SIMPLY CONNECTED INDEFINITE HOMOGENEOUS SPACES OF FINITE VOLUME

OLIVER BAUES, WOLFGANG GLOBKE, AND ABDELGHANI ZEGHIB

ABSTRACT. Let M be a simply connected pseudo-Riemannian homogeneous space of finite volume with isometry group G. We show that M is compact and that the solvable radical of G is abelian and the Levi factor is a compact semisimple Lie group acting transitively on M. For metric index less than three, we find that the isometry group of M is compact itself. Examples demonstrate that G is not necessarily compact for higher indices. To prepare these results, we study Lie algebras with abelian solvable radical and a nil-invariant symmetric bilinear form. For these, we derive an orthogonal decomposition into three distinct types of metric Lie algebras.

CONTENTS

1.	Introduction and main results	1
2.	Nil-invariant bilinear forms	3
3.	Metric Lie algebras with abelian radical	5
4.	Simply connected compact homogeneous spaces with indefinite metric	8
References		11

1. INTRODUCTION AND MAIN RESULTS

In this article we are interested in the isometry groups of simply connected homogeneous pseudo-Riemannian manifolds of finite volume. D'Ambra [3, Theorem 1.1] showed that a simply connected compact analytic Lorentzian manifold (not necessarily homogeneous) has compact isometry group, and she also gave an example of a simply connected compact analytic manifold of metric signature (7,2) that has a non-compact isometry group.

Here we study homogeneous spaces for arbitrary metric signature. Our main tool is the structure theory of the isometry Lie algebras developed by the authors in [2]. The metric on the homogeneous space induces a symmetric bilinear form on the isometry Lie algebra, and as shown in [1, 2], the existence of a finite invariant measure then implies that this bilinear form is nil-invariant. The first main result is the following theorem:

Theorem A. Let M be a connected and simply connected pseudo-Riemannian homogeneous space of finite volume, $G = Iso(M)^{\circ}$, and let H be the stabilizer subgroup in G of a point in M. Let G = KR be a Levi decomposition, where R is the solvable radical of G. Then:

Date: July 9, 2018.

²⁰¹⁰ Mathematics Subject Classification. Primary 53C50; Secondary 53C30, 57S20.

BAUES, GLOBKE, AND ZEGHIB

- (1) M is compact.
- (2) K is compact and acts transitively on M.
- (3) *R* is abelian. Let *A* be the maximal compact subgroup of *R*. Then $A = Z(G)^{\circ}$. More explicitly, $R = A \times V$ where $V \cong \mathbb{R}^{n}$ and $V^{K} = \mathbf{0}$.
- (4) *H* is connected. If dim R > 0, then $H = (H \cap K)E$, where *E* and $H \cap K$ are normal subgroups in *H*, $(H \cap K) \cap E$ is finite, and *E* is the graph of a non-trivial homomorphism $\varphi : R \to K$, where the restriction $\varphi|_A$ is injective.

In Section 4 we give examples of isometry groups of compact simply connected homogeneous M with non-compact radical. However, for metric index 1 or 2 the isometry group of a simply connected M is always compact:

Theorem B. The isometry group of any simply connected pseudo-Riemannian homogeneous manifold of finite volume with metric index $\ell \leq 2$ is compact.

As follows from Theorem A, the isometry Lie algebra of a simply connected pseudo-Riemannian homogeneous space of finite volume has abelian radical. This motivates a closer investigation of Lie algebras with abelian radical that admit nilinvariant symmetric bilinear forms in Section 3. Our main result is the following algebraic theorem:

Theorem C. Let \mathcal{G} be a Lie algebra whose solvable radical \mathcal{R} is abelian. Suppose \mathcal{G} is equipped with a nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$ such that the kernel \mathcal{G}^{\perp} of $\langle \cdot, \cdot \rangle$ does not contain a non-trivial ideal of \mathcal{G} . Let $\mathcal{K} \times \mathcal{S}$ be a Levi subalgebra of \mathcal{G} , where \mathcal{K} is of compact type and \mathcal{S} has no simple factors of compact type. Then \mathcal{G} is an orthogonal direct product of ideals

$$\mathcal{G} = \mathcal{G}_1 \times \mathcal{G}_2 \times \mathcal{G}_3$$

with

$$G_1 = \mathcal{K} \ltimes \mathcal{A}, \quad G_2 = \mathcal{S}_0, \quad G_3 = \mathcal{S}_1 \ltimes \mathcal{S}_1^*$$

where $\mathcal{R} = \mathcal{A} \times \mathcal{S}_1^*$ and $\mathcal{S} = \mathcal{S}_0 \times \mathcal{S}_1$ are orthogonal direct products, and \mathcal{G}_3 is a metric cotangent algebra. The restrictions of $\langle \cdot, \cdot \rangle$ to \mathcal{G}_2 and \mathcal{G}_3 are invariant and non-degenerate. In particular, $\mathcal{G}^{\perp} \subseteq \mathcal{G}_1$.

For the definition of metric cotangent algebra, see Section 2. We call an algebra $\mathcal{G}_1 = \mathcal{K} \ltimes \mathcal{A}$ with \mathcal{K} semisimple of compact type and \mathcal{A} abelian a Lie algebra of *Euclidean type*. By Theorem A, isometry Lie algebras of compact simply connected pseudo-Riemannian homogeneous spaces are of Euclidean type. However, not every Lie algebra of Euclidean type appears as the isometry Lie algebra of a compact pseudo-Riemannian homogeneous space. In fact, this is the case for the Euclidean Lie algebras $\mathcal{E}_n = \mathcal{SO}_n \ltimes \mathbb{R}^n$ with $n \neq 3$.

Theorem D. The Euclidean group $E_n = O_n \ltimes \mathbb{R}^n$, $n \neq 1, 3$, does not have compact quotients with a pseudo-Riemannian metric such that E_n acts isometrically and almost effectively.

Note that E_n acts transitively and effectively on compact manifolds with finite fundamental group, as we remark at the end of Section 3.

