariant theory.

Levi form.

Fact 3.1. 1. For n > 1, there is no non-vanishing SO0(1, n)-invariant anti-
symmetric form Rn+1 × Rn+1 → R.

2. Let n > 1 and b : (Rn+1 + iRn+1) × (Rn+1 + iRn+1) → R be a SO0(1, n)-
invariant anti-symmetric bilinear form. Then, up to a constant, b(u+ iv, u′ + iv′) =
〈u, v′〉− 〈v, u′〉. (That is, up to a constant, b coincides with the Kähler form i(−dz0 ∧
¯dz0 + dz1 ∧ ¯dz1 + . . .+ dzn ∧ ¯dzn)).

Proof. 1. Let b : Rn+1 ×Rn+1 → R be such a form, and u a timelike vector, that
is 〈u, u〉 < 0. Thus, the metric on Ru⊥ is positive and the action of the stabilizer
(in SO0(1, n)) of u on it is equivalent to the usual action of SO(n) on Rn. The linear
form v ∈ Ru⊥ → b(u, v) ∈ R is SO(n)-invariant, and hence vanishes (since its kernel
is invariant, but the SO(n)-action is irreducible). Thus u belongs to the kernel of b,
and so is any timelike vector, and therefore b = 0

2. Let now b : (Rn+1 + iRn+1)× (Rn+1 + iRn+1)→ R. From the previous point
b(u + i0, v + +i0) = b(0 + iu, 0 + iv) = 0. It remains to consider b(u, iv). It can be
written b(u, iv) = 〈u,Av〉, for some A ∈ End(Rn), commuting with SO0(1, n). By the
(absolute) irreducibility of SO0(1, n), A is scalar. (Indeed, by irreducibility, A has
exactly one eigenvalue λ with eigenspace the whole Rn+1. If λ is pure imaginary, then
SO0(1, n) preserves a complex structure, but this is impossible (for instance hyperbolic
elements of SO0(1, n) have simple real eigenvalues). Thus A is a real scalar).

The rest of the proof follows.

Kähler form.

Fact 3.2. For n > 2, there is no non-vanishing (real) exterior 3-form α on
C

n+1(= R
n+1 + iRn+1) invariant under the SO

0(1, n)-action.

Proof. Let α be such a form. Let e ∈ Rn+1 be spacelike: 〈e, e〉 > 0, and consider
αe = ieα. First, α(e, ie, z) is a linear form on Ce⊥ invariant under a group conjugate
to SO0(1, n − 1), and hence vanishes. On Ce⊥, αe is a 2-form as in the fact above.
It then follows that for any u ∈ Ce, and v, w ∈ Cu⊥, α(u, v, w) = φ(u)ω(v, w), where
ω is the Kähler form on Ce⊥, φ : Ce → R is a function, necessarily linear. There is
u ∈ Ce such that φ(u) = 0, and hence u ∈ kerα. This kernel is a SO0(1, n)-invariant
space. If it is not trivial, then it has the form {au + biu, u ∈ Rn+1}, where a and b
are constant. But α induces a form on the quotient C

n+1/ kerα which vanishes for
same reasons. Hence α = 0.

Nijenhuis tensor.

Fact 3.3. For n > 2, there is no non-trivial anti-symmetric bilinear form
C1+n × C1+n → C1+n, equivariant under SO0(1, n).
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Proof. Let b : Cn+1 × Cn+1 → Cn+1 be a SO0(1, n)-invariant anti-symmetric
form.

Let us first consider the restriction of b to Rn+1. Let u, v ∈ Rn+1 two linearly
independent lightlike vectors and w in the orthogonal space SpanC(u, v)

⊥ ∩ Rn+1.
Consider H the subgroup of A ∈ SO0(1, n) such that there exists λ ∈ R, A(u) = λu,
A(v) = λ−1v, and A(w) = w. By equivariance b(u, v) is fixed by H . But H is too
big; its fixed point set is Cw. Indeed its action on SpanC(u, v, w)

⊥ is equivalent to
the action of SO(n− 2) on R

n−2. Therefore, b(u, v) ∈ Cw. But, since n ≥ 3, we have
freedom to choose w in SpanC(u, v)

⊥ ∩ Rn+1. Hence, b(u, v) = 0. Last, observe that
Rn+1 is generated by lightlike vectors and hence b = 0 on Rn+1.

One can prove in the same meaner that b(u, iv) = 0, for u, v ∈ Rn+1. It then
follows that b = 0.

Remark 3.4. [Dimension 3] For n = 2, the vector product R2+1×R2+1 → R2+1

is anti-symmetric and SO0(1, 2)-equivariant. One can equally define a vector product
on C

2+1 equivariant under SU(1, 2). For given u, v, u ∧ v is such that det(w, u, v) =
〈w, u∧ v〉 (here 〈, 〉 is the Hermitian product on C2+1). Observe nevertheless that this
vector product is not equivariant under U(1, 2).

3.2. Parabolic subgroups. By definition, a maximal parabolic subgroup of
SU(1, n) is the stabilizer of a lightlike direction. It is convenient here to consider the
form q1 = z0z̄n + z̄0zn + |z1|2 + . . . + |zn−1|2. Thus, e0 is lightlike and the stabilizer
P ′ of Ce0 in U(1, n) consists of elements of the form:

⎛
⎝
a 0 0
0 A 0
0 0 ā−1

⎞
⎠

where, a ∈ C∗, A ∈ U(n − 1), aā−1detA = 1. Thus P is a semi-direct product
S(C∗ × U(n− 1))� Heis.

The stabilizer P of Ce0 in SU(1, n) is P ′ ∩ SU(1, n) = S((C∗ × U(n− 1))� Heis)
The Heisenberg group is the unipotent radical of P and consists of:

⎛
⎝1 t − ‖t‖2

2 + is
0 1 −t̄
0 0 1

⎞
⎠

where t ∈ Cn−1 and s ∈ R.
We see in particular that P is amenable. Recall here that a topological group

is amenable if any continuous action of it on a compact metric space, preserves some
probability measure. For instance, as it will be seen in §4, our group P will act on
the boundary at infinity of the complex hyperbolic space and preserves there a Dirac
measure. (In general, a Lie group is amenable iff its semi-simple part is compact).

3.3. Lightlike geodesic hypersurfaces. We will meet (especially in §8.1) spe-
cial complex hypersurfaces L ⊂ M . We say that L is lightlike if for any y ∈ L,
TyL is a lightlike complex hyperplane of (TyM, gy). The kernel of (TyL, gy) defines
a complex line sub-bundle N of TL (not necessarily holomorphic). The metric on
TL/N is positive.

