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Abstract

We revisit the classification of Lorentz homogeneous spaces of dimension 3, and relax usual
completeness assumptions. In particular, non-unimodular elliptic plane waves, and only them,
are neither locally symmetric nor locally isometric to a left-invariant Lorentz metric on a 3-
dimensional Lie group. We characterize homogeneous plane waves in dimension 3, and prove
they are non-extendable, and geodesically complete only if they are symmetric. Finally, only
one non-flat plane wave has a compact model.

Keywords Homogeneous - Plane wave - Heisenberg extension

Contents

I Introduction . . . . . . . . e e e
I.1 Resultsonplane waves . . . . . . . . . i it e e
1.1.1 Heisenberg eXtensions . . . . . . . . v v v v i i it e e e e

TI2 Plane waves . . . . . . . . L e e

LI3 Literature . . . . . . . . .. ..

1.1.4 Some terminology . . . . . . . ..

1.1.5 Global coordinates system . . . . . . . . .. ...

1.1.6 Compact models of homogeneous plane waves . . . . . . ... ... ... .........

1.1.7 Completeness and extendibility . . . . ... ... ... ... .. Lo .

1.2 Classification of homogeneous Lorentz 3-spaces . . . . . . . . ... ... ... ... ... ...
1.2.1 Homogeneous locally symmetriccase . . . . . . . ... .. ...

1.2.2 Locally homogeneous compact Lorentz manifolds . . . . . ... ... ... ... .....

1.3 Organizationof thearticle . . . . . . . . . . . .. .. L

2 What’s new in the non-Riemanniancase. . . . . . .. ... ... ... .. ... .. ...
2.1 TheRiemanniancase . . . . .. . ... ... ... ... e
22 TheLorentziancase . . . . . . . . . . . ..o e

B S. Allout
souheib.allout@rub.de

A. Belkacem
abderrahmane.belkacem.matea@gmail.com

A. Zeghib

abdelghani.zeghib@ens-lyon.fr

Faculty of mathematics, Ruhr-Universitaet Bochum, Bochum, Germany
Department of mathematics, University of Batna 2, Batna, Algeria

3 UMPA, CNRS, ENS de Lyon, Lyon, France

Published online: 06 December 2025 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10711-025-01052-z&domain=pdf

2 Page2of35 Geometriae Dedicata (2026) 220:2

3 The Heisenberg extensions. . . . . . . . . . .. ..o e e
3.1 Description of the Heisenberg extensions . . . . . . ... ... ... ... ... ..........
3.1.1 The real diagonalizable case . . . . . . . . . .. . .. .. ...

3.1.2 Thereal paraboliccase . . . . . . . . . . . . .. . e

3.1.3 Thenon-realcase . . . . . . ... ... e

3.1.4 Thenilpotent case . . . . . . . . . oot e e e

4 Proof of Theorem 1.8 in the solvable case. . . . . . ... ... ... ... ... ... ... ......
4.1 Globalidentification . . . . . . . . . .. ... e

5 Proof of Theorem 1.8 in the non-solvablecase. . . . . . ... ... ... ... .............
6 Homogeneous locally symmetric spaces, proof of Theorem 1.9. . . . . . ... ... ... ... ....
6.1 Action of Aff C SO(1,2)near Oin RI:Z . . .. L.
6.2 2-dimensional L-orbits are lightlike and geodesic . . . . . .. .. .. .. ... .. ..
6.3 Case where M isnotsimply connected . . . . . . ... ... ... ... .. ...

7 Proof of Theorem 1.1. . . . . . . . . . . e
8 Plane waves, proof of Theorem 1.3. . . . . . . . . . . . . .. . .
8.1 Ppisaplanewave. . . .. ... .. ... ...
8.2 A homogeneous 3-plane wave is isometrictosome P, . . . . . ..o oL
8.3 The non-simply connected case . . . . . . . . . . . ...

9 Global coordinates, proof of Theorem 1.4. . . . . . . .. . ... .. .. . . ...
9.1 Globalactionof Gp . . . . ... ...
9.1.1 Identification of p asafunctionof b . . . . . . . ... ... .

9.1.2 Hyperboliccase . . . . . . . . . . . e

9.1.3 Parabolic (non-unimodular) case . . . . . . . . . . ... ...

Proof that G, is isomorphic to G o ifandonly if b(p) =b(0').. . . . . . .

10 Proof of the completeness statement in Theorem 1.7. . . . . . . ... ... ... ... ... .. ....
10.1Space of null geodesics . . . . . . . . . L e
10.1.1Example of an incomplete (vertical) null geodesic . . . . . . . .. .. ... ... ... ...
10.1.2Vertical null geodesics are non-complete . . . . . . . . . .. ...
10.1.3Action of Isom(P,) on GO

11 Proof of the non-extendibility statement in Theorem 1.7. . . . . . . . ... ... ... ... ......
I1.TAnalytic case . . . . . o o ot e e e e
11.1.1Smooth complete case . . . . . . . . .. .. ...
11.1.2A synthetic proof . . . . . . . . . .
11.1.3Conformal extensions . . . . . . . . . . .. ... ...
12Compactmodels. . . . . . . .. e
12.1(Non-)existence of compactmodels . . . . . . .. . ... ... L

13 Appendix: Rosen and Brinkmann coordinates . . . . . . ... ... ... ... ... ... ...
References . . . . . . . . .

1 Introduction

In dimension two, homogeneous pseudo-Riemannian spaces have constant curvature, and
so they have the maximal possible symmetries. This is no longer true in higher dimensions,
some homogeneous spaces are more homogeneous than others! This applies to any pseudo-
Riemannian type, but let us focus on the Lorentzian case in dimension three. We have two
(non-disjoint) distinguished classes:

e On the one hand, the symmetric spaces. Among them, the most symmetric are those of
constant sectional curvature, they are three, up to scaling, and they have isometry groups
of maximal dimension equal to six. We then have three decomposable symmetric spaces,
and two reducible non-decomposable (Cahen-Wallach) spaces having solvable isometry
groups of dimension four.

e On the other hand, there is the wide world of Lorentz groups, i.e. Lie groups of dimension
three endowed with a left-invariant Lorentz metric. They, generically, have an isometry
group equal to the supporting group itself, but can sometimes have extra isometries.

@ Springer



Geometriae Dedicata (2026) 220:2 Page 3 of 35 2

One may ask whether any homogeneous Lorentz space of dimension 3 fits into one of
these two classes, that is, whether any homogeneous Lorentz space of dimension three is
locally symmetric or locally isometric to a left-invariant metric on a Lie group of dimension
three. This was proven in the Riemannian case in [20] and in the Lorentzian case, assuming
completeness, in [4].

The initial motivation of the present work was, on the one hand, to provide a simpler
proof of this fact in the Lorentzian case, say a Lie theoretical proof instead of using tools
from the homogeneous structures theory, which involves complicated computations. On
the other hand, we aimed to fix some completeness as well as local vs. global issues in
the literature. Trying this, we realized that there is a one-parameter family of examples of
(incomplete) homogeneous Lorentz spaces that are neither locally symmetric nor locally
isometric to Lorentz groups. In [10] the same family was ruled out incorrectly in the proofs
of the classification of homogeneous Lorentz geometries having compact models, which we
fix here without altering the statements (see 1.2.2).

1.1 Results on plane waves

Our first results concern the global structure of 3-dimensional plane waves. Most studies on
the subject have a mathematical-physical origin and usually consider infinitesimal and local
aspects, e.g. Killing fields, ... [1, 3, 18], instead of global isometry groups as in our present
work. Actually, [3] contains classification results on homogeneous plane waves of arbitrary
dimension, but from the point of view of theoretical physics.

1.1.1 Heisenberg extensions

Let Heis denote the 3-dimensional Heisenberg group and heis denote its Lie algebra. Consider
a semi-direct product G, = R x Heis, where R acts on Heis via a representation t — p(t) €
Aut(Heis).

Theorem 1.1 Let I be any non-central one parameter subgroup of Heis generated by a vector
W e beis and put P, = G, /1. Then we have

(1) The G ,-action on P, preserves a Lorentz metric if and only if the projection of W to
heis/Z is not an eigenvector of the action of p(t) on beis/Z where Z is the center of heis.
In addition, this Lorentz metric is unique up to scaling and automorphisms fixing W.

(2) There is no 3-dimensional Lie group acting on P, isometrically with an open orbit if and
only if the action of p(t) on heis/Z is by similarities with non-real eigenvalues.

(3) The space P, is symmetric exactly for those representations t — p(t) € Aut(Heis)
fixing the center Z, or equivalently, G, is unimodular. In this case

o P, is the Minkowski space if p is unipotent.
e P, is a hyperbolic or an elliptic Cahen-Wallach space.

And besides the globally symmetric cases, P, is locally symmetric exactly for the non-
unimodular case for which G ,, is isomorphic to Aff xR2, where Aff is a copy in O(1, 2)
of the affine group Attt (R), preserving a degenerate plane R® C R3. In this case, P, is
globally isometric to half Minkowski.

(4) P, is isometric to the Minkowski space exactly when p is unipotent. In this case, The
group G, is isomorphic to N X R3 ¢ O(1, 2) x R? where N is a unipotent one-parameter
subgroup of O(1, 2).
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(5) There is only one flat non-complete case, isometric to half Minkowski, for which the group
G, is isomorphic to Aff xRZ c O(1, 2) x R3. This corresponds to any non-unimodular
representationt — p(t) € Aut(Heis) having a fixed vector in heis.

(6) Except the Minkowski case, Isomg(P,) = G.

(7) Two spaces P, and P,y are isometric if and only if G, and G,y are isomorphic.

(8) Besides the two flat cases, two spaces P, and P, are locally isometric if and only if G,
and G, are isomorphic.

Remark 1.2 Some of the results in Theorem 1.1 are known and we added them here for
completeness. In particular, flat non-complete homogeneous connected Lorentz manifolds
are classified in [8]. They are quotients of half Minkowski, whose boundary is a lightlike
hyperplane, by discrete translation subgroups.

1.1.2 Plane waves

Plane waves are special pp-waves which in turn are special Brinkmann spacetimes. All these
classes play a central role in General Relativity both from the mathematical and applied sides,
especially since the discovery of gravitational waves.
A plane wave spacetime is defined by having a null parallel vector field V such that there
are local Brinkmann coordinates in which the metric has the form
n—=2
2dvdu + Z Hi; (u)x"xjdu2 + Z:(dxi)2
i=1

where V corresponds to %. They can also be defined by having Rosen coordinates in which

the metric has the form 2dvdu + g,, where g, is a flat metric depending on u i.e. of the
form g, = gij (u)dx'dx’. In an intrinsic way, a plane wave is characterized by having a
null parallel vector field V such that its orthogonal distribution V- has flat leaves and, in
addition, the space is “almost symmetric” i.e. Viy R = 0 for any W tangent to V1, where R
is the Riemannian tensor.

The following classification result is due to [3] (at the Lie algebra level). We yield here a
self-contained proof which we think is more limpid, especially regarding globality questions.

Theorem 1.3 Let (M, g) be a simply connected homogeneous Lorentzian three-dimensional
manifold. Then (M, g) is a plane wave if and only if it is globally isometric to some P,. If a
homogeneous plane wave M is not simply connected, then it is either flat or isometric to a
cyclic central quotient of one of the Cahen-Wallach spaces.

In fact, it is the center of the Heisenberg algebra which plays the role of the null parallel
vector field. Observe, however, that the Heisenberg center is central in G, exactly when P,
is a symmetric space (see Lemma 7.1).