Notations and conventions. For a Lie group G, we let G° denote the connected component of the identity. For a subgroup H of G, we write $\operatorname{Ad}_{\mathcal{G}}(H)$ for the adjoint representation of H on the Lie algebra \mathcal{G} of G, to distinguish it from the adjoint representation $\operatorname{Ad}(H)$ on its own Lie algebra \mathcal{H} .

 $\mathbf{2}$

The solvable radical \mathcal{R} of \mathcal{G} is the maximal connected solvable normal subgroup of \mathcal{G} . The solvable radical \mathcal{R} of \mathcal{G} is the maximal solvable ideal of \mathcal{G} . The semisimple Lie algebra $\mathcal{F} = \mathcal{G}/\mathcal{R}$ is a direct product $\mathcal{F} = \mathcal{K} \times \mathcal{S}$, where \mathcal{K} is a semisimple Lie algebra of *compact type*, meaning its Killing form is definite, and \mathcal{S} is semisimple without factors of compact type.

The center of a group G, or a Lie algebra \mathcal{G} , is denoted by Z(G), or $Z(\mathcal{G})$, respectively. Similarly, the centralizer of a subgroup H in G (or a subalgebra \mathcal{H} in \mathcal{G}) is denoted by $Z_G(H)$ (or $Z_{\mathcal{G}}(\mathcal{H})$).

The action of a Lie group G on a homogeneous space M is (almost) effective if the stabilizer of any point in M does not contain a non-trivial (connected) normal subgroup of G.

If V is a G-module, then we write $V^G = \{v \in V \mid gv = v \text{ for all } g \in G\}$ for the module of G-invariants. Similarly, $V^G = \{v \in V \mid xv = 0 \text{ for all } x \in G\}$ for a \mathcal{G} -module.

For direct products of Lie algebras \mathcal{G}_1 , \mathcal{G}_2 we write $\mathcal{G}_1 \times \mathcal{G}_2$, whereas $\mathcal{G}_1 + \mathcal{G}_2$ or $\mathcal{G}_1 \oplus \mathcal{G}_2$ refers to sums as vector spaces.

Acknowledgements. Wolfgang Globke was partially supported by the Australian Research Council grant DE150101647 and the Austrian Science Foundation FWF grant I 3248.

2. NIL-INVARIANT BILINEAR FORMS

Let \mathcal{G} be a finite-dimensional real Lie algebra, let $\operatorname{Inn}(\mathcal{G})$ denote the inner automorphism group of \mathcal{G} and $\overline{\operatorname{Inn}(\mathcal{G})}^{\mathbb{Z}}$ its Zariski closure in $\operatorname{Aut}(\mathcal{G})$. A symmetric bilinear form $\langle \cdot, \cdot \rangle$ on \mathcal{G} is called *nil-invariant* if for all $x_1, x_2 \in \mathcal{G}$,

(2.1)
$$\langle \varphi x_1, x_2 \rangle = -\langle x_1, \varphi x_2 \rangle$$

for all nilpotent elements φ of the Lie algebra of $\overline{\operatorname{Inn}(\mathcal{G})}^2$. For a subalgebra \mathcal{H} of \mathcal{G} , we say $\langle \cdot, \cdot \rangle$ is \mathcal{H} -invariant if for all $x \in \mathcal{H}$, $\operatorname{ad}_{\mathcal{G}}(x)$ is skew-symmetric for $\langle \cdot, \cdot \rangle$.

The kernel of $\langle \cdot, \cdot \rangle$ is the subspace

$$\mathcal{G}^{\perp} = \{ x \in \mathcal{G} \mid \langle x, y \rangle = 0 \text{ for all } y \in \mathcal{G} \}.$$

We use a Levi decomposition of \mathcal{G} ,

$$\mathcal{G} = (\mathcal{K} \times \mathcal{S}) \ltimes \mathcal{R},$$

where \mathcal{K} is semisimple of compact type, \mathcal{S} is semisimple without factors of compact type, and \mathcal{R} is the solvable radical of \mathcal{G} . Let further $\mathcal{G}_s = \mathcal{S} \ltimes \mathcal{R}$.

Theorem 2.1 ([2, Theorem A]). Let \mathcal{G} be a finite-dimensional real Lie algebra with nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$. Let $\langle \cdot, \cdot \rangle_{\mathcal{G}_s}$ denote the restriction of $\langle \cdot, \cdot \rangle$ to \mathcal{G}_s . Then:

- (1) $\langle \cdot, \cdot \rangle_{\mathcal{G}_s}$ is invariant by the adjoint action of \mathcal{G} on \mathcal{G}_s .
- (2) $\langle \cdot, \cdot \rangle$ is invariant by the adjoint action of \mathcal{G}_{s} .

This implies some orthogonality relations that will be useful later on:

$$(2.2) S \perp [\mathcal{K}, \mathcal{G}], \quad \mathcal{K} \perp [\mathcal{S}, \mathcal{G}].$$

Theorem 2.2 ([2, Corollary C]). Let \mathcal{G} be a finite-dimensional real Lie algebra with nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$, where we further assume that \mathcal{G}^{\perp} does not contain any non-zero ideal of \mathcal{G} . Let $\mathcal{Z}(\mathcal{G}_s)$ denote the center of \mathcal{G}_s . Then

$$\mathcal{G}^{\perp} \subseteq \mathcal{K} \ltimes \mathcal{Z}(\mathcal{G}_{s}) \quad and \quad [\mathcal{G}^{\perp}, \mathcal{G}_{s}] \subseteq \mathcal{Z}(\mathcal{G}_{s}) \cap \mathcal{G}^{\perp}$$

We say that $\langle \cdot, \cdot \rangle$ has relative index ℓ if the induced scalar product on $\mathcal{G}/\mathcal{G}^{\perp}$ has index ℓ . For relative index $\ell \leq 2$, we have a general structure theorem for \mathcal{G} .