We say that L is (totally) geodesic if for any u ∈ TL, the geodesic γu tangent
to u, is locally contained in L (there exists ε, such that γu(] − ε,+ε[) ⊂ L). This is
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equivalent to invariance of TL by the Levi-Civita connection; if X and Y are vector
fields defined in a neighbourhood of L, and are tangent to L (i.e. X(y), Y (y) ∈ TL,
for y ∈ L), then ∇XY (y) ∈ TL, for y ∈ L.

Let us prove in this case that N is parallel along L and thus it is in particular
integrable. For this, consider three vector fields X,Y and Z tangent to L, with X
tangent to N . We have 〈X,Z〉 = 0, and thus 0 = Y 〈X,Z〉 = 〈∇Y X,Z〉+〈X,∇Y Z〉 =
〈∇Y X,Z〉 (since X is tangent to N). This is true for any Z, and therefore ∇Y X is
tangent to N , which means that N is a parallel 2-plane field.

Denote by N the so defined foliation on L. The leaves are complex curves.
Transversally,N is a Riemannian foliation, that is, there is a well defined projected
Riemannian metric on the leaf (local) quotient space Q = L/N . Equivalently, the
Lie derivative LXh = 0, where h is the metric restricted to L and X is tangent
to N . This is turn is equivalent to that, for any Y invariant under the X-flow,
i.e. [X,Y ] = 0, the product 〈Y, Y 〉 is X-invariant. To check this, observe that
X〈Y, Y 〉 = 〈∇XY, Y 〉 = 〈∇Y X,Y 〉 = 0, since as we have just proved, N is parallel
(that is ∇Y X is tangent to N).

Corollary 3.5. Let f be an isometry of M preserving L and fixing a point
x ∈ L. Assume Dxf ∈ GL(TxM) is unipotent (i.e. Dxf − Id is nilpotent). Then f
preserves (individually) each leaf of N .

Proof. f acts as an isometry f̂ of the (local) quotient space L/N endowed with its

projected Riemannian metric. The derivative Dx̂f̂ at the projection of x is unipotent.
But the orthogonal group O(n) contains no non-trivial unipotent elements. Therefore,

Dx̂f̂ = IdTx̂Q, and hence as a Riemannian isometry, f̂ = IdQ (of course, we are tacitly
assuming everything connected).

4. Subgroups of U(1, n). The following proposition says roughly that, up to
compact objects, a subgroup of SU(1, n) is either contained in a parabolic group, or
conjugate to one of the standard subgroups SO0(1, k) or SU(1, k).

Proposition 4.1. Let H be a non-precompact connected Lie subgroup of
SU(1, n) (i.e. its closure in not compact). Then:

1. H is amenable iff it preserves a lightlike hyperplane (that is, by definition, H
is contained in a maximal parabolic subgroup).

2. In opposite, if H acts C-irreducibly on Cn+1 (there is no non-trivial complex
invariant subspace), then H equals SO0(1, n) or SU(1, n) (See also [13]).

3. In the general (intermediate) case, when H is not amenable, it acts R-
irreducibly on some non-trivial subspace E, such that:
(a) Either E is totally real, and up to a conjugacy in SU(1, n), E = Rk+1 ⊂

R
n+1 ⊂ R

n+1 + iRn+1 = C
n+1, and up to finite index, H is a product

C × SO(1, k), for C a pre-compact subgroup acting trivially on E.
(b) or E is a complex subspace, and up to conjugacy in SU(1, n), E = Ck+1,

and H is C × SU(1, k), where C is as previously.

Remark 4.2. As it will be seen from its proof, this classification naturally gen-
eralizes to connected subgroups of all simple Lie groups of rank 1. The proof uses
essentially one standard result from simple Lie groups theory, du to Karpelevich [18]
and Mostow [22]. It states that a given Cartan decomposition of a Lie subgroup extends
to a Cartan decomposition of the ambient simple Lie group. An essentially geometric
(algebraic free) approach is also available in the case of SO0(1, n), see [8, 14].
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– Observe finally that we do not assume H to be closed.

Proof. Let H ⊂ SU(1, n) be as in the proposition.

4.0.1. Hyperbolicity. Let G = SU(1, n), K = U(1, n − 1) and consider X =
G/K = Hn(C) the associated Riemannian symmetric space. We let SU(1, n) act on
the (visual Hadamard) boundary ∂∞X , which is identified to the space of complex
lightlike directions of C1+n. (See [17] to learn about the geometry of Hn(C)).

By definition, a maximal parabolic subgroup P is the stabilizer of a lightlike
direction, or equivalently a point of ∂∞X . From §3.2, P is amenable (the fact that
maximal parabolic groups are amenable characterizes rank 1 groups). Therefore, any
group fixing a point at ∂∞X is amenable.

We have to prove conversely that a non-precompact connected amenable group
fixes some point at ∂∞X .

Recall that elements of SU(1, n) are classified into elliptic, parabolic or hyperbolic.
An isometry is elliptic if it fixes some point in X , and thus lies in its stabi-

lizer which is a compact subgroup of SU(1, n). Conversely, any compact subgroup of
SU(1, n) fixes some point ofX . Thus an element is elliptic iff it generates a precompact
subgroup.

A parabolic element has exactly one fixed point in ∂∞X , and a hyperbolic one
has two fixed points. Furthermore, in both cases, by iteration, all points of ∂∞X tend
to these fixed points. In particular, in both cases, any invariant measure has support
a set F with cardinality #(F ) ≤ 2.

Now, H is amenable and hence leaves invariant a probability measure ν on ∂∞X .
If H contains a parabolic or a hyperbolic element, then the support of ν consists

of a set F of one or two points, and hence, H preserves such F . If F has cardinality
2, since H is assumed to be connected, it fixes each of the points of F . Therefore, in
all cases, H has a fixed point in ∂∞X .

In order to prove that indeed H contains a parabolic or hyperbolic element, one
uses the classical fact that a non-compact connected Lie group contains some non-
precompact one parameter group (see for instance [10] for a proof of this). No element
of such a one parameter group can be elliptic.

This completes the proof of (1) in the proposition. (Actually, a more self-contained
proof, say without using this fact on non-compact Lie groups, is available, but needs
more details!).

4.0.2. Non-amenable case. H is a semi-direct product (S×C)�R (up to finite
index) where S is semi-simple with no compact factor, C is compact semi-simple, and
R is the (solvable) radical. Observe that R must be precompact. Indeed, if not, from
the above proof, the fixed point set F of R in ∂∞X has cardinality 1 or 2. Since R is
a normal subgroup of H , F is preserved by H . By connectedness, H fixes each of the
points of F , hence H is contained in a parabolic group, and is thus amenable.

This implies that the semi-direct product is in fact direct, up to finite index (H
acts by conjugacy on the the compact torus R̄. But the identity component of the
automorphism group of a torus is trivial). Let us say that H is a product S × C′

where C′ is precompact. We now investigate S and come back later on to S × C′.
Observe first that S is simple. Indeed, if S = S1 × S2, then any non-elliptic f ∈ S2,
will centralize S1, which implies S1 has a fixed point at ∂∞X and hence amenable.