1.1.3 Literature

There are lots of works on homogeneous plane waves. The most important is surely [3] by
M. Blau and M. O’Loughlin, in 2003. It has very interesting mathematical content although
it is intended for a mathematical physics audience. A relatively recent work in a pure math-
ematical context is [12], where the authors W. Globke and T. Leistner, aimed to know when
a homogeneous pp-wave is in fact a plane wave.
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We are inspired by these two references, and especially by [3] with which we have nat-
ural overlaps at many places. Our approach is however different. The authors in [3] start
with a plane wave in local coordinates (of Brinkmann or Rosen type) and ask when it is
(infinitesimally) homogeneous. By a direct analysis of the Killing equations, they determine
the isometry algebra as generated by Killing fields satisfying some bracket relations, and
prove that it contains a Heisenberg algebra. It appears then that the Killing algebra contains
an R-extension of the Heisenberg algebra (although the action of the one-parameter group
of (infinitesimal) automorphisms on the Heisenberg algebra is not visible).

To exhibit simply connected homogeneous plane waves explicitly as Lorentz homoge-
neous spaces, which is the aim of Theorem 1.3, one has to determine the isometry group of
such structures. This could be achieved by identifying the extended Heisenberg algebra in [3],
and studying the completeness of the Killing fields (which in general is difficult to check).
However, the approach we adopt here to the classification result is different and (mostly) Lie
theoretical, dealing directly with groups. Our starting point is to consider a Lorentz homo-
geneous space of dimension 3, assume (after reduction) that it has a 4-dimensional isometry
group, observe that (generally) this 4-dimensional group is a Heisenberg extension, and then
bring out its plane wave structure. This approach has the advantage of providing the homo-
geneous space directly, overcoming the (highly non-trivial) analysis of the Killing equation
on the one hand, and the completeness problem of the Killing fields on the other hand (to see
the difference in a toy example, observe that the Euclidean plane and any of its open subsets
share the same Killing algebra, but this open set has generically a trivial isometry group).

We hope that our present article plays a role of complement and companion of Blau
and O’Loughlin’s paper in this subject of homogeneous plane waves. Of course, contrary
to [3], we do not deal here with physical aspects like supergravity and quantization... and
conversely, [3] does not cover geometric (and global) aspects like completeness, extendibility
and existence of compact quotients.

1.1.4 Some terminology

It appears worthwhile for us to give names to the plane waves classes in the following way

o The flat complete case corresponding to p unipotent.

o The Cahen-Wallach, hyperbolic or elliptic, case corresponding to p unimodular semi-
simple on heis/Z.

o In the remaining non-unimodular cases, let us call P, a hyperbolic (resp. elliptic,
resp. parabolic) non-unimodular plane wave, according to the action of G, on heis/Z
being diagonalizable with real eigenvalues (resp. non-real eigenvalues, resp. real non-
diagonalizable).

1.1.5 Global coordinates system

It is known that a Cahen-Wallach symmetric space has a global chart where the metric has
the form g = 2dudv & x>du® + dx? (the minus sign corresponds to the elliptic case and the
plus to the hyperbolic one, see for instance [13]). The global coordinate system, in the next
theorem, already appears in [3].

Theorem 1.4 Assume p is non-unimodular. Then P, has a global coordinate system
(u, v, x) € RY x R x R where the metric has the form

b(p)x?

5 du® + dx’.
u

g = 2dudv +
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100
The invariant b(p) is defined by p(t) = ¢'* where A = | 0 0 1 | acting on the Lie algebra
0b1
beis (endowed with the basis {Z, X, Y}, with [X,Y] = Z). Moreover, G, and G, are
isomorphic if and only if b(p) = b(p’).

Observe that one can modify any derivation A of heis with A(Z) # 0 by A + ad,,
u € heis and gets a matrix of the form above (the two derivations generate isomorphic
semi-direct products).

e The case b(p) = 0 corresponds to G, = Aff xR2, where Aff C SL(2, R) is the affine
group acting by its usual representation in R?. The space P, in this case is isometric to
the half Minkowski space {(u, v, x), u > 0} endowed with the metric 2dudv + dx?.

e Forb < — %, the space P, is elliptic i.e. the A ,-action on heis/Z has non-real eigenvalues
and for b > —1/4 the space P, is hyperbolic i.e. A, has two different real eigenvalues.

e Forb = —%, P, is the parabolic non-unimodular plane wave i.e. A, is conjugate to

10 0
012 1
00 12

1.1.6 Compact models of homogeneous plane waves

Theorem 1.5 There is exactly one non-flat plane wave that admits a compact model. This is
given in Brinkmann coordinates defined on the half space {u > 0} as

2 2
g = 2dudv + - du® + dx>.
u

In Rosen coordinates, the metric takes the form g = 2dudv + u=>dx>.
Its isometry group contains a copy of the group Sol = SOq(1, 1) x R? acting properly.
Any lattice T' C Sol gives a compact quotient I'\ P. All compact models arise in this way.

Remark 1.6 Non-existence of compact quotients of 3-dimensional non-flat Cahen-Wallach
spaces is already known in [13] and [10] (See Remarks 12.3 and 12.4 for further discussion).

1.1.7 Completeness and extendibility

Theorem 1.7 The non-unimodular homogeneous plane waves are not complete. More pre-
cisely

a) Any null geodesic, which is not an orbit of the parallel field %, is incomplete.
b) Any timelike geodesic is incomplete.

In addition, a homogeneous plane wave P, is non-extendable.

1.2 Classification of homogeneous Lorentz 3-spaces

Coming back to the issue in the classification of homogeneous Lorentz 3-manifolds, we have

Theorem 1.8 Any simply connected homogeneous Lorentz 3-manifold is globally isometric
to
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e A Lorentz group i.e. a 3-dimensional Lie group endowed with a left-invariant Lorentz
metric,

e Oy, a globally symmetric space,

o Or, a non-unimodular elliptic plane wave i.e. P, with p acting on Yeis/Z by similari-
ties with non-real eigenvalues. In this case, P, is neither locally symmetric nor locally
isometric to a Lorentz group.

In other words, we add elliptic non-unimodular plane waves to the existing classifications in
the literature (e.g. in [4]). More importantly, we drop the completeness assumption usually
made to get such a classification.

1.2.1 Homogeneous locally symmetric case

It is natural to ask what exactly happens in the locally symmetric case.

Theorem 1.9 Let X be a Lorentz symmetric space of dimension 3. Homogeneous (simply
connected) spaces M modeled on X correspond to open orbits of connected closed subgroups
L C Isom(X). Such L may have dimension 3,4, 5 or 6.

o Let L be a subgroup of Isom(X) of dimension 4. Then L has at least one open orbit. It
can have a discrete quantity of 2-dimensional orbits, which are furthermore (complete)
totally geodesic lightlike surfaces in X.

e /fdim L > 5 then it acts transitively and X has constant sectional curvature.

1.2.2 Locally homogeneous compact Lorentz manifolds

In the vein of Thurston’s eight Riemannian homogeneous geometries in dimension 3, the
authors of [10] study Lorentz geometries in dimension 3 possessing compact forms, that
is, pairs (G, X) with X a Lorentzian 3-manifold on which G acts isometrically transitively
and there exists some compact manifold that can be modeled on this (G, X)-structure. If the
isotropy of G acting on X is compact then G preserves a Riemannian metric and we find
ourselves with Thurston’s geometries. It is then natural to assume the Lorentz geometry to
be of non-Riemannian type, that is, it has non-compact isotropy.

Theorem 1.10 ([10]) Let (M, g) be a locally homogeneous compact Lorentz 3-manifold of
non-Riemannian type. Then, M admits a Lorentz metric, probably different from g, of (non-
positive) constant sectional curvature. More precisely, up to finite cover, (M, g) is isometric
to

e An anti de Sitter manifold I'\AdS3, where AdS3 is PSL(2, R) endowed with its Killing
form, and ' C PSL(2, R) x PSL(2, R) acts properly co-compactly on it.

e Or M is a quotient '\ L where L a 3-dimensional Lie group and I" C L is a co-compact
lattice, and metrically L is endowed with a left-invariant Lorentz metric which fits into
one of the following cases

(1) L =R endowed with a flat metric.

(2) L = Heis or L = Sol. In both cases, L has (up to isomorphism) two left-invariant
metrics with non-compact isotropy, one of which is flat.

(3) L =PSL(2, R). It has, up to isomorphism, two left-invariant metrics of non-compact
isotropy, in addition to the AdS-one which is given by its Killing form.
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In the proofs of [10], some cases of Heisenberg extensions (actually corresponding to
elliptic plane waves) were ruled out incorrectly because they were treated as algebraic groups
(while they are not)! The present proof (Theorem 1.5) of the non-existence of compact models
of elliptic plane waves fills this gap.

Let us finally observe that the algebraically most difficult case is the anti de Sitter one. It is
indeed delicate to describe discrete subgroups I' C PSL(2, R) x PSL(2, R) acting properly
co-compactly on PSL(2, R) (see [7, 19] for recent results).

1.3 Organization of the article

We start Sect. 2 by classifying homogeneous 3-dimensional Riemannian manifolds, essen-
tially for two purposes: to provide a simpler proof (compared to the ones in the literature, for
instance in [20]), and to compare with the Lorentzian situation to see what is new.

In Sect. 3 we define our family of Lorentz homogeneous spaces P,, as quotients of
Heisenberg extensions. These spaces will play the major role in the two main parts of this
paper, on the one hand, they are the spaces of discussion in the part about plane waves and,
on the other hand, a sub-family of them will constitute the new examples that are neither
locally symmetric nor locally isometric to Lorentz groups.

Sections 4 and 5 will be devoted to the proof of the classification theorem 1.8. For easiness,
the proof is divided into two parts: Sect. 4 treats the case where the isometry group is solvable
and Sect. 5 treats the non-solvable case.

Proof of Theorem 1.9, about the classification of homogeneous locally symmetric Lorentz
3-manifolds, is presented in Sect. 6.

Theorem 1.1 concerning the algebraic structure of the spaces P, is proven in Sect. 7.

Proofs of the statements about plane waves start, essentially, from Sect. 8. Sect. 8 is devoted
to the proof of Theorem 1.3 that characterizes all homogeneous 3-dimensional plane waves.
Theorem 1.4, about the global coordinates for non-unimodular plane-waves, is proven in
Sect. 9. Proof of Theorem 1.7 is divided into two parts: the completeness statement is proven
in Sect. 10, and the non-extendibility statement is discusses in Sect. 11. Finally, proof of the
statement of the (non-)existence of compact models (Theorem 1.5) is detailed in Sect. 12.

2 What’s new in the non-Riemannian case.

As we mentioned before, it is known that any homogeneous simply connected Riemannian
manifold of dimension three is either symmetric or isometric to a left-invariant metric on a
Lie group of dimension three, see [20]. Comparing this to the Lorentz situation led us to new
examples. This section is devoted to this comparison.

2.1 The Riemannian case
We give here a proof of the classification of three-dimensional homogeneous simply con-
nected Riemannian manifolds.

Theorem 2.1 A simply connected homogeneous Riemannian 3-manifold (M, g) is globally
symmetric or isometric to a Lie group with a left-invariant Riemannian metric.

Proof Denote by G the identity component of the full isometry group of (M, g) and g its Lie
algebra. Let m be a point in M whose stabilizer in G is denoted by / (which is a connected
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compact subgroup of G). The isotropy representation of 7 in SO(g,,) =~ SO(3) is faithful.
Since SO(3) has no two-dimensional subgroups then I is either three-dimensional, one-
dimensional, or trivial. If the dimension is zero then we are done (i.e. (M, g) is a Riemannian
Lie group). If I is three-dimensional then the sectional curvature is constant which means that
M is globally isometric to one of the Riemannian models with constant sectional curvature.

O

Suppose now that / is one dimensional i.e. G is four-dimensional.

Fact 2.2 The solvable radical of g, denoted by R(g), is non-trivial.