Theorem 2.3 ([2, Theorem D]). Let \mathcal{G} be a finite-dimensional real Lie algebra with nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$ of relative index $\ell \leq 2$, and assume that \mathcal{G}^{\perp} does not contain any non-zero ideal of \mathcal{G} . Then:

- (1) The Levi decomposition of G is a direct sum of ideals $G = \mathcal{K} \times \mathcal{S} \times \mathcal{R}$.
- (2) \mathcal{G}^{\perp} is contained in $\mathcal{K} \times \mathcal{Z}(\mathcal{R})$ and $\mathcal{G}^{\perp} \cap \mathcal{R} = \mathbf{0}$.
- (3) $\mathcal{S} \perp (\mathcal{K} \times \mathcal{R})$ and $\mathcal{K} \perp [\mathcal{R}, \mathcal{R}]$.

2.1. Cotangent algebras. Let \mathcal{L} be a Lie algebra. A cotangent algebra constructed from \mathcal{L} is a Lie algebra $\mathcal{G} = \mathcal{L} \ltimes \mathcal{L}^*$ where \mathcal{L} acts on its dual space \mathcal{L}^* by its coadjoint representation. We call \mathcal{G} a metric cotangent algebra if it has a non-degenerate invariant scalar product $\langle \cdot, \cdot \rangle$ such that \mathcal{L}^* is totally isotropic.

2.2. **Invariance by** \mathcal{G}^{\perp} . We are mainly interested in nil-invariant bilinear forms $\langle \cdot, \cdot \rangle$ on \mathcal{G} induced by pseudo-Riemannian metrics on homogeneous spaces. In this case, $\langle \cdot, \cdot \rangle$ is invariant by the stabilizer subalgebra \mathcal{G}^{\perp} . We can then further sharpen the statement of Theorem 2.2.

Proposition 2.4. Let G and $\langle \cdot, \cdot \rangle$ be as in Theorem 2.2. If in addition $\langle \cdot, \cdot \rangle$ is G^{\perp} -invariant, then

$$[\mathcal{G}^{\perp},\mathcal{G}_{s}]=\mathbf{0}.$$

The proof is based on the following immediate observations:

Lemma 2.5. Suppose $\langle \cdot, \cdot \rangle$ is \mathcal{G}^{\perp} -invariant. Then $[[\mathcal{K}, \mathcal{G}^{\perp}], \mathcal{G}_{s}] \subseteq \mathcal{G}^{\perp} \cap \mathcal{G}_{s}$.

and

Lemma 2.6. Let \mathcal{H} be any Lie algebra and V a module for \mathcal{H} . Suppose that the subalgebra \mathcal{Q} of \mathcal{H} is generated by the subspace \mathcal{M} of \mathcal{H} . Then $\mathcal{Q} \cdot V = \mathcal{M} \cdot V$.

Together with

Lemma 2.7. Let \mathcal{K} be semisimple of compact type and \mathcal{K}_0 a subalgebra of \mathcal{K} . Then the subalgebra \mathcal{Q} generated $\mathcal{M} = \mathcal{K}_0 + [\mathcal{K}, \mathcal{K}_0]$ is an ideal of \mathcal{K} .

Proof. Put $Z = Z_{\mathcal{K}}(\mathcal{K}_0)$. Then $[Z, \mathcal{M}] \subseteq \mathcal{M}$ and $[[\mathcal{K}, \mathcal{K}_0], \mathcal{M}] \subseteq \mathcal{M} + [\mathcal{M}, \mathcal{M}]$. Since $\mathcal{K} = [\mathcal{K}, \mathcal{K}_0] + Z$, this shows $[\mathcal{K}, \mathcal{M}] \subseteq Q$. Since Q is linearly spanned by the iterated commutators of elements of \mathcal{M} , $[\mathcal{K}, Q] \subseteq Q$.

Proof of Proposition 2.4. Let \mathcal{K}_0 be the image of \mathcal{G}^{\perp} under the projection homomorphism $\mathcal{G} \to \mathcal{K}$. Note that by Theorem 2.2 above, $[\mathcal{G}^{\perp}, \mathcal{G}_s] = [\mathcal{K}_0, \mathcal{G}_s]$. Let $Q \subseteq \mathcal{K}$ be the subalgebra generated by $\mathcal{M} = \mathcal{K}_0 + [\mathcal{K}, \mathcal{K}_0]$ and consider $V = \mathcal{G}_s$ as a module for Q. Since Q is an ideal of \mathcal{K} , [Q, V] is a submodule for \mathcal{K} , that is, $[\mathcal{K}, [Q, V]] \subseteq [Q, V]$. By Lemmas 2.5, 2.6 and Theorem 2.2 we have $[Q, V] = [\mathcal{M}, V] \subseteq \mathcal{G}^{\perp} \cap \mathcal{Z}(\mathcal{G}_s)$. Hence, $\mathcal{I} = [\mathcal{M}, V] \subseteq \mathcal{G}^{\perp}$ is an ideal in \mathcal{G} , with $\mathcal{I} \supseteq [\mathcal{G}^{\perp}, \mathcal{G}_s] = [\mathcal{K}_0, \mathcal{G}_s]$. Since \mathcal{G}^{\perp} contains no non-trivial ideals of \mathcal{G} by assumption, we conclude that $\mathcal{I} = \mathbf{0}$.

In this section we study finite-dimensional real Lie algebras \mathcal{G} whose solvable radical \mathcal{R} is abelian and which are equipped with a nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$.

3.1. An algebraic theorem. The Lie algebras with abelian radical and a nilinvariant symmetric bilinear form decompose into three distinct types of metric Lie algebras.