4.0.3. Simple Lie subgroups. In order to understand the geometry of S, we
investigate the symmetric space X (rather than its boundary as in the previous case).
Let p be a base point, say that fixed by the maximal compact K. We have a Cartan
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decomposition of the Lie algebra of G: g = p⊕ k, where k is the Lie subalgebra of K,
and p is (the unique) K-invariant supplementary space of k in g. Geometrically, p is
identified with TpM , and if u ∈ p, the orbit exp(tu).p is the geodesic of X determined
by u.

More other properties are: K acts irreducibly on p, and [p, p] = k.
If S ⊂ G is a simple Lie subgroup, then Karpelevich-Mostow’s theorem [18, 22]

states, up to a conjugacy in G (or equivalently a modification of the base point), we
get a Cartan decomposition by taking intersection: s = s ∩ p⊕ s ∩ k.

Observe that s ∩ p determines s, since s ∩ k = [s ∩ p, s ∩ p].
In our case, p = TpX is identified to Cn. The subspace E = s∩p is either complex

or totally real, since E ∩ iE is S ∩K-invariant, and this last group acts irreducibly on
E. Now, K = U(n) acts transitively on the set of totally real (resp. complex) planes
of a given dimension k. Thus, up to conjugacy, s ∩ p is the canonical Rk+1 or Ck+1

in Cn. Candidate for s in these cases are the Lie algebras of the standard subgroups
SO0(1, k) or SU(1, k), respectively. But since s∩ p determines completely s, there are
the unique possibilities.

End. We have thus proved (2) and (3) of the proposition at the group level: H is
conjugate in SU(1, n) to S×C, with S = SO0(1, k) or SU(1, k). Since the precompact
factor C commutes with the non-compact S, it is contained in SO(n−k) or SU(n−k),
respectively. In particular H preserves Rk+1 or Ck+1. This completes the proof of
the proposition.

Corollary 4.3. Let L be a subgroup of SU(1, n) (not necessarily connected or
closed) acting C-irreducibly on Cn+1. Then, the identity component of its Zariski
closure equals SU(1, n) or SO0(1, n). If the identity component L0 is not trivial, L
itself equals SU(1, n) or SO0(1, n).

Proof. Let LZar be the Zariski closure of L. It is a closed subgroup of SU(1, n)
with finitely many connected components. It is non-compact, since otherwise L will
be precompact and can not act irreducibly.

The identity component H of LZar is non-precompact too. If H is amenable, then
its fixed point set F in ∂∞X is preserved by L, since L normalizes H . If F consists of
one point, then L fixes it, seen as a lightlike direction in C1+n contradicting the fact
that it acts irreducibly.

If F consists of two lightlike directions, then L preserves the (timelike) 2-plane
that they generate in C1+n, again contradicting its irreducibility.

We infer from this that H is not amenable. Apply Proposition 4.1 to get that
H is essentially SO0(1, k) or SU(1, k). Our group L itself is then contained in the
normalizer of one of these groups. On easily sees that such a normalizer can not act
irreducibly unless k = n (for instance the normalizer of SO0(1, k) or SU(1, k) preserves
the space of their fixed vectors which is non-trivial for k < n).

We have more:

Corollary 4.4. Let L be a subgroup of SU(1, n). If L is non-amenable, then its
Zariski closure contains a copy of SO0(1, k) or SU(1, k) for some k > 0. If furthermore
L0 is non- pre-compact, then L itself contains SO0(1, k) or SU(1, k). (Of course
SO0(1, k) ⊂ SU(1, k), but we prefer our formulation here for a later use ).

Proof. The first part is obvious.
For the second one, it suffices to show that L0 is non-amenable. But this L0 is

normalized by LZar (L itself normalizes L0 and by algebraicity, LZar too preserves
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it). But SO0(1, k) or SU(1, k) can normalize no amenable non-compact connected
subgroup of SU(1, n).

4.1. Subgroups of U(1, n) We will now deal with subgroups L of of U(1, n) =
U(1) × SU(1, n). The following lemma will help to understand them and maybe has
its own interest:

Lemma 1. Let L be a subgroup of U(1, n).
1) If L is non-precompact, then:
(i) either L preserves a unique lightlike direction
(ii) or L preserves a unique timelike (i.e. on which the restriction of q0 on it is

of Hermite-Lorentz type) 2-plane, and also each of the two lightlike directions inside
it.

(iii) or L preserves a unique timelike subspace on which it acts C-irreducibly.
In all cases, this lightlike direction, or timelike subspace are invariant under the

normalizer of L in U(1, n).
2) L acts irreducibly iff L ∩ SU(1, n) acts irreducibly.

Proof. 1) If L acts C-irreducibly, then we are done. So, assume it preserves some
proper subspace E, and thus also E⊥. If E is degenerate, then E ∩E⊥ is an invariant
lightlike direction. If E is spacelike then E⊥ is timelike, and vice versa.

Assume, we are not in case (i), so either there is no invariant lightlike direction
at all, or there are many. In all cases, we can find an invariant timelike subspace (by
taking sums if there are many lightlike directions).

Let E be an invariant timelike subsapce of minimal dimension. Let us prove that
either E is irreducible, or we are in case (ii).

Assume there exists E′ a proper invariant subspace of E. By definition, neither
E⊥ ∩E nor E′⊥ ∩E are timelike, and thus E′ is degenerate, and hence D = E′ ∩E′⊥

is an invariant lightlike direction. It is not unique, because we are not in case (i).
So, there is another similar one D′. It must be contained in E since otherwise its
projection on E would be an invariant timelike direction. Let P = D ⊕ D′. By
minimality, E = P . To show that we are in case (ii), let us prove uniqueness of E.
If D′′ is another invariant direction not in P , then its projection on P will give a
timelike invariant direction. This implies that the action on P is equicontinuous, but
since P⊥ is spacelike, the group L will be precompact in this case.

It remains to consider the case where E is irreducible, and show it is unique.
Assume by contradiction that E′ is analogous to E. Let R = E⊥ ⊕ E′⊥. The L-
action on R is equicontinuous (since both E⊥ and E′⊥ are spacelike). Let P = R∩E.
Then P �= 0, unless E = E′. Furthermore P �= E since otherwise E = C1+n and L
will be precompact. This contradicts the irreducibility of E.