Proof If not, then G is by definition a semi-simple Lie group of dimension 4 which is
impossible. O

Ifdim(R(g)) = 1 then by Levi’s decomposition either g = su(2) x Ror g = s[(2, R) x R.
But, semi-simplicity of s[(2, R) and su(2) implies that the above semi-direct product is a
direct product. In both cases if i = Lie(/) C su(2) or Lie(/) C s[(2, R) then I = SO(2) up
to conjugacy, and the tangent space of G/I at I is R @ (s/i) with s equals s[(2, R) or su(2).
Hence R is exactly the factor on which / acts trivially and s/i is orthogonal to R since this
is the unique /-invariant subspace transverse to i. This implies that the metric on R & (s/1)
is a product metric. Therefore, up to scaling, (M, g) is isometric to the symmetric spaces

R x (SL(2, R)/SO(2)) =R x H? or R x (SU(2)/SO(2)) = R x S

And, if Lie(/) is transverse to the semi-simple factor, then (M, g) is isometric to a left-
invariant metric on ﬁ(Z, R) or SU(2).

If dim(R(g)) > 2 then g is solvable and i cannot be contained in [g, g] because, if not, we
would have that ad;, is nilpotent for every & € i and it cannot be the infinitesimal isometry
of a Riemannian inner product (unless ady, is identically zero, but this is not the case since
the derivative representation of [ is faithful). Using this along with the fact that g/[g, g] is
abelian, one can find an ideal L supplementary to i by pulling-back a hyperplane in g/[g, gl
transverse to the projection of i. Since the normal subgroup corresponding to L is transverse
to 7, itfollows thatits actionon M = G/I is transitive and locally free. But, since M is simply
connected then the action is in fact free and (M, g) is globally isometric to a left-invariant
metric on this Lie group.

]

2.2 The Lorentzian case

One may observe that many ideas in the Riemannian case can be generalized immediately
to the case of homogeneous Lorentzian three-manifolds except, a priori, two of them:

(1) The one concerning the fact that / cannot be two-dimensional. Here, one observes that
SO(1, 2) contains two-dimensional subgroups (the affine group of R which is unique,
up to conjugacy, inside SO(1, 2)). However, one still manages to show that it cannot
represent the full isotropy group of a point in a Lorentzian 3-manifold.

(2) The fact that non-zero nilpotent endomorphisms cannot be the infinitesimal isometry of
a Riemannian inner product, which is possible in the Lorentzian setting. This is the main
difference which leads to new examples. We will investigate all of this in what follows.

Let us first give some general considerations. Suppose that (M, g) is a locally homogeneous
Lorentz three-manifold, meaning that any p, g € M have neighborhoods U and V such that
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there exists f : U — V isometric with f(p) = ¢. In particular, such (M, g) is analytic
and it is known that if it is simply connected, then any locally defined Killing field extends
(uniquely) globally [17]. In this case, let g be the Lie algebra of (all) Killing fields and G
its associated simply connected group. Choose a base point pg and let i be its (full) isotropy
subalgebra, i.e. those Killing fields vanishing at pg. We have the following

Proposition 2.1 The isotropy subalgebra i cannot have dimension two.

Proof The idea relies on the fact that if we have a representation of SL(2, R) on some finite
dimensional vector space V such that there is v € V fixed by a two-dimensional (connected)
subgroup H C SL(2, R) (which is unique up to conjugacy) then v is fixed by SL(2, R) (this
is due to the fact that SL(2, R)/H ~ S! and SL(2, R) cannot have non-trivial compact orbits
when acting linearly on V). We have in our situation that the faithful representation, of local
isometries fixing p, contains a 2-dimensional subgroup inside SOg (1, 2) that fixes the Ricci
tensor Ric,. One deduces from the previous discussion that Ric), is fixed by all SOy(1, 2).
But any quadratic form invariant by SOg(1, 2) is proportional to the metric itself. So our
Lorentz manifold is Einstein and it is known that, in dimension three, this is equivalent to
having constant sectional curvature which implies that i is not the full isotropy subalgebra. O

So, if (M, g) does not have constant sectional curvature then dim(/) can be O or 1 and,
hence dim(G) = 3 or 4. It is known that in a simply connected Lie group G of dimension
<5, any connected Lie subgroup is closed. Indeed, if G is solvable then this is true in every
dimension (see [16] page 187, last paragraph). If dim(G) = 4 and G is not solvable, then its
Lie algebra is either su(2) ® R or s[(2, R) @ R and in both cases we know that any connected
Lie subgroup is closed. If dim(G) = 5 and G is not solvable, then its Lie algebra is either
su(2) ® R?, or sl(2, R) @ R?, or s[(2, R) x R? and, again, the same holds in this case. But,
observe that this is no longer true in higher dimensions as can be shown in dimension 6,
with I a dense subgroup in SO(2) x SO(2) C SU(2) x SU(2), which is simply connected.
Therefore, in our situation, the quotient G /I exists and M is locally isometric to it.

Observe that one can also find simply connected Lorentz homogeneous spaces M = G /I
with dim(G) = 5 and dim(/) = 2. But in this case, the Lie algebra g of G is not the
full Killing algebra of M. The full Killing algebra g’ has dimension 6 and M has constant
curvature, but its associated group G’, a priori, acts only locally on M. This is because M
could be incomplete. However, one can prove that a constant curvature manifold admitting
an isometric action of a 5-dimensional group is complete (see Theorem 1.9).

3 The Heisenberg extensions.

Definition 3.1 We say that a semi-direct product G = R x Heis is non-real if the R-action
on R? = Heis/Z (where Z denotes the center of Heis) has complex non-real spectrum.
Equivalently, this action is conjugate to a non-trivial similarity action, i.e. a one-parameter
group R C R* x SO(2) ¢ GL(2, R) with a non-trivial projection on SO(2). For example, if
R is SO(2), then G is the oscillator group [2, 21]. In the opposite case, we say that G is real.

Proposition 3.1 Let I be any non-central one parameter group of Heis with Lie(I) = i. Let
G be any semi-direct product G = R x Heis. Then

(1) G/I admits a G-invariant Lorentz metric if and only if the R-action does not preserve
the abelian group of rank 2 generated by I and Z.
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(2) Assume G /I has a G-invariant Lorentz metric. Then there is a subalgebra | of dimension
3 transverse to i if and only if G is real.

Lemma 3.2 A nilpotent (non-zero) endomorphism A of a 3-dimensional linear space is an
infinitesimal isometry of some Lorentz scalar product if and only if its nilpotency order equals
3, that is, A3 = 0 but A% # 0.

Proof If A has nilpotency order equals 3 then, for u generic, the system {Az(u), A(u), u} isa
010

basis in which A has amatrix | 0 0 1 |. This is skew symmetric with respect to the Lorentz
000

form —2dxdz + dy?. Suppose now that A has nilpotency order two and g is an invariant

Lorentz metric. Then Im(A) is one-dimensional. But, for arbitrary X we have

g(A(X), X) + g(X, A(X)) = 2g(A(X), X) = 0.

So every X, not in ker(A), is orthogonal to Im(A), which is impossible since g is non-
degenerate.
O

Proofof (1) G preserves a Lorentz metric on G/I if and only if the Ad(Z) action on the
quotient vector space g/i (identified to the tangent space at the base point /) preserves
a Lorentz scalar product. Equivalently, the infinitesimal action ad, is skew symmetric with
respect to a Lorentz scalar product on g/i, where a generates i. Consider a standard generating
system {Z, X, Y} of the Heisenberg algebra heis with bracket relation Z = [X, Y]. The Lie
algebra g is generated by adding a fourth element 7' (with brackets [T, W] € bheis, for any
W € heis). Since all one-dimensional subspaces in Heis different from RZ are equivalent by
automorphisms, we can assume i = RX. The action of ady on g/RX has nilpotency degree
3if and only if adx (T') ¢ RX @ RZ. This proves the first part of the proposition. O

Proofof (2) Assume G is real. Then ad7 has a non-vanishing eigenvector # when acting on
heis/RZ = RX & RY. We have that u ¢ i & RZ since we assume the existence of an ad;-
invariant scalar product. Thus, [ = RT @ Ru@RZ is a Lie algebra transverse to i. Conversely,
suppose that such [ exists and consider its intersection ' = [Nheis. Then [’ is a 2-dimensional
ideal in [. Thus, I contains Z and another element u € RX @ RY. The Lie algebra [ also
contains an element 7/ = T + v, v € heis. Now, [T, u] + [v,u] = [T',u] € ' = RZ ® Ru.
Since [v, u] € RZ then the class of u is an eigenvector of ad7 acting on heis/RZ. Therefore,
this last endomorphism has a real spectrum. O

3.1 Description of the Heisenberg extensions

Let p : R — Aut(heis) be a representation into the automorphism group of the Heisenberg
algebra. This one-parameter group is of the form exp(tA,) where A, is a derivation of the
Heisenberg algebra. Put G, = Heis x, R the associated Lie group with Lie algebra, denoted
by Lie(G,), generated by Z, X, Y and T such that

[X,Y]=Z and [T, W] = A,(W) forevery W € bheis.

In particular, [Lie(G ), Lie(G,)] C heis (more precisely, the derived subalgebra is generated
by the span of the image of A, and Z ). Let V € bheis be a non-central element. Hence
ady : Lie(G,) — Lie(G,) is nilpotent (heis is contained in the nil-radical and we have
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equality if A, is not nilpotent). Suppose that ady has nilpotency degree 3 and let I C G, be
the one-parameter subgroup (necessarily closed) tangent to V and consider the homogeneous
space P, = G, /1. It follows from Proposition 3.1 that P,, possesses a G ,-invariant Lorentz
metric. In what follows, we will show the uniqueness, up to isometry and scaling, of P, i.e.
independence on the choice of the non-central element V € heis.

Observe that we always have A,(Z) = aZ and A, induces a linear transformation

;f;, Sheis/Z =R* — R?
where tr(/ﬂl\;,) =a.

Remark 3.3 Notice that multiplying A, by a non-zero real number o or adding an inner
derivation of the form ad,,, u € heis, does not change the semi-direct product. More precisely,
if Ay = aA, + ad, then the extensions G, and G, are isomorphic by an isomorphism
preserving Heis. In particular, we can always assume that A, preserves a plane transverse to
the center of heis.

3.1.1 The real diagonalizable case

Suppose that ;\77 is diagonalizable with real eigenvalues. Then, up to conjugacy by automor-
phisms, we have

a+b00
Ay, = 0 a0
0 0b

with respect to the basis {Z, X, Y} where a # b (since we are in the situation of the existence
of elements in heis with nilpotency order 3). We can assume a # 0 (observe that in this case
G, is unimodular if and only if @ = —b). Furthermore, we can assume that a = 1 because
scaling A, doesn’t change the one-parameter group. Thus, we have a one-parameter family
of Lie algebras, denoted Lie(Gp) this time, given by the derivations

14600
A= 0 10
0 0b

for b different from 1 (observe that b and 1/b give isomorphic algebras for b # 0). The
brackets of this Lie algebra are given by

[T,Z]=(10+b)Z, [T,X]=X, [T,Y]=0bY, and [X,Y]=Z

Let now V € heis C Lie(Gp) be a non-central element such that ady has nilpotency order
three. Put V. = aX 4+ BY 4 y Z. We can assume, up to inner conjugacy in heis, that y = 0
and observe that both o and  must be different from zero otherwise ady has order two. In
addition, all such V are equivalent by automorphisms of Lie(G}), it suffices to consider an
automorphism ¢ : Lie(Gp) — Lie(Gp) given by o(X) = 11 X, oY) =Y, 9(Z) = hhZ,
and p(T)=T.

Suppose now that V. = X + Y and put m = span(7,Y’ = X + bY, Z). Then m is
ady -invariant and we have

ady(T) = —Y', ady(Y') = (b— 1)Z, and ady(Z) =0
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So giving a Gp-invariant Lorentzian metric on P, = Gp /I, where I = exp(tV), is equivalent
to giving a Lorentzian ady -invariant inner product g(., .) on m. That is

glady(W),U) + g(W,ady(U)) =0

for every W, U € m. By direct evaluations we find
o(T,T)=8, ¢¥.Y)=6, g(T,Z)= b“il
and
8(2,2)=g(Y',Z2)=¢(T,Y)=0

where & is different from zero. But, up to automorphisms fixing V and preserving m, we can
assume,é = 0. It suffices to consider the automorphism ¢ : Lie(Gp) — Lie(Gp) defined by
oX)=X,o¥Y)=Y,o(T) =T + §Z, and ¢(Z) = Z with a suitable choice of §. This
shows that the Lorentzian homogeneous space P is unique up to isometry and scaling.