Theorem C. Let \mathcal{G} be a Lie algebra whose solvable radical \mathcal{R} is abelian. Suppose \mathcal{G} is equipped with a nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$ such that the kernel \mathcal{G}^{\perp} of $\langle \cdot, \cdot \rangle$ does not contain a non-trivial ideal of \mathcal{G} . Let $\mathcal{K} \times \mathcal{S}$ be a Levi subalgebra of \mathcal{G} , where \mathcal{K} is of compact type and \mathcal{S} has no simple factors of compact type. Then \mathcal{G} is an orthogonal direct product of ideals

$$\mathcal{G} = \mathcal{G}_1 \times \mathcal{G}_2 \times \mathcal{G}_3,$$

with

 $\mathcal{G}_1 = \mathcal{K} \ltimes \mathcal{A}, \quad \mathcal{G}_2 = \mathcal{S}_0, \quad \mathcal{G}_3 = \mathcal{S}_1 \ltimes \mathcal{S}_1^*,$

where $\mathcal{R} = \mathcal{A} \times \mathcal{S}_1^*$ and $\mathcal{S} = \mathcal{S}_0 \times \mathcal{S}_1$ are orthogonal direct products, and \mathcal{G}_3 is a metric cotangent algebra. The restrictions of $\langle \cdot, \cdot \rangle$ to \mathcal{G}_2 and \mathcal{G}_3 are invariant and non-degenerate. In particular, $\mathcal{G}^{\perp} \subseteq \mathcal{G}_1$.

We split the proof into several lemmas. Consider the submodules of invariants $\mathcal{R}^{\mathcal{S}}, \mathcal{R}^{\mathcal{K}} \subseteq \mathcal{R}$. Since \mathcal{S}, \mathcal{K} act reductively, we have

$$[\mathcal{S},\mathcal{R}] \oplus \mathcal{R}^{\mathcal{S}} = \mathcal{R} = [\mathcal{K},\mathcal{R}] \oplus \mathcal{R}^{\mathcal{K}}.$$

Then $\mathcal{A} = \mathcal{R}^{\mathcal{S}}$, $\mathcal{B} = [\mathcal{S}, \mathcal{R}^{\mathcal{K}}]$ and $\mathcal{C} = [\mathcal{S}, \mathcal{R}] \cap [\mathcal{K}, \mathcal{R}]$ are ideals in \mathcal{G} and $\mathcal{R} = \mathcal{A} \oplus \mathcal{B} \oplus \mathcal{C}$. Recall from Theorem 2.1 that $\langle \cdot, \cdot \rangle$ is in particular \mathcal{S} - and \mathcal{R} -invariant.

Lemma 3.1. $C = \mathbf{0}$ and \mathcal{R} is an orthogonal direct sum of ideals in \mathcal{G}

 $\mathcal{R}=\mathcal{A}\oplus\mathcal{B}$

where $[\mathcal{K}, \mathcal{R}] \subseteq \mathcal{A}$ and $[\mathcal{S}, \mathcal{R}] = \mathcal{B}$.

Proof. The *S*-invariance of $\langle \cdot, \cdot \rangle$ immediately implies $\mathcal{A} \perp \mathcal{B}$. Since \mathcal{R} is abelian, \mathcal{R} -invariance implies $\mathcal{C} \perp \mathcal{R}$. Since $\mathcal{C} \perp (\mathcal{S} \times \mathcal{K})$ by (2.2), this shows \mathcal{C} is an ideal contained in \mathcal{G}^{\perp} , hence $\mathcal{C} = \mathbf{0}$. Now $[\mathcal{K}, \mathcal{R}] \subseteq \mathcal{A}$ and $[\mathcal{S}, \mathcal{R}] = \mathcal{B}$ by definition of \mathcal{A} and \mathcal{B} .

Lemma 3.2. G is a direct product of ideals

$$G = (\mathcal{K} \ltimes \mathcal{A}) \times (\mathcal{S} \ltimes \mathcal{B}).$$

where $(\mathcal{K} \ltimes \mathcal{A}) \perp (\mathcal{S} \ltimes \mathcal{B})$.

Proof. The splitting as a direct product of ideals follows from Lemma 3.1. The orthogonality follows together with (2.2) and the fact that the *S*-invariance of $\langle \cdot, \cdot \rangle$ implies $S \perp \mathcal{A}$ and $\mathcal{K} \perp \mathcal{B}$.

Lemma 3.3. $\mathcal{G}^{\perp} \subseteq \mathcal{K} \ltimes \mathcal{A}$ and $\mathcal{S} \ltimes \mathcal{B}$ is a non-degenerate ideal of \mathcal{G} .

Proof. $\mathcal{Z}(\mathcal{G}_s) = \mathcal{A}$, therefore $\mathcal{G}^{\perp} \subseteq \mathcal{K} \ltimes \mathcal{A}$ by Theorem 2.2. Since also $(\mathcal{S} \ltimes \mathcal{B}) \perp (\mathcal{K} \ltimes \mathcal{A})$, we have $(\mathcal{S} \ltimes \mathcal{B}) \cap (\mathcal{S} \ltimes \mathcal{B})^{\perp} \subseteq \mathcal{G}^{\perp} \subseteq \mathcal{K} \ltimes \mathcal{A}$. It follows that $(\mathcal{S} \ltimes \mathcal{B}) \cap (\mathcal{S} \ltimes \mathcal{B})^{\perp} = \mathbf{0}$. □

To complete the proof of Theorem C, it remains to understand the structure of the ideal $\mathcal{S} \ltimes \mathcal{B}$, which by Theorem 2.1 and the preceding lemmas is a Lie algebra with an invariant non-degenerate scalar product given by the restriction of $\langle \cdot, \cdot \rangle$.

Lemma 3.4. \mathcal{B} is totally isotropic. Let S_0 be the kernel of the S-action on \mathcal{B} . Then $S_0 = \mathcal{B}^{\perp} \cap S$.

Proof. Since $\langle \cdot, \cdot \rangle$ is \mathcal{R} -invariant and \mathcal{R} is abelian, \mathcal{B} is totally isotropic. For the second claim, use $\mathcal{B} \cap S^{\perp} = \mathbf{0}$ and the invariance of $\langle \cdot, \cdot \rangle$.