2) Assume L irreducible.
Consider the projections π1 and π2 of U(1, n) onto U(1) and SU(1, n) respectively.
If L∩ SU(1, n) = {1}, then π1 sends injectively L in U(1) and hence L is abelian,

and can not act irreducibly.
Observe that π2(L) acts C-irreducibly. Indeed, L is contained in U(1)×π2(L) and

U(1) preserves any C-subspace.
Observe also that π2(L) and L∩SU(1, n) normalizes each one the other, and that

the commutator group [π2(L), π2(L)] is contained in L∩SU(1, n). If L∩SU(1, n) is not
precompact, then the previous step implies it is irreducible. Finally, from Corollary
4.4, one infers that the commutator group of an irreducible subgroup of SU(1, n) is
not precompact, and therefore L ∩ SU(1, n) acts irreducibly.
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Corollary 4.5. Let L be a subgroup of U(1, n) acting irreducibly on Cn+1.
Then, its Zariski closure contains SO0(1, n) or SU(1, n).

If furthermore L0 �= 1, and its Zariski closure does not contain SU(1, n), then,
either, L0 equals SO0(1, n), or L0 ⊃ U(1).

Proof. The first part is obvious from the discussion above, let us prove the second
one. In this case L is a subgroup of U(1)× SO0(1, n).

– If L0∩SO0(1, n) �= 1, then its equals SO0(1, n) by irreducibility of L∩SO0(1, n),
in particular L ⊃ SO0(1, n). Furthermore, if a product ab, a ∈ U(1), b ∈ SO0(1, n)
belongs to L, then b ∈ L, that is π(L) = L ∩ U(1). This last group is either U(1)
(in which case L = U(1) × SO0(1, n)), or totally discontinuous, in which case L0 =
SO0(1, n).

– Assume now that L0 ∩ SO0(1, n) = 1. Let lt = atbt be a one parameter group
in L0, and c ∈ L ∩ SO0(1, n). The commutator [c, atbt] equals [c, bt]. This is a one
parameter group in L∩SO0(1, n), and hence must be trivial. But since we can choose
c in a Zariski dense set in SO

0(1, n), the one parameter group bt must be trivial. This
means that lt ∈ U(1), and hence L0 ⊃ U(1).

5. Proof of Theorem 2.1. Let (M,J, g) be an almost complex Hermite-Lorentz
space on which a group G acts transitively with C-irreducible isotropy.

Let p be a base point of M , and call H its isotropy group in G. The tangent
space TpM is identified to C

1+n and H to a subgroup of U(1, n). By hypothesis H
acts C-irreducibly on C1+n.

The first part of Theorem 2.1, that is J is integrable and g is Kähler will be
proved quickly. Indeed, by Corollary 4.5 the Zariski closure of H (in U(1, n)) contains
SO0(1, n).

Kähler Character. Let ω be the Kähler form of g. Its differential at p, α = dωp

is an H-invariant 3-form on Cn+1. By Corollary 4.5, α is SO0(1, n)-invariant. By Fact
3.2, α = 0, that is, M is Kähler.

Integrability of the complex structure. The (Nijenhuis, obstruction to) in-
tegrability tensor at p is an R-anti- symmetric bilinear vectorial form C1+n×C1+n →
C1+n. The same argument, using Fact 3.3 yields its vanishing, that is J is integrable.

Remark 5.1. Observe that we need dimM > 3 in order to apply Facts 3.2 and
3.3.

5.0.1. Classification. The remaining part of this section is devoted to the iden-
tification of M as one of theses spaces: Minkn+1(C), dSn+1(C), AdSn+1(C), CdSn+1

or CAdSn+1 (up to a central cyclic cover in some cases).

5.0.2. The identity component H0. Let us prove that H0 �= 1. If not G is
a covering of M , in particular TpM ∼= C

n+1 is identified to the Lie algebra g, and
H acts by conjugacy. The bracket is an R-bilinear form like the integrability tensor,
and hence vanishes, that is g is abelian. This contradicts the fact that H acts non-
trivially by conjugacy. Therefore H0 is non-trivial. Applying subsection 4.1, we get
three possibilities:

1. The Zariski closure of H contains SU(1, n)

2. H0 = SO0(1, n)

3. H0 contains U(1).
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5.1. Case 1: the Zariski closure of H contains SU(1, n). The holomorphic
sectional curvature at p is an H-invariant function on the open subset in Pn(C) of
non-lightlike C-lines of Cn+1. But SU(1, n) acts transitively on this set. It follows that
this holomorphic sectional curvature is constant. Therefore M is a Kähler-Lorentz
manifold of constant holomorphic sectional curvature, and thus M is locally isometric
to one the universal spaces Minkn+1(C), dSn+1(C) or AdSn+1(C) [20, 4]. We will see
below (§5.4) that M is (globally) isometric to Minkn+1(C), dSn+1(C) or to a cover of
AdSn+1(C).

5.2. Case 2: H0 = SO0(1, n). The final goal here is to show that M is
Minkn+1(C). First we replace M = G/H by G/H0 which enjoys all the properties of
the initial M . In other words, we can assume H = H0 = SO0(1, n).

Invariant distributions. SO0(1, n) acts C-irreducibly but not R-irreducibly.
We set a G-invariant distribution S on M as follows. Define S to be equal to Rn+1

at p. For x = gp, define Sx = Dpg(Sp). This does not depend on the choice of g since
Sp is H-invariant.

The orthogonal distribution S⊥ is in fact determined similarly by means of the
H-invariant space iRn+1.

Integrability of distributions. The obstruction to the integrability of S is
encoded in the anti–symmetric Levi form II : S×S → S⊥, where II(X,Y ) equals the
projection on S⊥ of [X,Y ], for X and Y sections of S. At p, we get an anti-symmetric
bilinear form Rn+1 ×Rn+1 → Rn+1, equivariant under the SO0(1, n)-action. By Fact
3.3, this must vanish and hence S and analogously S⊥ are integrable.

We denote by S and S⊥ the so defined foliations.
Observe that since G preserves these foliations, then each leaf of them is homo-

geneous. If F is such a leaf, x, y ∈ F , and g ∈ G is such that y = gx, then g sends
the distribution at x to that at y, and hence, gF = F .

Leaves of S or S⊥ are (real) homogeneous Lorentz manifolds with (maximal)
isotropy SO0(1, n). They are easy to handle du to the following fact, the proof of
which is standard:

Fact 5.2. Let F = A/B be a homogeneous Lorentz manifold of dimension n+ 1
such that the action of B on the quotient a/b of Lie algebras is equivalent to the
standard action of SO0(1, n) on Rn+1. Then F has constant sectional curvature. If
F is flat, then F = Minkn+1 and A = SO0(1, n)� Rn+1. If F has positive curvature
then it equals dSn+1 and A = SO0(1, n+ 1). Finally, in the negative curvature case,
F is a cover of AdSn+1, and A covers SO(2, n).