3.1.2 The real parabolic case

Suppose now that K; has real non-zero eigenvalues but not diagonalizable. In this case, up
to conjugacy by automorphisms, we have

2t 00
Ay=101¢ts
00r¢
with respect to the basis {Z, X, Y} where ¢ and s are non-zero. We can assume thatt = s = 1
up to scaling and automorphisms of the Heisenberg algebra. Thus, we have a Lie algebra
Lie(G,) given by the derivation
200
A, =011
001

The brackets of this Lie algebra are given by
[T,Z]=2Z, |[T,X]=X, [T,Y]=X+Y, and [X,Y]=Z

Let V = aX + BY + y Z be a non-central element whose nilpotency order is 3. We can
assume, up to inner conjugacy in heis, that y = 0. Observe that 8 # 0 otherwise ady has
order two. In addition, all such V are equivalent by automorphisms of Lie(G ), it suffices
to consider ¢ : Lie(G,) — Lie(G,) givenby ¢(X) = X, ¢(Y) =Y +1tX, ¢(Z) = Z, and
¢(T) = T with a suitable value of 7.

Suppose now that V = Y and put m = span(T, Y’ = X + Y, Z). Then m is ady-invariant
and we have
ady(T) = —=Y’, ady(Y) =—Z, and ady(Z) =0

Suppose g(., .) is a Lorentzian ady -invariant inner product on m. That is
glady (W), U) + g(W,ady (U)) =0
for every W, U € m. By evaluations we find

gT.T)=8, g¥'.Y)y=a, g(T.Z)=—a
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and
8(Z,2)=g(Y',Z)=g(T,Y)=0

where & is different from zero. We can also assume A = 0 by considering the automorphism
¢ : Lie(Gp) — Lie(G,) defined by o(X) = X, oY) =Y,o(T) =T +6Z,and p(Z) = Z
with a suitable choice of §. This shows, similar to the previous cases, that the Lorentzian
homogeneous space P, = G,/ exp(tV) is unique up to isometry and scaling.

3.1.3 The non-real case

Consider the case where ;\7} has complex eigenvalues. In this case A, preserves a plane
transverse to the central direction and acting on it by a similarity. Since all transverse planes
are equivalent by Heisenberg inner automorphisms, we can assume that, up to scaling,

2cos(@) O 0
A, = 0 cos(f) — sin(f)
0 sin(f) cos(9)

with respect to the basis {Z, X, Y} where 6 € (0, 7). Here, one thinks of A, acting on the
plane span(X, Y') as a multiplication by a complex number in the upper half of the unit circle.
But, in order to simplify the brackets, we can scale and assume that A, acts on span(X, Y) by
multiplying by a complex number of the form i 4-c¢ with ¢ € R. Thus, we have a one-parameter
family of Lie algebras, which we denote by Lie(G,), given by the derivation (observe also
that one can take only ¢ > 0)
2¢0 0
A.=10 ¢ —1
01 ¢

The brackets of this Lie algebra are given by
[T,Z]=2cZ, [T, X]=Y+cX, [T,Y]=—X+cY, and [X,Y]=2Z

As before, if V = o X 4+ BY + y Z is a non-central element then we can always assume that
y = 0. All such V are equivalent to V = X by automorphisms ¢ : Lie(G.) — Lie(G,)
of the form ¢(X) = aX + BY, o(Y) = —BX +a¥, 9(Z) = (@* + p*)Z, and o(T) = T
which send X to V.
Suppose now that V. = X and m = span(T,Y’ =Y + cX, Z). Then m is ady-invariant
and we have
ady(T) ==Y, ady(Y')=Z, and ady(Z) =0

Suppose g(., .) is a Lorentzian ady -invariant inner product on m. By evaluations, as before,
we find
g, T)=p, g¥Y' . Y)=a, ¢(T,2)=d&

and
8(Z,2)=g(Y',Z)=¢(T,Y)=0

where & is different from zero. By considering an automorphism ¢ : Lie(G.) — Lie(G.)
of the form ¢(X) = X, oY) =Y, @o(T) =T + 8Z, and ¢(Z) = Z we can assumeB =0.
This shows the uniqueness of the Lorentzian homogeneous space P, = G./exp(tV) up to
isometry and scaling.
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3.1.4 The nilpotent case

Lastly, suppose that ;17, has only zero eigenvalues but not diagonalizable. We have in this
case that, up to scaling, conjugacy by automorphisms, and adding a derivation of the form
ad, with u € heis
000
A,=1001
000

with respect to a basis {Z, X, Y}. The brackets of this Lie algebra are given by
[T,Y]=X, and [X,Y]=Z

Let V. = aX + BY + yZ be a non-central element whose nilpotency order is 3. We can
always assume, up to inner conjugacy in feis, that y = 0. Observe that § # 0 otherwise
ady has order two. In addition, all such V are equivalent by automorphisms of Lie(G ), it
suffices to consider ¢ : Lie(G,) — Lie(G,) given by ¢(X) = BX, ¢(¥Y) = BY + aX,
©(Z) = B%Z, and ¢(T) = T which sends ¥ to V.

Suppose now that V = Y and put m = span(7T, X, Z). Then m is ady-invariant and we
have
ady(T) = —X, ady(X) =—Z, and ady(Z) =0

Suppose g(., .) is a Lorentzian ady -invariant inner product on m. That is
glady (W), U) + g(W,ady(U)) =0
for every W, U € m. By evaluations we find
gT.T)=h. g(X.X)=a. g(T.2)=—d

and
8(Z,2)=¢X,2)=g(T,X)=0

where & is different from zero. We can also assume A = 0 by considering the automorphism
¢ : Lie(G,) — Lie(Gp) defined by ¢(X) = X, o(Y) =Y, o(T) =T +8Z, and ¢(Z) =
Z with a suitable choice of §. This shows that the Lorentzian homogeneous space P, =
G,/ exp(tV) is unique up to isometry and scaling.

4 Proof of Theorem 1.8 in the solvable case.

Recall that we have shown in Proposition 2.1 that if (M, g) is a homogeneous simply
connected Lorentzian manifold with dim(Isom(M)) > 5, then M has constant sectional
curvature. In fact, one shows in this case that M is complete (see Theorem 1.9). Now , since
the case dim(Isom(M)) = 3 corresponds to the fact that M is a left-invariant metric on
Isomg (M), then all what remains to consider is the case dim(Isom(M)) = 4.

Proposition 4.1 Let G/I be a Lorentz space with G solvable and has dimension 4. Then

there exists a Lie subalgebra | transverse to i if and only if G is not a non-real semi-direct
product R x Heis with I C Heis.
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Proof Observe first that i is not central since we always assume that the action of G on G/1
is faithful. Let [g, g] be the derived subalgebra. Since g is solvable we have that [g, g] is a
proper subalgebra of g, and we have the natural projection 77 : g — g/[g, gl = R* fork > 1.
Suppose that i is not contained in [g, g], then i projects injectively to a line 7 (i) inside R¥.
Let H C R¥ be any hyperplane transverse to 77 (i) (if k = 1 then H is reduced to {0}). Hence,
n~1(H) is an ideal transverse to i in g which proves the proposition in this case.

So, it remains to consider the case where i C [g, g]. For a € i — {0} we have that ad,, is
nilpotent since [g, g] is nilpotent (recall that ad, # 0 since i is not central). If [g, g] is abelian
then adg = 0 which implies that ad, can not infinitesimally preserve a Lorentz product (by
Lemma 3.2). So [g, g] is non-abelian. Being nilpotent and non-abelian, [g, g] is therefore
the Heisenberg algebra (see [15]) and the group G is then a semi-direct product R x Heis
with I C G is a non-central one-parameter subgroup of Heis, which is already treated in
Proposition 3.1. This completes the proof of Proposition 4.1. O

Remark 4.1 Observe from the proof that in all cases where G is not a semi-direct product of
Heis, we found [ transverse to i which is an ideal.

4.1 Global identification

So far, we proved the existence of a sub-algebra [ transverse to i if G is not a non-real semi-
direct product of Heis. But, we want to prove that globally G /I is identified to L, where L is
the group determined by [. This essentially means that L acts transitively on G /I, whereas
the transversality means that the L-orbit of the point / in G/I is open. It is likely, in our
setting here (e.g. G solvable and G /I of Lorentz type), that any open orbit necessarily equals
the full space. We will prove this for the L we found in the proofs of Propositions 4.1 and
3.1.

First, let us notice that for simply connected groups of dimension 4, any connected sub-
group is closed (see the discussion after the proof of Proposition 2.1). Let L be the subgroup
determined by the subalgebra [. If L is normal, then G /L is isomorphic to R as a group, and
I projects to it isomorphically. Thatis, G/L = I or equivalently G = LI,and I N L = {1}.
In other words, L acts freely transitively on G/I.

From Remark 4.1, we can find L normal unless G is a semi-direct product R x Heis. In this
case, let I be the one-parameter group {exp(tX), t € R} C Heis and the group L transverse
to I as constructed in the proof of Proposition 3.1. The orbit of a point g/ € G /I under the
action of L is open if and only if L is transverse to Stab(gl) = g/g~' where Stab(g/) is
the stabilizer of g/. We have, as in the proof of Proposition 3.1, that [ = RT & Ru & RZ
and Ru @ RZ is an ideal in g. So the conjugates of X are never inside [ since they are never
inside the ideal Ru @ RZ = [N heis. This shows that L is always transverse to the stabilizer
of any point in G/I which implies that the L-orbit of every point g/ € G/I is open. Hence
L acts transitively locally freely on G /I because G /I is connected and the orbits are open.
By simple-connectedness, we get that the L-action is in fact free. O

Theorem 4.2 Let G be a simply connected solvable group of dimension 4 and G /I a Lorentz
3-dimensional G homogeneous space. Then there exists a simply connected 3-dimensional
group L acting isometrically, freely, and transitively on G /I if and only if G is not a non-real
semi-direct product R x Heis with I C Heis.
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5 Proof of Theorem 1.8 in the non-solvable case.

Let G/I be a 3-dimensional homogeneous Lorentz space with G of dimension 4, non-
solvable, and simply connected. Necessarily, for the same reason that we mentioned in the
Riemannian case, G is isomorphic to R x S, with § = §I:(2, R) or SU(2). The isotropy
group / cannot be the factor R since it is central (and the G-action would be non-faithful).
If I is not contained in S, then S acts freely transitively and isometrically on G /I since S
is normal and transverse to /. In other words, the Lorentz space G/I is identified with §
endowed with a left-invariant metric.

It remains to consider the case I C Si.e. G/I =R x (S/I).Inthis case, g/i = R® (s5/1).
Consider the case S = §I:(2, R). If i C sl(2, R) is nilpotent, then it has nilpotency of order
2 when acting on s/i (since the dimension of this space is 2) and, hence, has the same order
when acting on R x (s/i). Therefore, it cannot infinitesimally preserve a Lorentz product. It
follows that / must be hyperbolic or elliptic. In both cases, the factor R is exactly the trivial
factor of the /-action. Thus, it is orthogonal to s/i (observe that R is not null).

One concludes that G/I is a direct product R x (S/7I). The metric on R can be positive
or negative. As for §/1, it can be the sphere S?if§ = SU(2), the hyperbolic plane H? or the
(anti) de Sitter plane ]D82 = SOO(I 2)/SO0o(1, 1) if § = SL(2 R). In particular, the space
G /I is symmetric.