Lemma 3.5. *S* is an orthogonal direct product of ideals $S = S_0 \times S_1$ with the following properties:

- (1) $S_1 \ltimes \mathcal{B}$ is a metric cotangent algebra.
- (2) $[\mathcal{S}_0, \mathcal{B}] = \mathbf{0} \text{ and } \mathcal{S}_0 = \mathcal{B}^{\perp} \cap \mathcal{S}.$

Proof. The kernel S_0 of the *S*-action on \mathcal{B} is an ideal in S, and by Lemma 3.4 orthogonal to \mathcal{B} . Let S_1 be the ideal in S such that $S = S_0 \times S_1$. Then $S_0 \perp S_1$ by invariance of $\langle \cdot, \cdot \rangle$.

 S_1 acts faithfully on \mathcal{B} and so $S_1 \cap \mathcal{B}^{\perp} = \mathbf{0}$ by Lemma 3.4. Moreover, $S_1 \ltimes \mathcal{B}$ is non-degenerate since $S \ltimes \mathcal{B}$ is. But \mathcal{B} is totally isotropic by Lemma 3.4, so non-degeneracy implies dim $S_1 = \dim \mathcal{B}$. Therefore \mathcal{B} and S_1 are dually paired by $\langle \cdot, \cdot \rangle$.

Now identify \mathcal{B} with \mathcal{S}_1^* and write $\xi(s) = \langle \xi, s \rangle$ for $\xi \in \mathcal{S}_1^*$, $s \in \mathcal{S}_1$. Then, once more by invariance of $\langle \cdot, \cdot \rangle$,

$$[s,\xi](s') = \langle [s,\xi], s' \rangle = \langle \xi, -[s,s'] \rangle = \xi(-\mathrm{ad}(s)s') = (\mathrm{ad}^*(s)\xi)(s')$$

for all $s, s' \in S_1$. So the action of S_1 on S_1^* is the coadjoint action. This means $S \ltimes \mathcal{B}$ is a metric cotangent algebra (cf. Subsection 2.1).

Proof of Theorem C. The decomposition into the desired orthogonal ideals follows from Lemmas 3.2 to 3.5. The structure of the ideals \mathcal{G}_2 and \mathcal{G}_3 is Lemma 3.5. \Box

The algebra \mathcal{G}_1 in Theorem C is of Euclidean type. Let $\mathcal{G} = \mathcal{K} \ltimes V$, with $V \cong \mathbb{R}^n$, be an algebra of Euclidean type and let \mathcal{K}_0 be the kernel of the \mathcal{K} -action on V. Proposition 2.4 and the fact that the solvable radical V is abelian immediately give the following:

Proposition 3.6. Let $\mathcal{G} = \mathcal{K} \ltimes V$ be a Lie algebra of Euclidean type, and suppose \mathcal{G} is equipped with a symmetric bilinear form that is nil-invariant and \mathcal{G}^{\perp} -invariant, such that \mathcal{G}^{\perp} does not contain a non-trivial ideal of \mathcal{G} . Then

$$(3.1) \mathcal{G}^{\perp} \subseteq \mathcal{K}_0 \times V.$$

The following Examples 3.7 and 3.8 show that in general a metric Lie algebra of Euclidean type cannot be further decomposed into orthogonal direct sums of metric Lie algebras. Both examples will play a role in Section 4.

Example 3.7. Let $\mathcal{K}_1 = \mathcal{SO}_3$, $V_1 = \mathbb{R}^3$, $V_0 = \mathbb{R}^3$ and $\mathcal{G} = (\mathcal{SO}_3 \ltimes V_1) \times V_0$ with the natural action of \mathcal{SO}_3 on V_1 . Let $\varphi : V_1 \to V_0$ be an isomorphism and put

$$\mathcal{H} = \{(0, v, \varphi(v)) \mid v \in V_0\} \subset (\mathcal{K}_0 \ltimes V_1) \times V_0.$$

We can define a nil-invariant symmetric bilinear form on \mathcal{G} by identifying $V_1 \cong SO_3^*$ and requiring for $k \in \mathcal{K}_1, v_0 \in V_0, v_1 \in V_1$,

$$\langle k, v_0 + v_1 \rangle = v_1(k) - \varphi^{-1}(v_0)(k),$$

 $\mathbf{6}$

and further $\mathcal{K}_1 \perp \mathcal{K}_1$, $(V_0 \oplus V_1) \perp (V_0 \oplus V_1)$. Then $\langle \cdot, \cdot \rangle$ has signature (3,3,3) and kernel $\mathcal{H} = \mathcal{G}^{\perp}$, which is not an ideal in \mathcal{G} . Note that $\langle \cdot, \cdot \rangle$ is not invariant. Moreover, $\mathcal{K}_1 \ltimes V_1$ is not orthogonal to V_0 . A direct factor \mathcal{K}_0 can be added to this example at liberty.

Example 3.8. We can modify the Lie algebra \mathcal{G} from Example 3.7 by embedding the direct summand $V_0 \cong \mathbb{R}^3$ in a torus subalgebra in a semisimple Lie algebra \mathcal{K}_0 of compact type, say $\mathcal{K}_0 = \mathcal{SO}_6$, to obtain a Lie algebra $\mathcal{F} = (\mathcal{K}_1 \ltimes V_1) \ltimes \mathcal{K}_0$. We obtain a nil-invariant symmetric bilinear form of signature (15,3,3) on \mathcal{F} by extending $\langle \cdot, \cdot \rangle$ by a definite form on a vector space complement of V_0 in \mathcal{K}_0 . The kernel of the new form is still $\mathcal{G}^{\perp} = \mathcal{H}$.

3.2. Nil-invariant bilinear forms on Euclidean algebras. A Euclidean algebra is a Lie algebra $\mathcal{E}_n = SO_n \ltimes \mathbb{R}^n$, where SO_n acts on \mathbb{R}^n by the natural action.

By a *skew pairing* of a Lie algebra \mathcal{L} and an \mathcal{L} -module V we mean a bilinear map $\langle \cdot, \cdot \rangle : \mathcal{L} \times V \to \mathbb{R}$ such that $\langle x, yv \rangle = -\langle y, xv \rangle$ for all $x, y \in \mathcal{L}, v \in V$. Note that any nil-invariant symmetric bilinear form on $\mathcal{G} = \mathcal{K} \ltimes \mathbb{R}^n$ yields a skew pairing of \mathcal{K} and \mathbb{R}^n .