Let A be the stabilizer of Sp. If leaves of S are not flat, then A is SO0(1, n+1) in
case of positive curvature, and A = SO(2, n) in the negative curvature case. Consider
the (local) quotient spaceQ = M/S, it has dimension n+1. The groupA acts by fixing
F , seen as a point of Q. But SO0(1, n+1) and SO(2, n)) have no linear representation
of dimension n + 1. Therefore, A acts trivially on the tangent space TFQ. But this
tangent space is identified to S⊥

p . There, SO0(1, k), as an isotropy subgroup, acts

non-trivially. This contradiction implies that the leaves of S and analogously S⊥ are
flat.

Now, we need to study further the geometry of our foliations. We claim that
their leaves are in fact totally geodesic. Indeed, there is a symmetric Levi form mea-
suring the obstruction of geodesibility. More exactly, it is given by II∗(X,Y ) = the
orthogonal projection of the covariant derivative ∇XY . From 3.3, since equivariant
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symmetric bilinear forms do not exist, the foliations S and S⊥ are geodesic. It is clas-
sical that the existence of a couple of orthogonal geodesic foliations implies a metric
splitting of the space, see for example [20] about the proof of the de Rham decom-
position Theorem (one starts observing that, at least locally, M is isometric to the
product Sp × S

⊥
p . In particular, M is a flat Hermite-Lorentz manifold, that is M is

locally isometric to Mink1+n(C).
One can moreover prove that G is a semi-direct product SO0(1, n) � Rn+1 and

M = Minkn+1(C) (see §5.4 below for details in a similar situation).

5.3. Case 3: U(1) ⊂ H ⊂ U(1)× SO0(1, n). The goal here is to prove that M is
flat or isomorphic to one of the two spaces CdSn = SO0(1, n+1)/SO0(1, n−1)×SO(2)
or CAdSn = SO(3, n− 1)/SO(2)× SO0(1, n− 1).

The crucial observation is that M is a (pseudo-Riemannian) symmetric space,
that is there exists f ∈ G, such that Dpf = −IdTpM . Indeed, −Id ∈ U(1).

There is a de Rham decomposition of M into a product of a flat factor and
irreducible symmetric spaces. In our case, there exists a subgroup of the isotropy
that acts irreducibly. It follows that M is either flat, or irreducible. There is nothing
to prove in the first case, we will therefore assume that M is irreducible. We can also
assume that G is the full isometry group of M (the hypotheses in Theorem 2.1 on the
G-action are also valid for the full isometry group). It is known that isotropy groups
of symmetric spaces have finitely many connected components. Thus, up to a finite
cover (say assuming it connected), H must be U(1)× SO0(1, n).

Consider a Cartan decomposition g = h + p, where p is identified with Cn+1.
Consider the bracket [, ] : p× p→ h = so(1, n) + u(1).

Its second component is a SO0(1, n)-invariant anti-symmetric scalar bilinear form
α : Cn+1×C

n+1 → u(1) = R. By Fact 3.1, α vanishes on R
n+1, that is if X,Y ∈ R

n+1,
then [X,Y ] ∈ so(1, n). On the other hand, SO(1, n) preserves Rn+1, and hence if
T ∈ so(1, n) and Z ∈ Rn+1, then [T, Z] ∈ Rn+1.

Summarizing, if X,Y, Z ∈ Rn+1, then [[X,Y ], Z] ∈ Rn+1. It is known that this
implies that Rn+1 determines a totally geodesic submanifold, say F . It has dimension
n+1 and isotropy SO0(1, n). From Fact 5.2, F is a Lorentz space of constant curvature.
It can not be flat since in that case, the bracket [, ] vanishes on Rn+1, but this implies
it vanishes on the whole of Cn+1. So M is the de Sitter or the anti de Sitter space.

The two cases are treated identically, let us assume F = dSn+1. Its isometry
group SO0(1, n+ 1) is thus contained in G.

The goal now is to show that G = SO0(1, n + 2). For this, we consider the
homogeneous space N = G/SO0(1, n+1). Since we know the dimensions of G/U(1)×
SO0(1, n) and SO0(1, n+ 1)/SO0(1, n), we can compute that of G/SO0(1, n+ 1), and
find it equals n+ 2.

Thus SO0(1, n + 1) has an isotropy representation ρ in the (n + 2)-dimensional
space E, the tangent space at the base point of N . In a direct way, we prove that
this is the standard representation of SO0(1, n+ 1) in R

n+2. For this, we essentially
use that ρ restricted to SO0(1, n) is already known.

From Fact 5.2, G is SO0(1, n + 2) or SO(2, n + 1). Again, in a standard way,
we exclude the case G = SO(2, n+ 1) (just because it does not contain the isotropy
U(1)× SO0(1, n)). We have thus proved that M = SO0(1, n+ 2)/SO0(1, n)× SO(2).

5.4. Global symmetry. It was proved along the investigation of cases (2) and
(3) that M is (globally) symmetric (the global isometry with Minkn+1(C) in case (2)
can be handled following the same next argument). It remains to consider the first
case, that is when the Zariski closure of H contains SU(1, n).



546 A. BEN AHMED AND A. ZEGHIB

Exactly as previously, by Corollary 4.5, we have SU(1, n) ⊂ H , or U(1) ⊂ H. The
last case is globally symmetric, let us focus on the first one, SU(1, n) ⊂ H .

M is locally isometric to a universal space X of constant holomorphic sectional
curvature. We let the universal cover G̃ act onX . Since the isotropy SU(1, n) ofM has
codimension 1 in the isotropy U(1, n) of X , G̃ has codimension 1 in Iso(X). However,
if X is not flat, Iso(X) is a simple Lie group with no codimension 1 subgroup, since
it is not locally isomorphic to SL2(R) since dimX ≥ 3 (the unique simple Lie group
having a codimension 1 subgroup is SL2(R)). Therefore, dimG = dim(Iso(X)), and
in particular the isotropy of M is U(1, n), in particular M is (globally) symmetric.

Let us now consider the case of X = Minkn+1(C). Thus Iso(X) = U(1, n)�C
n+1.

Since G̃ acts (locally) transitively, it must contain some translation, that is A =
G̃∩Cn+1 �= 1. The subgroup A is normal in G̃, and is in particular SU(1, n)-invariant.
By irreducibility, A = Cn+1, and thus G̃ = SU(1, n)�Cn+1. The group G is a quotient
of G̃ by a discrete central subgroup. But G̃ has no such a subgroup. It then follows
that M = SU(1, n)�Cn+1/SU(1, n), and hence M = Minkn+1(C).

This finishes the proof of Theorem 2.1.

6. Proof of Theorem 2.2: Preliminaries. Let M be a Hermite-Lorentz space
homogeneous under the holomorphic isometric action of a semi-simple Lie group G of
finite center.

For x in M , we denote by Gx its stabilizer in G, g the Lie subalgebra of G, and
gx the Lie subalgebra of Gx. The goal in this section is to show that gx is big; it
contains nilpotent elements.