Remark 5.1 In the case of G = R x SU(2), the unique 3-dimensional subgroup of G is
SU(2). Hence, if the isotropy group I is included in SU(2) then there is no Lie subgroup
of G transverse to it, that is, there is no 3-dimensional Lie subgroup of G having an open
orbit. Whereas in the case of G = R x SL(2, R) and I C SL(2, R) hyperbolic, the subgroup
L = R x Aff, where Aff is the group of upper triangular matrices, has an open orbitin G /I
but it does not act transitively.

6 Homogeneous locally symmetric spaces, proof of Theorem 1.9.

6.1 Let M be modeled on X and homogeneous. Let us begin with assuming that M is simply
connected. Then it has a developing map d : M — X, equivariant with respect to a local
isomorphism ¢ : G — L C Isom(X) (thatis, d o g = ¥(g) od for every g € G).
The d-image is an open L-orbit. Conversely, any open orbit of a subgroup of Isom(X) is a
homogeneous space modeled on X.

Therefore, the proof of Theorem 1.9 reduces to the study of L-orbits, for L a subgroup of
dimension > 4, essentially dim L = 4, since the 5-dimensional case follows. Observe first
that in the case where X is symmetric, but not of constant curvature, dim(Isom(X)) = 4 and
there is nothing to prove, and hence, we will assume that X has constant curvature.

6.2 The stabilizer of a line Rv € T X in SO(T X, gx) = SO(1, 2) has dimension 2 if v is
isotropic, and dimension 1 otherwise. It follows that a curve can be preserved by a subgroup
C Isom(X) of dimension at most 3. Hence, if dim(L) = 4 then any L-orbit is either a surface
or is open.

Similarly, the stabilizer of a plane F' C T, X has dimension 1 unless F is lightlike. It follows
that if a connected surface X is preserved by a subgroup L C Isom(X) of dimension 4, then
it is lightlike and homogeneous.
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6.1 Action of Aff c SO(1, 2) near 0 in R"2

Write the metric of R!2 as 2dudv + dx?. The subgroup H C SO(1,2) preserving the
direction % = (1,0, 0) is isomorphic to the affine group Aff. In fact any subgroup in
SO(1, 2) of dimension 2 is conjugate to H and equals the stabilizer of an isotropic direction.

Let X be the lightlike affine 2-plane tangent to %J‘ = R% EBR% at0.So, Xy = {v = 0}.
The H-orbits of the Xg-points are {0}, R(%) \ {0}, and (null) affine lines parallel to % defined
explicitly by {v, = 0, x = a} (fora € R). A level E defined by

2uv+x*=—r% r#0

is homothetic to a hyperbolic plane, and H acts on it transitively. Similarly, a level E;" given
by
2uv + x* = +r2, r#0

corresponds to a de Sitter plane. It intersects o on the two lines {v = 0, x = £r}. Then E;
minus these two lines is an H-orbit. Finally Eg — X is a H-orbit. This is the light cone with
the affine line tangent to % removed.

From all this, we infer that if a lightlike surface is H-invariant, then it is either Eg — X
or an open subset of ¥.

6.2 2-dimensional L-orbits are lightlike and geodesic

Let X be a L-orbit of dimension 2. It is, thus, lightlike and has isotropy of dimension 2. In
the Minkowski case, we can assume 0 € ¥ and its isotropy is H. From our previous analysis,
since X is lightlike and H-invariant, ¥ is Eg — Xg or contained in X.

Now, the subgroup of isometries preserving the cone Ey is exactly SO(1, 2), and in
particular Eg — X can not be preserved by a 4-dimensional group. It follows that X is open
in ¥ and hence geodesic. In fact, the subgroup of elements preserving ¥ is H x T, where
T = R? acts by translation on Xg. It has dimension 4 and, thus, coincides with L. We then
see that L has X as a unique 2-dimensional orbit. It has two half-Minkowski spaces as open
orbits.

6.5 In the non-flat case, one uses the exponential map at a point p to get a similar picture
as that in Minkowski. One also uses Gauss lemma to see that the metric levels at p are
orthogonal to the geodesic rays through p and hence are not lightlike, unless in the light
cone. Similarly, one concludes that L is the stabilizer of a lightlike geodesic surface ¥ in X.

The de Sitter space dS3 has a model 2uv +x2 +y> = 1in R*. A lightlike geodesic surface
is given by {(u, 0, x, y)/x? + y* = +1}. Its stabilizer L is the stabilizer of the direction
R.(1,0,0,0) in SO(1, 3). Thus, the exterior of ¥ consists of two open orbits.

Consider now the anti de Sitter space AdSs. It is represented as the level 2uv +
x? — y> = —1. Its intersection with a lightlike hyperplane in R?? is up to isometry
{(,0,x,y)/x* — y* = —1}. It has two connected components, and ¥ is one of them. In
other words, the stabilizer of X has exactly another 2-dimensional orbit, and has 2 open
orbits.

6.3 Case where M is not simply connected

In the flat case, the group L preserving a lightlike geodesic surface is, up to conjugacy,
L = Aff xR2. If M, a flat homogeneous manifold with dim Isom(M) = 4, is not simply
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connected, then, its isometry group is a non-trivial central quotient of L. But L has trivial
center, and thus M has to be simply connected.

In the case of dS3, the corresponding L is a maximal parabolic subgroup of SO(1, 3),
which is isomorphic to (R x SO(2)) x R2. Here, too, L has a trivial center. The same
conclusion applies to AdSs as L in this case is isomorphic to Aff x Aff. O

7 Proof of Theorem 1.1.

Lemma 7.1 Suppose that the representation p : R — Aut(Heis) is unimodular. Then P, is
globally symmetric. Furthermore, if p is unipotent then P, is isometric to Minkowski, and if
p is hyperbolic (resp. elliptic) then P, is a Cahen-Wallach space.

Proof First, suppose that p is unipotent, that is (3.1.4) p is given by the derivation

000
adr =A,=[001
000

in the basis {Z, X, Y'}. The isotropy in this case can be chosen to correspond to the subalgebra
i = RY. One sees that span(7’, X, Z) is an abelian subalgebra transverse to all conjugates
of i. This shows (see Sect. 4.1) that P, is isometric to a translation invariant metric on Riie
to Minkowski.

Suppose now that p is hyperbolic, given by

00 0
Ap,=101 0
00 -1

The brackets of Lie(G,) are given by
[T,X]=X, [T,Y]=-Y, and [X,Y]=Z
And an inner Lorentz product (3.1.1) onm = span(T, Y’ = X — Y, Z) given by

1
g¥'\Y)=1, g(T,2)= )

and
g(T.T)=¢(Z,2)=g(Y',Z)=g(T,Y)=0

Consider the automorphism of Lie(G,) given by
o(T)=-T, pX) =Y, ¢(Y)=X, and ¢(Z) =—-Z.

So, ¢ fixes i = R(X + Y) corresponding to the isotropy and acts on Lie(G,/i) by —1d.

Furthermore, ¢ preserves g (on m) and the associated automorphism ¢ : G, — G, (i.e. @

induces the automorphism ¢ on Lie(G)) preserves I and acts on P, = G, /I by a global

isometry fixing the point I with derivative —/d. Since P, is homogeneous, then there exists

such a global symmetry around every point in P,,. This shows that P, is globally symmetric.
Similarly, if p is elliptic (3.1.3) given by

000
Ap=100 -1
01 0
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The brackets given by
[T,X]=Y, [T,Y]=-X, and [X,Y]=Z
As before if m = span(T', Y, Z) (3.1.3). Then m is ad y-invariant and we have
ady(T) =-Y, ady(Y)=Z, and ady(Z) =0
with Lorentzian inner product
g¥.V)=1, g(T,Z2)=1

and
g, T)=g(Z,2)=g(Y,Z)=¢g(T,Y)=0

And if we consider the automorphism
o(T)=-T, ¢(X) =X, oY) ==Y, and ¢(2) = —-Z.

we obtain, the same as before, that P, is symmetric. The last two cases are known to be the
only Cahen-Wallach spaces in dimension three (see for instance [6, 13]). O

Lemma7.2 P, has constant curvature if and only if it is flat. In addition, if P, is flat then it
is either isometric to the Minkowski space with G, isomorphic to R x R3 where R acts via
a unipotent one-parameter subgroup of SO(1, 2), or P, is isometric to half Minkowski with
G, non-unimodular isomorphic to Aff xIR2.

Proof The first statement follows from the following fact: the (local) holonomy of a non-flat
three dimensional Lorentz manifold with constant curvature (i.e. locally isometric, up to
scaling, to de Sitter or anti-de Sitter space) is maximal (i.e. equal to SOq(1, 2)). In particular,
there cannot be a parallel null vector field if the curvature is constant non-zero (since SOg(1, 2)
has no non-zero fixed vector on R3). On the other hand, P, are plane waves (Theorem 1.3)
and, by definition, admit a non-trivial null parallel vector field. So if P, has constant curvature
then it must be flat.

Suppose now that P, is flat. Then Lie(G,) has a faithful representation in so(1,2) x R3.
Consider the projection homomorphism

7 :50(1,2) x R3 —> s0(1,2)

We know that Lie(G,) N R3 is non-trivial and equals the kernel of 7 restricted to Lie(G )
and also Lie(G,) N so(1, 2) has dimension at least 1. The case dim(r(Lie(G,))) = 3 is
not possible since G, is solvable. If dim(7 (Lie(G,))) = 1 then necessarily 7 (Lie(G,)) =
Lie(G,) N so(1, 2). In this case, R3 ¢ Lie(G,) and G, is isomorphic to R x R3 where
R must act via a unipotent one parameter group (otherwise G, doesn’t contain a copy of
Heisenberg which is not the case). In this case, P, is isometric to Minkowski (see Lemma
7.1).

Suppose now that dim(r (Lie(G,))) = 2, then dim(Lie(G,) N R3) = 2. So Lie(Gp)
is contained in the stabilizer of a (degenerate) plane R? inside so(1,2) x R3 (acting by
conjugacy), which is isomorphic to aff x R3. Denote the basis of the Lie algebra aff xR by
{h, f,e1, e, e3} such that the stabilized plane is span(eq, e2) and the brackets are given by

[h,f]:f and [ei,Ej]zo
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and the matrices of ady, ad s acting on R3 with respect to the basis {e;, e, e3} are given by

0-10 10 0
adg =100 1| and ad, =00 O
000 00 -1

So we can suppose that Lie(G,) = span(h + Bes, f + aes, e1, e2). We have that [h +
Bes, f+ae3] = f—ae3— Ber. Since the derived subalgebra must be contained in span( f +
aes, e, e2), we deduce that o« = 0. So

Lie(G,) = span(h + Bes, f, e1, e2)

It is easy to see that span(h + Bes, f — Bey) is a subalgebra transverse to the subalgebra
span(ey, e2). So G, is isomorphic to Aff xR?Z and it preserves half Minkowski (given by the
stabilized plane for 8 = 0) which must be isometric to P, since this latter is unique (3.1.1).

O

This proves (4) and (5) in Theorem 1.1. |
Lemma 7.3 Exceptthe two flat cases (see Lemma 7.2), the following statements are equivalent

1) Up to scaling, P, is locally isometric to P .
2) G, is isomorphic G .
3) Up to scaling, P, is globally isometric to P .

Proof Let G, and G, be the associated groups. We know that their derived subgroups
are exactly Heis (the only cases where this is not true are the flat ones). Suppose that P, is
locally isometric to P,. Then their Killing algebras Kil(P,), Kil(P /) are isomorphic. Taking
into account that Lie(G ) C Kil(P,) and Lie(G /) C Kil(P,/) and that the dimension of the
Killing algebras is equal to 4 (since we excluded the flat cases 7.2), we deduce that Lie(G ) =
Kil(P,) = Kil(P,/) = Lie(G /) which means that G, and G, are isomorphic. Suppose now
that G, and Gy are isomorphic and put P, = G,/I,P,y = G, /I Let¢ : G, — G
be a Lie group isomorphism. Since ¢ sends Heis to Heis (the derived subgroups), we have
¢(I) C Heis and G, /¢(I) admits a G ,-invariant Lorentz metric isometric to P,. But,
the uniqueness of the Lorentz metric on P, (up to scaling and automorphisms) shows that
G, /¢ (1), up to scaling, is isometric to P,/. Hence P, and P, are isometric up to scaling. O

Hence, Lemma 7.3 together with Lemma 7.2 imply (6), (7), and (8) in Theorem 1.1.