Proposition 3.9 ([2, Proposition A.5]). Let $\langle \cdot, \cdot \rangle : SO_3 \times V \to \mathbb{R}$ be a skew pairing for the (non-trivial) irreducible module V. If the skew pairing is non-zero, then V is isomorphic to the adjoint representation of SO_3 and $\langle \cdot, \cdot \rangle$ is proportional to the Killing form.

Example 3.10. Consider $\mathcal{G} = \mathcal{SO}_3 \ltimes \mathbb{R}^n$ with a nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$, and assume that the action of \mathcal{SO}_3 is irreducible. By Proposition 3.9, either $\mathcal{SO}_3 \perp \mathbb{R}^n$, or n = 3 and \mathcal{SO}_3 acts by its coadjoint representation on $\mathbb{R}^3 \cong \mathcal{SO}_3^*$, and $\langle \cdot, \cdot \rangle$ is the dual pairing. In the first case, \mathbb{R}^n is an ideal in \mathcal{G}^{\perp} , and in the second case, $\langle \cdot, \cdot \rangle$ is invariant and non-degenerate.

Example 3.11. Let \mathcal{G} be the Euclidean Lie algebra $\mathcal{SO}_4 \ltimes \mathbb{R}^4$ with a nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$. Since $\mathcal{SO}_4 \cong \mathcal{SO}_3 \times \mathcal{SO}_3$, and here both factors \mathcal{SO}_3 act irreducibly on \mathbb{R}^4 , it follows from Example 3.10 that in \mathcal{G} , \mathbb{R}^4 is orthogonal to both factors \mathcal{SO}_3 , hence to all of \mathcal{SO}_4 . In particular, \mathbb{R}^4 is an ideal contained in \mathcal{G}^{\perp} .

Theorem 3.12. Let $\langle \cdot, \cdot \rangle$ be a nil-invariant symmetric bilinear form on the Euclidean Lie algebra $SO_n \ltimes \mathbb{R}^n$ for $n \ge 4$. Then the ideal \mathbb{R}^n is contained in \mathcal{G}^{\perp} .

Proof. For n = 4, this is Example 3.11. So assume n > 4. Consider an embedding of SO_4 in SO_n such that $\mathbb{R}^n = \mathbb{R}^4 \oplus \mathbb{R}^{n-4}$, where SO_4 acts on \mathbb{R}^4 in the standard way and trivially on \mathbb{R}^{n-4} . By Example 3.11, $SO_4 \perp \mathbb{R}^4$. Since $\mathbb{R}^{n-4} \subseteq [SO_n, \mathbb{R}^n]$, the nil-invariance of $\langle \cdot, \cdot \rangle$ implies $SO_4 \perp \mathbb{R}^{n-4}$. Hence $\mathbb{R}^n \perp SO_4$.

The same reasoning shows that $\operatorname{Ad}(g)SO_4 \perp \mathbb{R}^n$, where $g \in SO_n$. Then $\mathcal{B} = \sum_{g \in SO_n} \operatorname{Ad}(g)SO_4$ is orthogonal to \mathbb{R}^n . But \mathcal{B} is clearly an ideal in SO_n , so $\mathcal{B} = SO_n$ by simplicity of SO_n for n > 4.

Theorem D. The Euclidean group $E_n = O_n \ltimes \mathbb{R}^n$, $n \neq 1, 3$, does not have compact quotients with a pseudo-Riemannian metric such that E_n acts isometrically and almost effectively.

Proof. For n > 3, such an action of \mathbb{E}_n would induce a nil-invariant symmetric bilinear form on the Lie algebra $SO_n \ltimes \mathbb{R}^n$ without non-trivial ideals in its kernel, contradicting Theorem 3.12.

For n = 2, the Lie algebra \mathcal{E}_2 is solvable, and hence by Baues and Globke [1], any nil-invariant symmetric bilinear form must be invariant. For such a form, the ideal \mathbb{R}^2 of \mathcal{E}_2 must be contained in \mathcal{E}_2^1 , and therefore action cannot be effective.

Note that \mathcal{E}_3 is an exception, as it is the metric cotangent algebra of SO_3 . \Box

Remark. Clearly the Lie group E_n admits compact quotient manifolds on which E_n acts almost effectively. For example take the quotient by a subgroup $F \ltimes \mathbb{Z}^n$, where $F \subset O_n$ is a finite subgroup preserving \mathbb{Z}^n . Compact quotients with finite fundamental group also exist. For example, for any non-trivial homomorphism $\varphi : \mathbb{R}^n \to O_n$, the graph H of φ is a closed subgroup of E_n isomorphic to \mathbb{R}^n , and the quotient $M = E_n/H$ is compact (and diffeomorphic to O_n). Since H contains no non-trivial normal subgroup of E_n , the E_n -action on M is effective. Theorem D tells us that none of these quotients admit E_n -invariant pseudo-Riemannian metrics.

4. Simply connected compact homogeneous spaces with indefinite metric

Let M be a connected and simply connected pseudo-Riemannian homogeneous space of finite volume. Then we can write

$$(4.1) M = G/H$$

for a connected Lie group G acting almost effectively and by isometries on M, and H is a closed subgroup of G that contains no non-trivial connected normal subgroup of G (for example, $G = \text{Iso}(M)^{\circ}$). Note that H is connected since M is simply connected.

Let \mathcal{G} , \mathcal{H} denote the Lie algebras of G, H, respectively. Recall that the pseudo-Riemannian metric on M induces an \mathcal{H} -invariant and nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$ on \mathcal{G} , and the kernel of $\langle \cdot, \cdot \rangle$ is precisely $\mathcal{G}^{\perp} = \mathcal{H}$ and contains no non-trivial ideal of \mathcal{G} .

We decompose G = KSR, where K is a compact semisimple subgroup, S is a semisimple subgroup without compact factors, R the solvable radical of G

Proposition 4.1. The subgroup S is trivial and M is compact.