6.1. Stable subalgebras, actions on surfaces.

6.1.1. Notations.

An element X in the Lie algebra g is R-split (or hyperbolic) if adX is diagonal-
izable with real eigenvalues. Thus g = Σαg

α, where α runs over the set of eigenvalues
of adX . Let

W s
X = Σα(X)<0g

α, Wu
X = Σα(X)>0g

α and W s0
X = Σα(X)≤0g

α

be respectively, the stable, unstable and weakly-stable sub-algebras of X . We have
in particular g = W s0

X ⊕Wu
X

The stable and unstable subalgebras are nilpotent in the sense that, for Y ∈ W s
X

(or Wu
X), adY is a nilpotent element of Mat(g), equivalently, exp adY is a unipotent

element of GL(g) (this follows from relations [gα, gβ ] ⊂ gα+β). It then follows that
if h is an adY -invariant subspace, then exp adY determines a unipotent element of
GL(g/h).

It is known that W s
X and Wu

X are isomorphic; an adapted Cartan involution sends
one onto the other. In particular the codimension of W s0

X in G equals the dimension
of W s

X . Assuming (to simplify) that G is simply connected, it acts on G/L, where L
is the Lie subgroup determined by W s0

X . Then, dim(G/L) = dimW s
X ; summarizing:

Fact 6.1. If for some X, dimW s
X = 2, then G acts on a surface, that is there

exists a G homogeneous space of (real) dimension 2.

Semi-simple Lie groups satisfying the fact can be understood:

Fact 6.2. A semi-simple Lie group G acting (faithfully) on a surface is locally
isomorphic to SL2(R), SL2(R) × SL2(R), SL2(C) or SL3(R). (it is well known that
acting on dimension 1 implies being locally isomorphic to SL2(R)).
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Proof. This can be derived from the classification theory of simple Lie groups. One
starts observing that the problem can be complexified, that is complexified groups act
on complex surfaces; algebraically, they possess codimension 2 complex subalgebras in
their complexified algebras. Let the isotropy group have a Levi decomposition S�R.
Since S has a faithful 2-dimensional representation, it is locally isomorphic to SL2(C).
If S′ is the affine subgroup of SL2(C), then S′ � R is solvable and has codimension
3 in G. Therefore, a Borel group of G has codimension ≤ 3. This implies that the
cardinality of the set of positive roots is ≤ 3 (for any associated root system). With
this restriction, one observes that the (complex) rank is ≤ 2, and consult a list of root
systems to get our mentioned groups.

Example 6.3. These actions on surfaces are in fact classified (up to covers). We
have the projective action of SL2(R) (resp. SL3(R)) on the real projective space P1(R)
(resp. P2(R)). There is also the action of SL2(C) on the Riemann sphere P1(C), and
the product action of SL2(R)

2 on P1(R)2. Finally, the hyperbolic, de Sitter and (the
punctured) affine planes are obtained as quotients of SL2(R) by suitable one parameter
groups. It is finally possible, in some cases, to take covers or quotients by discrete
(cyclic) groups of the previous examples.

6.2. Non-precompactness.

Fact 6.4. Let M = G/H be a homogeneous space where G is semi-simple of finite
center and acts non-properly (and faithfully) on M . Then H seen as the isotropy group
of a base point, say p, in not precompact in GL(TpM).

Proof. By contradiction, if H is precompact then it preserves a Euclidean scalar
product on TpM , and hence G preserves a Riemannian metric on G/H (of course
H is closed in G since it equals the isotropy of p). Let us show that H is compact.
Indeed, let L be the isometry group of the Riemannian homogeneous spaceX = G/H ,
and K its isotropy group in L, which is compact since the homogeneous space is of
Riemannian type. Now, H = K ∩ G. It is known that a semi-simple Lie group of
finite center is closed in any Lie group where it lies. Therefore, H is a closed subgroup
of K, and hence compact.

6.3. Dynamics vs Isotropy. For V be a subspace (in general a subalgebra) of
g, its evaluation at x is the tangent subspace V (x) = {v(x) ∈ TxM, v ∈ V } (here v
is seen as a vector field on M).

Fact 6.5. (Kowalsky [21]) There exists X ∈ g (depending on x), an R-split
element, such that W s

X(x) is isotropic.

In the sprit of Kowalsky’s proof, we have the following precise statement.

Fact 6.6. If the stabilizer algebra gx contains a nilpotent Y , then any R-split
element X of an sl2-triplet {X,Y, Z} (i.e. [X,Y ] = −Y, [X,Z] = +Z, and [Y, Z] = X)
satisfies that (RX ⊕W s

X)(x) is isotropic.

Proof. Let L be the subgroup of G determined by {X,Y, Z}. It is isomorphic
up to a finite cover to SL2(R). A Cartan KAK decomposition yields exp(tY ) =
Lt exp(s(t)X)Rt, where Lt and Rt belong to the compact SO(2).

Write Xt = Ad(R−1
t )(X) (for t fixed), it generates the one parameter group

s→ exp sXt = (Rt)
−1 exp sXRt. Thus, exp(tY ) = Dt exp s(t)Xt, whereDt = LtRt ∈

SO(2).
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Let uα
t and vβt be the eigenvectors for adXt

(acting on g) associated to two roots
α and β. Since exp tY preserves 〈, 〉, we have

〈uα
t , v

β
t 〉 = 〈exp tY uα

t , exp tY vβt 〉 = es(t)(α+β)〈Dtu
α
t , Dtv

β
t 〉.

• The point now is that Xt converges to X , when t → ∞. This follows from a
direct computation of the KAK decomposition in SL2(R). It follows for the eigen-
vectors of adX that 〈uα, vβ〉 is dominated by a function of the form es(α+β). Thus
〈uα, uβ〉 = 0, whence α < 0, and β ≤ 0. In particular W s

X(x) is isotropic and orthog-
onal to X(x) (since adXX = 0).

• It remains to verify that X(x) is isotropic. For this, consider M ′ the SL2(R)-
orbit (of the base point of M). If the isotropy group of the SL2(R)-action on M ′

is exactly generated by exp tY , then M ′ is the affine punctured plane R
2 − {0}.

The unique SL2(R)-invariant (degenerate) metric is 0 or a multiple of dθ2 in polar
coordinates (θ, r), and therefore X(x) is isotropic since it coincides with ∂

∂r
. In the

case where the isotropy group is bigger, the metric onM ′ must vanish (see for instance
§2 in [5] for details).

Fact 6.7. gx contains a nilpotent element unless for any X as in Fact 6.5,
dimW s

X ≤ 2. In particular, if G does not act (locally) on surfaces, then gx∩W s
X �= 0,

and gx contains nilpotent elements.