Proof of part (3) in Theorem 1.1. Suppose that P, is locally symmetric. Then P, is locally
isomorphic to a (simply connected) symmetric space X. Hence Kil(P,) = Kil(X), that is,
P, and X have isomorphic Killing algebras. Assume that P, is not flat, then (by Lemma
7.2) we have Kil(P,) = Lie(G,) = Kil(X). Let i,y C Kil(X) be the (infinitesimal) isotropy
subalgebraof apointx € X.Then we have, since X is symmetric, Lie(Holy) C i, where Hol,
denotes the holonomy group at x. But, since X is not flat, one has Lie(Hol,) = i,. This shows
that the Hol,-action on 7 X is indecomposable because the ad(i,)-action is indecomposable
since it corresponds to the ad-action of the isotropy i C Lie(G,) which is nilpotent with
nilpotency order equals 3 (Lemma 3.2). Therefore, X is indecomposable. Furthermore, X
admits, locally, a parallel null vector field (coming from P,) which extends, uniquely, to a
global null parallel vector field. Thus, X is in fact a Cahen-Wallach space. But in dimension
three, we have only two such spaces corresponding to the elliptic and hyperbolic plane waves
with unimodular isometry groups G, [13]. So, from Lemma 7.3, P, is a symmetric Cahen-
Wallach space with G, unimodular elliptic or hyperbolic. Finally, all this shows that if P, is
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locally symmetric not isometric to a Cahen-Wallach, then it is necessarily flat, and in this case

(Lemma 7.2) we know that we have only two possibilities corresponding to G, unimodular

nilpotent which gives the Minkowski space and G, non-unimodular isomorphic to Aff xR?
which gives half Minkowski.

Lastly, let us mention that parts (1) and (2) in Theorem 1.1 are proven in Proposition 3.1.

O

8 Plane waves, proof of Theorem 1.3.
8.1 P, is a plane wave.

Remember the definition of the Lorentz metric on P, in Proposition 3.1. One sees that the
Killing field Z is null, and that its orthogonal distribution is generated by the Heisenberg
algebra, i.e. the three vector fields Z, X, Y.

Let [ = RY + RZ. This is an abelian 2-dimensional Lie sub-algebra of g. In a neighbour-
hood of the basis point 1/, Z and Y are linearly independent (we assume that / is the one
parameter group generated by X). It follows that [ generates the orthogonal distribution Z+
(locally).

It is proven in [12] (Theorem 3) that if a Lorentz 3-manifold admits a degenerate distri-
bution generated by two commuting Killing fields, then the Lorentz metric is a plane wave.
This applies to our situation and yields that P, is a plane wave in a neighbourhood of the
basis point 1/. This obviously implies that P, is everywhere a plane wave, by homogeneity.
For easiness, let us give a proof of the Brinkmann property, that is, Z is a parallel field on P,,.

Lemma 8.1 Let (M, g) be a Lorentzian manifold and let A, B, and C be three Killing vector
fields on M. Suppose that A is null, g(A, B) = 0, and

[B,A1=0, [C,A]l=aA, and [C,B]=BA+yB
Then we have Vyy A = O for every W = A, B, or C.
Proof The Koszul formula arbitrary three Killing vector fields X', Y’, Z’ on M we have
28(Vx Y, Z) = g(IX', Y, Z) + g(IY', 2", X) — g(1Z', X'), Y')
By evaluations we find
g(VaA, A) = g(VaA, B) = g(VgA, A) = g(VcA, A) = g(VgA, B) =0

‘We have also
2¢(VBA,C) =g(-pA—yB,A) —g(aA,B) =0

29(VeA, B) = g(@A, B) + g(BA+yB, A) =0
This proves that Viy A = 0 for every W = A, B, or C. In particular we have
V(fA+gB+hC)A =0 fOI‘eVCI'y f, g,h S COO(M).
O

In our case, we apply the lemma for the basis A = Z, B =Y and C = T, and get that Z
is parallel. O
The flatness of the Z*-leaves follows straightforwardly from the fact that Z and ¥ com-
mute. The proof of the last property of plane waves, that is Vy R = 0, for any U € Zt is
detailed in [12]. O
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8.2 A homogeneous 3-plane wave is isometric to some P,

We are now going to prove that a simply connected homogeneous 3-plane wave M is isometric
to some P,. The Heisenberg group Heis preserves the flat metric go = 2dudv + dx?. It acts
by translations on x and v, and by a linear one parameter group of unipotent transformations

2
t
(v, x,u) — (v—l—tx—?u,x—tu,u)

Consider now more generally a metric of the form gs = 2dudv + 8(u)dx? where 8 is a
function depending on u. It is obviously invariant by translation on x and v. It is also invariant
under a modification of the previous unipotent one parameter group as follows

I2
W, x,u) > v+ tx = = Fs(u), x = tFs (), u)

where Fj(u) is an anti-derivative of Tlu)' The obtained 3-dimensional isometry group of gs,
is in fact isomorphic to Heis (and acts trivially on u). To summarize, we have

Fact8.2 A metric g5 = 2dudv + §(u)dx* where § is a function depending on u admits an
isometric action of the 3-dimensional Heisenberg group Heis.

Remember (1.1.2) that a plane wave can be defined by having a local Rosen coordinates
where the metric has the form g5 = 2dudv + 8(u)dx2. It follows that it admits an isometric
infinitesimal action of the Heisenberg algebra. This action preserves individually the leaves

of the orthogonal distribution :—UL
In fact, any Killing field U tangent to the %L-distribution belongs to heis. Indeed, let

Fy be a leaf of %L, then it is (locally) affinely isomorphic to the flat R? endowed with a
degenerate Riemannian metric dy?. Transformations preserving such a structure have the
form (z, y) = (Az +ty +a, y + b). If A # 1, this can not be the restriction of an isometry
preserving individually the leaves of a%l, since such a transformation has a transverse linear
distortion ™. But A = 1 exactly means that the transformation belongs to Heis. Therefore,
the Killing field U coincides with a Killing field W € heis on Fy. The Killing field U — W
vanishes on the hypersurface F and hence equals O (at a singularity, a non-zero Killing form
has a derivative, element of so(1, 2) and one easily sees that its 0-set has a most dimension
1). From all this, one infers that heis is an ideal in the Killing algebra of the plane wave.

It follows that if the plane wave is locally homogeneous, its Killing algebra contains at

least one Killing field T allowing one to pass from a Ba—vJ'-leaf to another. Thus g = RT @ heis
is an extension of the Heisenberg algebra. The associated simply connected Lie group has the
form G, for some p, and furthermore the homogeneous plane wave M is locally isometric
to P,.

We will assume P, is not flat, since this particular case is treated in Theorem 1.9. So we
have a developing map d : M — P,. The developing map d is equivariant with respect to
a homomorphism /& : G — G, where G is the Lie group acting (transitively) on M. Since
M and P, have same Killing algebra, and G, is simply connected, it follows that & is an
isomorphism. By equivariance, d is a diffeomorphism. In other words, M is identified with
P,.
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8.3 The non-simply connected case

If M is homogeneous non-simply connected, then the previous discussion shows that M=P 0
for some p and M = I'\ P, where I' C G, is a normal subgroup (hence central). But the
center of G is trivial unless p is unimodular where the center is exactly the direction Z.
And p unimodular corresponds to either the Minkowski case, or to the two Cahen-Wallach
cases (see Lemma 7.1).

9 Global coordinates, proof of Theorem 1.4.
Consider a plane wave metric given in Brinkmann coordinates as

b 2
g = 2dudv + —=-du® + dx>
u

on {(u, v, x), u > 0}. Let us say that most computations are actually done in [3], but only at
a Killing fields level. The metric g, obviously admits a one parameter group of isometries
(boosts) ¢ : (u,v,x) — (e'u, e "v, x). These isometries act transitively on the set of u-
levels.

Now, as any plane wave, the Heisenberg algebra acts (locally) by preserving u-levels and
transitively on each of them. It follows that g; is locally homogeneous and, if it is non-flat,
its Killing algebra equals some extension g, of the Heisenberg algebra (this will be detailed).

9.1 Global action of G,

We are now going to prove that the g, infinitesimal action integrates to a global G ,-action.
For this, we have to consider the heis-action in Brinkmann coordinates. But understanding
such an action involves analyzing the transform Brinkmann to Rosen, which sounds highly
“transcendental”!

Fact9.1 Ler a metric g in Brinkmann form g = 2dudv + H(u)x*du® + dx?, defined on
(v,x), € R%, and u € J, J an interval. Then Heis acts (globally, not merely locally) isomet-
rically by preserving the u-levels.

Proof Equivalence of Brinkmann and Rosen coordinates is done in Appendix 13 (see [1] for
more details).

Then, we describe the Heis-action in the Rosen form g5 = 2dudv + S(u)dx? as given
in Fact 8.2. Let us focus on the R2 (C Heis)-action given by (v, x,u) — (v+a,x + b, u)
which is isometric and generates the horizontal foliation .%, whose leaves are the u-levels.

All these leaves are thus R?-affine homogeneous spaces. In particular, the geodesics of
gs tangent to .# do not depend of &, that is, they are usual straight lines as in the case of the
Minkowski space corresponding to g = 2dudv + dx?.

The Killing field W corresponding to the translation action on the x-coordinate,
(v, x,u) — (v,x + b, u) is thus parallel on each .%#-leaf. This Killing field is however
not parallel for a general g5 (on the whole space). Let us say, there exists a map u — W,
(depending on §), such that, on each .%, , W is parallel to W, i.e directed by W,,.

As for the Brinkmann form g = 2dudv + H (u)x*du® + dx?, the same Killing field W is
parallel on each u-level. In order to prove that W has a (complete) global flow, it is enough to
show that the u-levels are complete. It turns out that geodesics of these levels are still straight
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lines in the (Brinkmann) (v, x)-coordinates (see [5] where geodesic equations are explained
and shown to have affine solutions for horizontal initial conditions) and since (v, x) € R2,
they are complete.

As for the action (v, x, u) — (v+tx — %Fg (u), x —t Fs(u), u) of the other one parameter
subgroup of Heis in Rosen coordinates, it does not have geodesic orbits, but it is affine on
the u-levels endowed with the Rosen (v, x)-coordinates. This is still affine in the Brinkmann
(v, x)-coordinates since the geodesics are straight lines. By completeness of these u-levels,
the flow acts globally. O

9.1.1 Identification of p as a function of b

Let us now show that any P, (for p non-unimodular) is isometric to a metric g, for some
b = b(p). For this, it is enough to check that the Killing algebra of g;(,) equals g,. Now,
the computation of the Killing algebra of g; is done in [3] (Formula 3.33). It is stated there
that the Heisenberg algebra feis = span(Z, X, Y), is extended by an element 7', such that
100
[T,X]=0bY,[T,Y]=X+Yand [T, Z] = Z, in other words adr equals A, = | 00 1
0b1
in the basis {Z, X, Y}. The associated semi-direct product is thus defined by p(¢) = e,
Conversely, let A be a derivation of feis with A(Z) # 0, thatis, A(Z) = aZ witha # 0. Up
to scaling (of A), we can assume @ = 1, and up to adding an interior derivation ad,,, u € heis,
we can assume that A preserves a supplementary of Z, say the plane RX @& RY. And up to
conjugacy by automorphisms, A has the form Aj. This completes the proof of Theorem 1.4
O

9.1.2 Hyperbolic case

We also have an explicit global Rosen formula for hyperbolic plane waves 1.1.4
8o = 2dudv + u**dx?

defined on (v, x) € R%, u > 0 (considered, in particular, in [18]). So Heis acts isometri-
cally affinely in these coordinates. Observe that the linear one parameter group (v, x, u)
(e'v, ¥ x, e~ 'u), also preserves g,. We know that Heis is normal in Isom(g, ), and thus an
extension G, acts isometrically in an affine manner. So G, is in fact a subgroup of Aff (R3).
We can show that the representation associated to o is p () = e’ A where A is diagonal with
entries (1, 1 — o, a). We deduce that any hyperbolic non-unimodular plane wave P, has a
global Rosen model g, .