Proof. As M is simply connected, $H = H^{\circ}$. Now $H \subseteq KR$ by Theorem 2.2. On the other hand, since M has finite invariant volume, the Zariski closure of $\operatorname{Ad}_{\mathcal{G}}(H)$ contains $\operatorname{Ad}_{\mathcal{G}}(S)$, see Mostow [7, Lemma 3.1]. Therefore S must be trivial. It follows from Mostow's result [6, Theorem 6.2] on quotients of solvable Lie groups that M = (KR)/H is compact.

We can therefore restrict ourselves in (4.1) to groups G = KR and connected uniform subgroups H of G.

The structure of a general compact homogeneous manifold with finite fundamental group is surveyed in Onishchik and Vinberg [8, II.5.§2]. In our context it follows that

$$(4.2) G = L \ltimes V$$

where V is a normal subgroup isomorphic to \mathbb{R}^n and L = KA is a maximal compact subgroup of G. The solvable radical is $R = A \ltimes V$. Moreover, $V^L = \mathbf{0}$. By a theorem of Montgomery [5] (also [8, p. 137]), K acts transitively on M.

The existence of a G-invariant metric on M further restricts the structure of G.

Proposition 4.2. The solvable radical R of G is abelian. In particular, $R = A \times V$, $V^K = 0$ and $A = Z(G)^\circ$.

Proof. Let Z(R) denote the center of R and N its nilradical. Since H is connected, $H \subseteq KZ(R)^{\circ}$ by Theorem 2.2. Hence there is a surjection $G/H \rightarrow G/(KZ(R)^{\circ}) = R/Z(R)^{\circ}$. It follows that $Z(R)^{\circ}$ is a connected uniform subgroup. Therefore the nilradical N of R is $N = TZ(R)^{\circ}$ for some compact torus T. But a compact subgroup of N must be central in R, so $T \subseteq Z(R)$. Hence $N \subseteq Z(R)$, which means R = N is abelian.

Combined with (4.2), we obtain

$$(4.3) G = KR = (K_0A) \times (K_1 \ltimes V),$$

with $K = K_0 \times K_1$, $R = A \times V$, where K_0 is the kernel of the K-action on V.

For any subgroup Q of G we write $H_Q = H \cap Q$.

Lemma 4.3. $[H,H] \subseteq H_K$. In particular, H_K is a normal subgroup of H.

Proof. By Proposition 3.6 and the connectedness of H, we have $H \subseteq K_0 R$. Since R is abelian, $[H, H] \subseteq H_{K_0}$.

If G is simply connected, we have $K \cap R = \{e\}$. Then let p_K , p_R denote the projection maps from G to K, R.

Lemma 4.4. Suppose G is simply connected. Then $p_R(H) = R$.

Proof. Since K acts transitively on M, we have G = KH. Then $R = p_R(G) = p_R(H)$.

Proposition 4.5. Suppose G is simply connected. Then the stabilizer H is a semidirect product $H = H_K \times E$, where E is the graph of a homomorphism $\varphi : R \to K$ that is non-trivial if dim R > 0. Moreover, $\varphi(R \cap H) = \{e\}$.

Proof. The subgroup H_K is a maximal compact subgroup of the stabilizer H. By Lemma 4.3, $H = H_K \times E$ for some normal subgroup E diffeomorphic to a vector space. By Lemma 4.4, H projects onto R with kernel H_K , so that $E \cong R$. Then E is necessarily the graph of a homomorphism $\varphi : R \to K$. If dim R > 0, then φ is non-trivial, for otherwise $R \subseteq H$, in contradiction to the almost effectivity of the action. Observe that $R \cap H \subseteq E$. Therefore $\varphi(R \cap H) \subseteq H_K \cap E = \{e\}$.

Now we can state our main result:

Theorem A. Let M be a connected and simply connected pseudo-Riemannian homogeneous space of finite volume, $G = Iso(M)^{\circ}$, and let H be the stabilizer subgroup in G of a point in M. Let G = KR be a Levi decomposition, where R is the solvable radical of G. Then:

- (1) M is compact.
- (2) K is compact and acts transitively on M.
- (3) *R* is abelian. Let *A* be the maximal compact subgroup of *R*. Then *A* = $Z(G)^{\circ}$. More explicitly, $R = A \times V$ where $V \cong \mathbb{R}^n$ and $V^K = \mathbf{0}$.
- (4) *H* is connected. If dim R > 0, then $H = (H \cap K)E$, where *E* and $H \cap K$ are normal subgroups in *H*, $(H \cap K) \cap E$ is finite, and *E* is the graph of a non-trivial homomorphism $\varphi : R \to K$, where the restriction $\varphi|_A$ is injective.

Proof. Claims (1), (2) and (3) follow from Proposition 4.1, Proposition 4.2 and (4.2), applied to $G = \text{Iso}(M)^{\circ}$.

For claim (4), let \widetilde{G} be the universal cover of G. Since G acts effectively on M, \widetilde{G} acts almost effectively on M with stabilizer \widetilde{H} , the preimage of H in \widetilde{G} . Let $\widetilde{\varphi}: \widetilde{R} \to \widetilde{K}$ be the homomorphism given by Proposition 4.5 for \widetilde{G} . Then $\widetilde{R} = \widetilde{A} \oplus V$, with $\widetilde{A} \cong \mathbb{R}^k$ for some k, and $R = \widetilde{R}/Z$ for some central discrete subgroup $Z \subset \widetilde{A} \cap \widetilde{H}$. Since $Z \subset \widetilde{R} \cap \widetilde{H}$ we have $Z \subseteq \ker \widetilde{\varphi}$. Therefore $\widetilde{\varphi}$ descends to a homomorphism $R \to \widetilde{K}$, and by composing with the canonical projection $\widetilde{K} \to K$, we obtain a homomorphism $\varphi: R \to K$ with the desired properties. Observe that $\ker \varphi|_A \subset A \cap H$ is a normal subgroup in G. Hence it is trivial, as G acts effectively.

Now assume further that the index of the metric on M is $\ell \leq 2$. Theorem 2.3 has strong consequences in the simply connected case.