Proof. Consider the evaluation map V ∈ W s
X → V (x) ∈ TxM . Its image

is isotropic, and thus has at most dimension 2 (since the metric is Hermite-

Lorentz). Its kernel Ix = gx ∩ W s
X consists of nilpotent elements and satisfies

dim(Ix) ≥ dim(W s
X) − 2, which is positive if for some X , dimW s

X > 2, in partic-
ular if G does not act (locally) on surfaces by Fact 6.1.

7. Proof of Theorem 2.2: non-amenable isotropy case. Let (M,J, g) and
G be as in Theorem 2.2, that is G is simple, not locally isomorphic to SL2(R), SL2(C)
or SL3(R), and acts non-properly by preserving the almost complex and Hermite-
Lorentz structures on M .

Theorem 2.2 states that M is exactly as in Theorem 2.1, that is M is a global
symmetric Kähler-Lorentz space. It is thus natural to prove Theorem 2.2 by showing
that its hypotheses imply those of Theorem 2.1, i.e. if the acting group is simple, and
the action in non-proper, then the isotropy is irreducible.

As previously, this isotropy H is a subgroup of U(1, n). Let us assume by contra-
diction that H does not act irreducibly on C

n+1.

By Fact 6.7, the identity component H0 is non-precompact, which allows us using
Proposition 4.1.

The goal of the present section is to get a contradiction assuming H is non-
irreducible and non-amenable. The amenable case will be treated in the next section.

Remark 7.1. Actually, in the present non-amenable case, all what we use from
the preliminaries of §6, is that H0 is non pre-compact (Fact 6.7). For instance if we
start assuming H connected, then the proof will be independent of these preliminaries
and follows from Theorem 2.1 by the short proof below.

By Proposition 4.1, up to conjugacy, H preserves Ck+1, for some 1 < k < n, and
its non-compact semi-simple part is SO0(1, k) or SU(1, k). Let us assume here that it
is SO0(1, k), since the situation with SU(1, k) is even more rigid!
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Integrability of distributions. As in §5.2 during the proof of Theorem 2.1, we
define a G-invariant distribution S on M , by declaring Sp = Ck+1.

We first show that the distribution S⊥ is integrable. The obstruction to its
integrability is encoded in the anti–symmetric Levi form II : S⊥ × S⊥ → S, where
II(X,Y ) equals the projection on S of [X,Y ], for X and Y sections of S⊥.

At p, we get a skew-symmetric form II : Cn−k × Cn−k → Ck+1, equivariant
under the actions of SO0(1, k) on Cn−k and Ck+1 respectively. Observe however that
SO0(1, k) acts trivially on Cn−k. Therefore, the image of II in Ck+1 consists of fixed
points, which is impossible since SO

0(1, k) has no such points (in C
k+1).

• We denote by S⊥ the so defined foliation. Before going further, let us notice
that SO0(1, k) acts trivially on the leaf S⊥

p . Indeed, it preserves the induced (positive

definite) Hermitian metric on S⊥
p . But, the derivative action of SO0(1, k) on TpS⊥

p =

S⊥
p is trivial, and hence SO0(1, k) acts trivially on S⊥

p .
• Let us now study S itself from the point of view of integrability. We consider

a similar Levi form. This time, we get an equivariant form Ck+1 × Ck+1 → Cn−k.
Since SU(1, k) acts trivially on Cn−k, this form is SO0(1, k)-invariant. However, up
to a constant, the Kähler form ω is the unique scalar SO0(1, k)-invariant form (Fact
3.1). It follows that there exists v ∈ Cn−k, such that II = ωv. This determines a
vector field V on M such that V (p) = v, and a distribution S′ = S ⊕ RV .

Of course, it may happen that V = 0, in which case S is integrable.
We claim that S′ is integrable. Indeed, by construction, the bracket [X,Y ] of two

sections of S belongs to S′. It remains to consider a bracket of the form [V,X ]. As
previously, consideration of an associated Levi form leads us to the following linear
algebraic fact: an SO0(1, k)-invariant bilinear form Ck+1 × R → R × Cn−k−1 must
vanish. Its proof is straightforward.

Contradiction. Now, we have two foliations S⊥ and S ′. The group G acts by
preserving each of them. It also acts on Q, the (local) quotient space of S ′, i.e. the
space of its leaves. However, SO0(1, k) acts trivially on Q. Indeed, as we have seen,
SO0(1, k) acts trivially on S⊥

p , and this is a kind of cross section of the quotient space

Q; say, S⊥
p meets an open set of leaves of S. On this open set, SO0(1, k) acts trivially.

By analyticity, SO0(1, k) acts trivially on Q.
Thus the G-action on Q has a non-trivial connected Kernel, and is therefore trivial

since G is a simple Lie group. This means Q is reduced to one point, that is k = n,
which contradicts our hypothesis that H is not irreducible.

8. Proof of Theorem 2.2 in the amenable case. We continue the proof of
Theorem 2.2 started in the previous section, with here the hypothesis (by contradic-
tion) that the isotropyH is amenable. The idea of the proof is as follows. To any x we
associate, in a G-equivariant meaner, Fx, the asymptotic leaf of the isotropy group
Gx at x. It is a (complex) codimension 1 lightlike geodesic hypersurface in M . This
is got by widely general considerations (see for instance [11, 23, 24]). Next, the point
is to check that x→ Fx is a foliation: Fx ∩ Fy �= ∅ =⇒ Fx = Fy. Its (local) quotient
space would be a (real) surface with a G-action, which is impossible by hypotheses of
Theorem 2.2; leading to that H can not be amenable.

8.0.1. Notation and Dimension. For x in M , we denote by Gx its stabilizer
in G, gx its Lie sub-algebra, and Ix = gx ∩W s

X , where X is a fixed R-split element
as in Fact 6.6 (associated to x).

Fact 8.1. 1) X(x) �= 0.
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2) dim(Ix) ≥ 2.

Proof. 1) By contradiction, if X ∈ gx, then one first proves directly (an easy
case of Fact 6.5) that also the unstable Wu

X is isotropic at x and for the same reasons
Wu

X ∩ gx �= 0, say Z ∈Wu
X ∩ gx, and also Y ∈W s

X ∩ gx.

Thus {X,Y, Z} ⊂ gx. Now, the isotropy Gx embeds in the unitary group
U(TxM, 〈, 〉x) identified with U(1, n). The element exp tX is an R-split one param-
eter group that acts on gx with both contracted and an expanded eigenvectors. But,
by the amenability hypothesis on Gx, it is contained in a maximal parabolic subgroup
P of U(1, n). However, P (see §3.2) has no such elements.

2) Since Ix �= 0, we apply Fact 6.6 to modify X if necessary and get that (RX ⊕
W s

X)(x) is isotropic. Now the kernel I′x of the evaluation RX ⊕W s
X → TxM has

dimension at least (1 + dimW s
X) − 2 ≥ 4 − 2 = 2 (since we assumed that G can not

act on surfaces, and hence dimW s
X ≥ 3).