9.1.3 Parabolic (non-unimodular) case
gbp = 2dudv + %du2 + dx?

Proof that G, is isomorphic to G, if and only if b(p) = b(p’).
In what follows, we denote g, by g. Since the center 3 of g’ = [g, g] is equal to [¢’, g'], and

[g, 3] = 3, the adjoint representation ad of g induces an action of g/g’ on 3, and since this
action is not trivial (3 is not central), there is a unique [T] € g/g’ that acts as the identity.
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Moreover, ad induces an action ad of g/g’ on g’/3 (this is well-defined, thanks to the two
properties mentioned at the beginning of the proof), and det(ad7]) = —b, this shows that b
is determined by the algebra structure of g. O

10 Proof of the completeness statement in Theorem 1.7.

Fix a metric g = 2dudv + bux—zzalu2 +dx?%, b # 0 and let P, the so defined plane wave and
G, its isometry group (or sometimes simply P and G).

10.1 Space of null geodesics

Let ¢° be the space of all inextendible geometric (i.e. non-parametric) isotropic geodesics
of P,. Let #9 be the space of horizontal ones, i.e. those for which u is constant and are in
fact orbits of the parallel field %. The set of vertical i.e. non-horizontal ones is denoted 79,
so that @9 = 9 U 70,

10.1.1 Example of an incomplete (vertical) null geodesic

Observe that (v, x, u) — (v, —x, u) is isometric and hence {x = 0} is geodesic. The metric
on the latter plane is dudv. Therefore, t +— (0, 0, ¢) is a null geodesic. Its maximal existence
domain is ]0, +ool. Let us denote this geodesic yp.

10.1.2 Vertical null geodesics are non-complete

Indeed, for such a geodesic y (1) = (v(z), x(t), u(t)), it is known that, up to a scaling and a
shift of time, one can choose u(¢) = ¢, that is the coordinate ¢ plays the role of (an affine)
time (see [5, Prop. 3.1]). The (second order) equation on x(¢) is linear, and v(¢) is an integral
of it. More precisely, as detailed in [5], x () satisfies, up to a constant, an equation X () = t%
(after identifying u with a multiple ct). Solutions are, thus, defined on ]0, +oo[. Observe in
fact, that this applies to all non-horizontal geodesics, null or not, in particular to all timelike
geodesics.

10.1.3 Action of Isom(P,) on %°

Proposition 10.1 The action of G, on 49 has exactly two orbits ¥° and A°. In particular,
any non-horizontal null geodesic is congruent, mod G, to the vertical geodesic yy. Also,
any such geodesic is the orbit of a one parameter group of G .

Proof Let T° be the space of null tangent directions of P,. This is circle bundle over
{(v,x, u) € R? x R*} .

The set H of horizontal null directions gives a section, and so is connected. The set VO of
non horizontal directions forms a bundle with fiber S! — 1 pt = R, and thus is connected, too.
Spaces of geodesics 0 and #© are just quotients of H% and V° by the geodesic flow, and
hence are connected. The isotropy in G, is unipotent (of dimension 1) fixing only horizontal
directions. It follows that G, acts freely on V0 and has 1-dimensional isotropy on H®. Since
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dim V° = 4, and dim G o = 4, connectedness of G, implies that it acts transitively (and
freely) on V. In particular 7 is a homogeneous space G o/ L, where L is a one parameter
group. From this follows that any vertical null geodesic in an isometric image of yy, and that
any such geodesic is preserved by a one parameter group of isometries acting freely (and
hence transitively since the dimension is one) on it. As for AV itisa G » homogeneous
surface homeomorphic to R x R*. O

11 Proof of the non-extendibility statement in Theorem 1.7.

In this section, p is fixed once for all, and hence P, will be simply denoted P. A non-trivial
extension of (P, gp) consists of a Lorentz manifold (N, g) together with an embedding
¢ : P — N, such that ¢*g = g, but ¢ is not onto, so P’ = ¢ (P) is an open proper subset of
N. We say that P is inextendible if such ¢ does not exist, say alternatively if any isometric
embedding is bijective. It is important to note that this depends on the regularity of the metric
gonN.

11.1 Analytic case

We can assume N is simply connected, and then use that any locally defined Killing field
extends everywhere. The Lie algebra g, then acts on N. The leaves can not be all of dimension
3, since this means they are all open, but then by connectedness P’ = N. One can exclude
orbits of dimension one (paragraph 6.2), and conclude that some orbit in the closure of P/
has dimension 2. The same argument applies to the heis-action and yields that all its orbits
have dimension 2. Therefore, this 2-dimensional g, orbit coincides with a heis-orbit. Now,
these heis- leaves are affine R? endowed with a degenerate form dy?. The automorphism
group of such a structure is Aff x[R?, where R? acts by translation and Aff, is the stabilizer in
GL(2, R) of the parallel direction 3%, identified to (1, 0) € R? (more explicitly Aff consists

of matrices (g 117 ) preserving the direction of (1, 0) and acting isometrically transversely).

We then deduce that the Lie algebra g, embeds in the Lie algebra of Aff xRZ, but the latter
corresponds to the flat metric go. Let us mention that the non-extendibility in the analytic
case can also be derived from the main result of [9]. It says that if the Killing algebra of an
analytic Lorentz metric on a connected 3-manifold N has an open orbit, then this manifold is
locally homogeneous, i.e. its (full) Killing algebra has one orbit. In our case, if P’ # N, then
the Lie algebra of N has dimension > 5, which implies (Lemma 7.2) that N has constant
curvature, hence flat.

11.1.1 Smooth complete case

It is shown in [11] that there exists a geodesic y (¢) in P, t €] — oo, 1[ and a parallel 2-plane
field Q(¢) along y such that the sectional curvature of Q(#) tends to co when ¢+ — 1. This
implies that P can not be embedded in a geodesically complete space. Here the metric g (on
N) is assumed to be CZ (and complete).
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11.1.2 A synthetic proof

Let us give a brief outline of a proof that works in the C? case, but one may expect to adapt

it even to the C! (perhaps C) case (we hope to give more details elsewhere). The lightlike
geodesic foliation .# tangent to %L is defined on P’. It has complete leaves. Let us now
recall a Lipschitz regularity property of such foliations. For this, it might be better to give an
example brought out in particular from [22, 23]. Let B> be the unit open Euclidean ball, and
consider .Z; a family of disjoint affine 2-dimensional subsets, which are relatively complete
in B3, to mean that .%, equals the intersection with B> of a complete affine 2-plane of R3
(so in B3, % is as complete as possible). Let ¥ = U;.%,, be the support of our disjoint
family. The Lipschitz regularity fact is that the family is (locally) Lipschitz and in particular
extends to a similar disjoint geodesic family on the closure X. It turns out this generalizes to
disjoint families of geodesic hypersurfaces in general pseudo-Riemannian manifolds (in fact
manifolds with a connection), see [22, 23]. In our situation, the foliation .% of P’ extends to
a foliation on P’. If 7 is a transverse curve to .%, then P N7 is an open set of 7, and because
dim t = 1, we infer that P’ is a regular open domain in N, i.e. a submanifold of codimension
0 with regular (in fact geodesic) boundary.

Let Fyy be aboundary leaf of .%. By continuity, as above (11.1), this is an affine R? endowed
with a degenerate Riemannian metric. In order to get a contradiction as above, we need to
prove that G, acts on Fy (preserving its structures).

For this goal, let p a point of P’ close enough to Fy, and ¢ € G, a small isometry of
P’, say ¢ is in a small neighbourhood of 1 in G, and denote ¢ = ¢ (p). Consider a cone of
directions in T, P" whose geodesics all cut Fy transversely. These geodesics cut F and also
nearby leaves F of .% in an open subset (of these leaves). For y such a geodesic, F a leaf of
7, close to Fp, y N F is one point, and ¢ (y N F) = ¢ (y) N ¢ (F). This formula allows one
to define an extension of ¢ on some open subset of Fo by ¢ (y N Fp) = ¢(y) N Fp. Observe
here that ¢ preserves Fjp.

Now, to check that everything is coherent, that is, these extensions are well defined and
they give rise to a group, or at least an algebra action, observe that since we have a true action
on P/, the construction, (in P’) does not depend on the choice of the point p. Therefore, the
extensions to the leaf Fy coincide since they are limits of actions on interior leaves in P’.

From all this, we infer that G , acts on Fy, whichimplies thatit embeds in the automorphism
group of its structure, Aff xR?, as discussed in 11.1, which is impossible.

11.1.3 Conformal extensions

Observe that all plane waves (in dimension 3) are conformally flat. Indeed, in Rosen coor-
dinates g = 2dudv + §(u)dx? = §(u) 2dwdv + dx?), where dw = %. Therefore, their
conformal developing in the Einstein universe Ein; > is a non-trivial conformal extension.

12 Compact models.

The aim of this section is to prove Theorem 1.5. Suppose that P, is not flat. Then Isomo (P,) =
G, (by Theorem 1.1). Let Isom(P,) denote the full isometry group and I, C Isom(P,) the
full isotropy of a point x € P, with identity component 10 = I, N G, consisting of a
unipotent one-parameter group of SO(1, 2) when acting on 7 P,. Furthermore, I,/ 10 is
finite since the image of I, inside O(1, 2) (by the faithful derivative representation) is an
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algebraic group. This shows that Isom(P,)/G, is finite, which implies that if we have a
compact (Isom(P,), P,)-manifold, then it has a finite cover which is a (G, P,)-manifold.
So we restrict our attention only to compact (G, P,)-manifolds.

Proposition 12.1 Let M be a closed (G, P,)-manifold. Then M is complete (asa (G, Pp)-
structure), that is, the developing map D : M — P, is a diffeomorphism.

Proof Let Z € Lie(G,) be the vector that generates the central direction in heis and V a
generator of Lie(/) where P, = G, /1. We have that Z is ady-invariant i.e ady (Z) = 0.
This implies that the vector field L+(Z) on G, obtained by left translating Z is /-right
invariant. So L,(Z) projects to a G p-invariant vector field on P, which we denote by 2.
Thus, & can be pulled back to a Well defined vector field 23, on M. Let w*(Z},) be the
pull back of %3, on M where 7 : M — M is the covering projection. The developing
map D sends 7*(Zyy) to 2, so it sends a w*(Z))-trajectory to a 2 -trajectory where D,
restricted to each trajectory, is a local diffeomorphism into the corresponding 2 -trajectory.
Since the trajectories are one-dimensional, D must be injective on each 7 *(Z}s)-trajectory.
But, since 7 *(Z)y) is complete (because %3 is complete) then D sends a 7 * (Z)y)-trajectory
bijectively onto a 2 -trajectory.