Theorem B. The isometry group of any simply connected pseudo-Riemannian homogeneous manifold of finite volume and metric index $\ell \leq 2$ is compact.

Proof. We know from Theorem A that M is compact. Let $G = \text{Iso}(M)^{\circ}$, with G = KR as before. By Theorem 2.3, R commutes with K and thus R = A by part 3 of Theorem A. It follows that G = KA is compact.

Then K is a characteristic subgroup of G which also acts transitively on M. Therefore we may identify $T_x M$ at $x \in M$ with $\mathcal{K}/(\mathcal{H} \cap \mathcal{K})$, where \mathcal{K} is the Lie algebra of K. Hence the isotropy representation of the stabilizer $Iso(M)_x$ factorizes over a closed subgroup of the automorphism group of \mathcal{K} . As this latter group is compact, the isotropy representation has compact closure in $GL(T_xM)$. If follows that there exists a Riemannian metric on M that is preserved by Iso(M). Hence Iso(M) is compact.

Remark. Note that in fact the isometry group of every compact analytic simply connected pseudo-Riemannian manifold has finitely many connected components (Gromov [4, Theorem 3.5.C]).

For indices higher than two, the identity component of the isometry group of a simply connected M can be non-compact. This is demonstrated by the examples below in which we construct some M on which a non-compact group acts isometrically. The following Lemma 4.6 then ensures that these groups cannot be contained in any compact Lie group.

Lemma 4.6. Assume that the action of K on V in the semidirect product $G = K \times V$ is non-trivial. Then G cannot be immersed in a compact Lie group.

Proof. Suppose there is a compact Lie group C that contains G as a subgroup. As the action of K on V is non-trivial, there exists an element $v \in V \subseteq C$ such that $\operatorname{Ad}_{\mathcal{C}}(v)$ has non-trivial unipotent Jordan part. But by compactness of C, every $\operatorname{Ad}_{\mathcal{C}}(g), g \in C$, is semisimple, a contradiction.

Example 4.7. Start with $G_1 = (\widetilde{SO}_3 \ltimes \mathbb{R}^3) \times \mathbb{T}^3$, where \widetilde{SO}_3 acts on \mathbb{R}^3 by the coadjoint action, and let $\varphi : \mathbb{R}^3 \to \mathbb{T}^3$ be a homomorphism with discrete kernel. Put

$$H = \{ (\mathbf{I}_3, v, \varphi(v)) \mid v \in \mathbb{R}^3 \}.$$

The Lie algebras \mathcal{G}_1 of \mathcal{G}_1 and \mathcal{H} of H are the corresponding Lie algebras from Example 3.7. We can extend the nil-invariant scalar product $\langle \cdot, \cdot \rangle$ on \mathcal{G}_1 from

Example 3.7 to a left-invariant tensor on G_1 , and thus obtain a G_1 -invariant pseudo-Riemannian metric of signature (3,3) on the quotient $M_1 = G_1/H = \widetilde{SO}_3 \times T^3$. Here, M_1 is a non-simply connected manifold with a non-compact connected stabilizer.

In order to obtain a simply connected space, embed T^3 in a simply connected compact semisimple group K_0 , for example $K_0 = \widetilde{SO}_6$, so that G_1 is embedded in $G = (\widetilde{SO}_3 \ltimes \mathbb{R}^3) \times K_0$. As in Example 3.8, we can extend $\langle \cdot, \cdot \rangle$ from \mathcal{G}_1 to \mathcal{G} , and thus obtain a compact simply connected pseudo-Riemannian homogeneous manifold $M = G/H = \widetilde{SO}_3 \times K_0$.

Example 4.8. Example 4.7 can be generalized by replacing \widetilde{SO}_3 by any simply connected compact semisimple group K, acting by the coadjoint representation on \mathbb{R}^d , where $d = \dim K$, and trivially on \mathbb{T}^d . Define H similarly as a graph in $\mathbb{R}^d \times \mathbb{T}^d$, and embed \mathbb{T}^d in a simply connected compact semisimple Lie group K_0 .

References

- O. Baues, W. Globke, Rigidity of compact pseudo-Riemannian homogeneous spaces for solvable Lie groups, International Mathematics Research Notices 2018 (1), 3199-3223
- [2] O. Baues, W. Globke, A. Zeghib, Isometry Lie algebras of indefinite homogeneous spaces of finite volume, preprint (arXiv:1803.10436)
- [3] G. D'Ambra, Isometry groups of Lorentz manifolds, Inventiones Mathematicae 92, 1988, 555-565
- [4] M. Gromov, Rigid transformation groups, in 'Géométrie différentielle', Travaux en Cours 33, Hermann, 1988, 65-139
- [5] D. Montgomery, Simply connected homogeneous spaces, Proceedings of the American Mathematical Society 1, 1950, 467-469
- [6] G.D. Mostow, Homogeneous Spaces with Finite Invariant Measure, Ann. Math. 75, 1962 (1), 17-37
- [7] G.D. Mostow, Arithmetic Subgroups of Groups with Radical, Annals of Mathematics 93, 1971 (3), 409-438
- [8] A.L. Onishchik (Ed.), Lie Groups and Lie Algebras I, Encyclopedia of Mathematical Sciences 20, Springer 1993

OLIVER BAUES, DEPARTMENT OF MATHEMATICS, CHEMIN DU MUSÉE 23, UNIVERSITY OF FRIBOURG, CH-1700 FRIBOURG, SWITZERLAND

E-mail address: oliver.baues@unifr.ch

WOLFGANG GLOBKE, FACULTY OF MATHEMATICS, UNIVERSITY OF VIENNA, OSKAR-MORGENSTERN-PLATZ 1, 1090 VIENNA, AUSTRIA

E-mail address: wolfgang.globke@univie.ac.at

Abdelghani Zeghib, École Normale Supérieure de Lyon, Unité de Mathématiques Pures et Appliquées, 46 Allée d'Italie, 69364 Lyon, France

E-mail address: abdelghani.zeghib@ens-lyon.fr