It remains to check that I′x is contained in W s
X to conclude that I′x = Ix, and

obtain the desired estimation. For this assume by contradiction thatX ′ = X+u ∈ I′x,
with u ∈W s

X . It is known that any such X ′ is conjugate to X in RX⊕W s
X (this is the

Lie algebra of a semi-direct product of R by Rk, with R acting on Rk by contraction.
For k = 1, we get the affine group of R). Therefore, we are led to the situation
X(x) = 0 (for some other x), which we have just excluded.

8.1. Asymptotic leaf. (see [11, 23, 24] for a similar situation). Endow M ×M
with the metric (+g)⊕ (−g). Let f : M →M be a diffeomorphism and Graph(f) =
{(x, f(x)), x ∈M}. By definition, f is isometric iff Graph(f) is isotropic for g⊕ (−g).
Furthermore, in this case, Graph(f) is a (totally) geodesic submanifold.

Let fn be a diverging sequence in Gx, i.e. no sub-sequence of it converges in Gx.
Consider the sequence of graphs Graph(fn). In order to avoid global complications,
let us localize things by taking En the connected component of (x, x) in a (small)
convex neighbourhood (O × O) ∩ Graph(fn), where O is a convex neighbourhood of
x, that is, two points of it can be joined within it by a unique geodesic.

Let Vn = Graph(Dxfn) ⊂ TxM×TxM . Then, En is the image by the exponential
map exp(x,x) of an open neighbourhood of 0 in Vn.

If Vn converge to V in the Grassmanian space of planes of TxM × TxM , then En

converge in a natural way to a geodesic submanifold E in M ×M . It is no longer a
graph, since otherwise it would correspond to the graph of an element of Gx which
is a limit of a sub-sequence of (fn) (in fact the map f ∈ Gx → Graph(Dxf) is a
homeomorphism onto its image in the Grassmann space). Let V 1 be the projection
on the first factor TxM .

Since a sequence of isometries converge iff the sequence of inverse isometries con-
verge, V intersects both TxM × 0 and 0× TxM non-trivially.

Since Vn is a complex (resp. isotropic) subspace, also is V ∩ (TxM × 0). Hence,
because the metric on M is Hermite-Lorentz, V ∩ (TxM × 0) is a complex line. Fur-
thermore, since V is isotropic, the projection V 1 is a lightlike complex hyperplane,
with orthogonal direction V ∩ (TxM × 0).

Define similarly E1 to be the projection of E on M . It equals the image by expx
of an open subset of V 1. It is a lightlike geodesic complex hypersurface (see §3.3).

Finally, without assuming that Vn converge, we consider all the limits obtained
by means of sub-sequences of (fn). Any so obtained space V 1 (resp. E1) is called
asymptotic space (resp. leaf) of (fn) at x. (Observe that different limits V may
have a same projection V 1).
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Fact 8.2. Let H be a non-precompact amenable subgroup of U(1, n). There is
exactly one or two degenerate complex hyperplanes which are asymptotic spaces for
any sequence of H, and are furthermore invariant under H. Similarly, there exist one
or two asymptotic leaves for Gx (assuming it amenable and non-compact).

Proof. H is contained in a maximal parabolic group P . By definition P is the
stabilizer of a lightlike direction u ∈ C1+n. One then observes that (Cu)⊥ is a common
asymptotic space for all diverging sequences in P , and hence for H .

Assume now that H preserves two other different degenerate complex hyperplanes
(Cv)⊥ and (Cw)⊥. Let us prove that H is pre-compact in this case. Indeed H
preserves the complex 3-space W = SpanC(u, v,w) and 3-directions inside it, and also
W⊥. Since W⊥ is spacelike (the metric on it is positive), it suffices to consider the
case W⊥ = 0. So the statement reduces to the compactness of the subgroup of U(1, 2)
preserving 3 different C-lines. This is a classical fact related to the definition of the
cross ratio.

8.1.1. Varying x. At our fixed x, we have one or two asymptotic leaves. By
homogeneity, we have the same property, one or two asymptotic leaves, for any y ∈M .
If there are two, we arrange to choose an asymptotic leaf denoted Fy, in order to insure
continuity (at least) in a neighbourhood of x.

Fact 8.3. Assume y and z near x. If Gy ∩Gz is non-compact, then Fy = Fz.

Proof. Let (fn) is a diverging sequence in Gy ∩Gz . The fixed point set of each fn
is a geodesic submanifold containing y and z. The intersection of all of them when n
varies is a geodesic submanifold S containing y and z, fixed by all the fn. The graph
of fn above S is the diagonal of S×S. Hence, S is contained in the projection of any
limit of Graph(fn). Therefore, any asymptotic leaf at y is also asymptotic at z.

8.2. Geometry.

Fact 8.4. (Remember the notation Ix = gx ∩W s
X). If X can be chosen such

that dim Ix ≥ 3, then for any y ∈ Fx, gy ∩ Ix �= 0. In particular Fy = Fx.

Proof. By Corollary 3.5, the group generated by Ix preserves each leaf of the
characteristic foliation N of Fx. Equivalently, the evaluation Ix(y) is contained in
the tangent space of the characteristic leaf Ny, for any y ∈ Fx. Since dim Ix ≥ 3, and
dimNy = 2, we conclude that Ix ∩ gy �= 0, and hence Fx = Fy by Fact 8.3.

8.2.1. Same conclusion in the other case. Assume now that for any choose
of X , dim Ix = 2, say Ix = Span{a, b}, and let A = exp a and B = exp b. The set of
fixed points of a nilpotent element, say a (or equivalently a unipotent element A) is a
geodesic submanifold Fix(a) of complex codimension 2 (one cheeks this for elements
of U(1, n)).

Choose y ∈ Fix(a), then by Fact 8.3, Fy = Fx. Since a ∈ gy, we can apply Facts
6.6 and 6.7 and get for the same X that Iy = gy ∩W s

X has dimension ≥ 2.

Let I be the subalgebra of W s
X generated by Ix and Iy. It is nilpotent since

contained in W s
X . Assume furthermore that y ∈ Fix(a)− Fix(b), then Ix �= Iy, and

hence dim I ≥ 3.

Since it is generated by Ix and Iy, I preserves individually the leaves of the
characteristic foliation N on Fx. As above, by the inequality on dimensions, any
z ∈ Fx is fixed by a non-trivial element of I. Therefore, by Fact 8.3, Fz = Fx.
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8.3. End, Contradiction. The previous conclusion means that two asymptotic
leaves are disjoint or equal, that is they define a foliation of M , of (real) codimension
2. This foliation is G invariant. Therefore, G acts on the (local) quotient space of the
foliation. This contradicts our hypothesis that G does not act (locally) on surfaces.
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