Consider now the action of the Heisenberg group Heis C G, on P,. Since the stabilizer
of every point x € P, must be contained in Heis (because Heis is normal), then the orbits of
this action define a G ,-invariant foliation by (totally geodesics degenerate) surfaces of P,,.
Thus, this foliation, denoted by .%, can be pulled back to a well defined foliation %y on M.
Let .7, v be the lift of the fohatlon Fy to the universal cover M. The vector field (%)
is everywhere tangent to Z, M, so each leaf .# M( p) is foliated by the 7*(Z3s)-trajectories
and the developing D map sends each leaf of .#), equivariantly to the .#-leaves. Let now
Y € bheis C Lie(G,) transverse to RZ @ RV inside heis, and V, as indicated above, a gen-
erator of Lie(/). We have that ady (Y) is proportional to Z. This implies that the flow of the
left-invariant vector field L, (Y) on G, preserves the surfaces g K where K is the subgroup
of G, associated to the abelian subalgebra span(V, Z). Hence, since G, /K is nothing but
the space of all Z-leaves on P, we have that ¥ generates a G ,-equivariant flow ¢’ on the
space of Z-leaves and preserving each Heisenberg leaf. This flow, thus, can be pulled back
to a complete flow (an R-action), ¢, on the space of the 2;-trajectories (completeness is
due to the compactness of M, see Remark 12.1). Moreover, ¢}, can be lifted to a complete
flow, ¢M, on the space of all 7*(Z)y)-trajectories on M. Now, since D sends a leaf ?M (p)
to the leaf . % (D(p)) by sending a 7t *(Z3s)-trajectory bijectively to a 2 -trajectory, we have
then, for similar reasons, that D sends a 52,1 -orbit to a ¢’ -orbit injectively (because the flow
@' is injective since the space of 2 -trajectories inside each Heisenberg leaf is identified with
R and ¢ acts on it properly freely) and surjectively (because $§w is complete). So, D sends
each .Zy;(p) bijectively onto .% (D(p)).

Finally, let T € Lie(G,) not inside heis. We have that ady (T') € bheis. this implies, with
the same ideas, that the flow of the left-invariant vector field L. (T) preserves the cosets gL
where L = Heis. Thus, this flow is well defined on G,/ L which is the space of all Z -leaves.
By similar arguments, this defines a flow on the space of all .Zy-leaves on M which cor-
responds bijectively to the flow on the space of the .7-leaves on P,. This proves that D is
bijective, hence, a diffeomorphism. O

Remark 12.1 Observe that the space of Z),-trajectories, introduced in the proof, is patho-
logical in general yet the R-action of ¢}, is well defined on it and it can also have a wild
behaviour (like a transverse R-action, on the leaves of a dense linear foliation on the 2-torus,
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which has a dense stabilizer). In fact, one can even construct a vector field on M, tangent to
the Heisenberg leaves and transverse to the Z3;-orbits, and whose flow sends orbit to orbit
realizing our flow qbfw on the space of Z),-orbits.

Corollary 12.2 If M is a closed (G, P,)-manifold. Then M = I'\ P, where ' C G, is a
discrete subgroup acting freely and properly discontinuously on P,

Remark 12.3 The completeness result of the previous Proposition 12.1 and Corollary 12.2 is
already known in the case where P, is symmetric. It follows, in particular, from Theorem
2.1 in [10] or from Corollary 2 in [14].

12.1 (Non-)existence of compact models

We have seen so far that if P, admits compact models, that is, closed manifolds locally
isometric to P, then these compact models are, up to finite covers, of the form I'\ P, in the
sense that they are quotients of P, by a discrete subgroup acting freely and properly.

Remark 12.4 As said in Remark 1.6, the symmetric case in Theorem 1.5 is known. Indeed,
it is shown in [13] that non-flat Cahen-Wallach spaces do not admit compact quotients in
dimension 3. So the non-existence of compact models follows form the completeness result
(as mentioned in Remark 12.3).

We will give here a direct proof of this fact.

Theorem 12.5 All Lorentz spaces P,, except two, do not support compact quotients (i.e of
the form I'\ P, ). The two exceptional cases correspond to left-invariant metrics on SOL and
Heis, where the latter is globally isometric to the Minkowski space.

Proof We will prove that there is no discrete subgroup I" of G, acting freely and cocompactly
on P,, except for two cases. this is done by considering all the possible representations
p : R — Aut(Heis) (up to equivalence) then giving separate proofs of the (non-)existence in
each case. The basis for Lie(G ) will be {Z, X, Y, T} as usual where Z, X, and Y generate
heis and A, = ad7 acting on beis.
e Let R act on Heis via the representation p : R — Aut(Heis) generated by the derivation
(3.1.1)
100
A,=1010
000

and let G, = R x, Heis. We have seen (3.1.1) that G,/ I where Lie(/) = iis not included in
span(Z, X) orin span(Z, Y), is a Lorentz space. Let I" C G, be a discrete subgroup acting
freely and co-compactly on P, = G, /I. We have that the connected Lie subgroup [G,,, G ]
is generated by span(Z, X). Indeed [G,, G, ] is generated by the image of A, and Z. Hence
[T, T'] lies inside the abelian subgroup H given by Z and X. Clearly I" is not contained in
Heis since Heis\ P, ~ R is not compact. So there is y € T of the form y = hexp(¢T') where
t # 0 and € Heis. The adjoint action of y on G, (the action by conjugacy) preserves H
and acts on it via the automorphism Ad(y) = Ad(h) o exp(tA,). Since exp(tA,) restricted

0e
backward iterations). But Ad(y) preserves I' N H, so we necessarily have ' N H = {1} since
Ad(y) is a contraction on H and I' N H is discrete. We conclude that [[", I'] = {1} which

t
to H is of the form (e 0,) , then the action of Ad(y) on H is a contraction (up to forward or
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means that I is abelian. Consider now the quotient 7 : G, — G,/Z where Z refers to the
center of Heis. We have that G,/Z = R x R? where R acts on R? via the representation

t ~ ~
t— A = <% ?) with R? endowed the basis { X, ¥’} obtained by projecting X and Y. The

restriction of 7 to I' is injective since ' N H = {1}. Thus 7(I") is an abelian subgroup of
R x R2. Furthermore, 7 (") is not contained in the translation factor, RZ, of R x R? because
7~ 1(R?) = Heis and T is not contained in Heis. So, there is an element « = A, + v in
(') with r # 0. Suppose that « has a fixed point when acting on R?, then, up to conjugacy,
we can assume that A; € 7 (I"). Since the line span(? ) is exactly the fixed subspace of A;
and (T") is abelian, then all elements of 7 (I") preserve span(? ) and, hence, they are all
of the form A; + v with v € span(?). Thatis 7(I') C R & span(?) which implies that
rcr'®Re span(?)) = L where L is the Lie subgroup generated by Z, Y, and 7. But,
we have seen that (4.1) P, as a homogeneous Lorentz space, is identified with a left-invariant
metric on L. This shows that I'\P, = '\L and ' C L is a co-compact lattice which is
impossible since L is not unimodular. It remains now to treat the case where all elements of
7(I") are without fixed points when acting on R?. Suppose that we are in this situation and
consider the quotient p : R x R? - (R x R?)/ span(?) (observe that span(?) is central in
R x R?). Then
R x R?)/span(Y) = R x R = Aff

and the projection p(w(I")) is an abelian subgroup which is not contained in the normal
translation factor R (because 7 ' (p~!(R)) = Heis). Since every element of Aff, which is
not in the normal factor, has exactly one fixed point when acting on R. We can assume then,
up to conjugacy, that all elements of p(;r(I')) fix 0. This implies that p(w(I")) C R (where
R here refers to the "linear" factor). This gives that, as before, that ' C L (where L is as
above) and, for the same reason, this is impossible. Observe, in this case, that P,, supports
compact models (i.e compact manifolds locally isometric to P,) since it is flat (Lemma 7.2),
but the previous discussion shows that P,, does not support (G, P,)-compact models.

e Let R act on Heis via the representation p : R — Aut(Heis) generated by the derivation
(3.1.1)

14500
A,=| 0 10
0 0b

where we suppose b > 0. In this case, R acts on Heis via

et40) o 0o
t 0 €0
0 0e?

in the usual basis {Z, X, Y}. So the R-action on Heis is a contraction (for t — —00),
whichimplies that 'MHeis = {1} since 'NHeis is preserved by the conjugacy action (nec-
essarily contracting up to forward or backward iteration) of an element of I which is not
in Heis. But I' NHeis is discrete, which implies ' "Heis = {1}. In particular I is abelian.
Consider now the quotient : G, — G,/Z.Remark that G,/Z = R x R? C Aff(R?)
e 0
0 ebt
translations, every element of R x R? has exactly one fixed point. Moreover, we have that
7 () NR? = {1}, because 7~} (R?) = Heis and " N Heis = {1}. So (up to conjugacy),
all elements of 7 (I') fix 0 € R2,ie 7 (I") C R, where R denotes the linear factor, which

where R acts on R? via the representation ¢ > A, = ( ) We know that, except
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implies that I' ¢ 7~ !(R) = H with H generated by span(Z, T). But H\ P, = R where
H acts freely and properly on P, since it doesn’t intersect any conjugate of /. This can
be seen easily, since I C Heis and Heis is a normal subgroup, moreover H N Heis = Z.
We conclude that P,, doesn’t admit any compact quotient.

e Let R act on Heis via the representation p : R — Aut(Heis) generated by the derivation
(3.1.3)
2¢0 0
Ay=10c—1
01 ¢

with ¢ # 0, where R acts on Z by ¢ > ¢%¢ and acts by similarities on RX @ RY with
non-trivial homothety factor. A similar reasoning to the preceding case (using the same
notations) shows that I" is abelian and that, up to conjugacy, I' C H with H given by
span(Z, T) which is impossible. Hence there can’t be any compact quotient of P,.

e Let R act on Heis via the representation p : R — Aut(Heis) generated by the derivation
(3.1.1)

14500
Ab=1 0 10
0 0b

1
with b < 0. We can suppose that b € [—1, O[, because Ai’) is similar to A };. Observe that
G, isunimodular if, and only if b = —1

We know that (3.1.1) in order for P, = G, /I to carry a Lorentz metric, it is necessary and
sufficient that I avoids span(X, Z) Uspan(Y, Z). Let us assume, up to conjugacy, that /
lives inside span(X, Y) and generated by X + Y. The orbits of R action on span(X, Y)
are hyperbolas, so the orbit of / under this action covers two opposite quarters among the
four quarters of span(X, Y) \ (RX URY). This shows that all the conjugates of I cover
two opposite quarters of the complimentary of span(X, Z) U span(Y, Z) inside Heis.
Now in order for I' to act freely, it must not intersect any conjugate of 7, So I' N Heis
must be contained in the other two quarters (with their boundaries included). Consider
the quotient : G, — G,/Z =R« R2, so 77(I") NR? must be inside some line I C R2
because, otherwise, the intersection contains a lattice and this would contradict that it
is inside two quarters. Since 7 (I") is not contained in R?, we can pick an element of

2 et 0
a € w(I') \ R, of the form o =

0 e”’) + v. So the induced action of « on R? (by

t

eo e(,f,). Hence either 7(I') N R?> ¢ RX or

7(I') NR? c RY. Suppose that 7(I') N R? C RX (the case where 7(I') N R?> C RY
can be treated similarly) and consider the projection

conjugacy) is equivalent to the action of (

P:RxR> > R x RZ/RX = Aff

Since P(mr(I")) is abelian, and it is not contained in the normal factor, then, up to con-
jugacy, it is contained in the linear factor R C Aff. This means that up to conjugacy we
have I' C Ly is a cocompact lattice with Ly generated by span(Z, X, T'), but this is
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impossible since Ly is not unimodular. Thus it remains (similarly) that ' C Ly with
Ly generated by span(Z, Y, T'). For b = —1, we have G, is unimodular but Ly is not.
In fact, Ly is unimodular, if and only if » = —1/2 (remember b € [—1, 0[), and in this
case, Ly = SOL which admits cocompact lattices.

200
e Suppose now that (3.1.2) A, = | 0 1 1 |. The R-action on Heis is given by
001

0 0
i |0 e fi
0 0 €

Consider the projectionw : G, — G,/Z = R x R? c Aff(R?). For similar reasons
as before we have that I' N Heis = {1} since the R-action is expanding on Heis. So
() is abelian, since 77(I") cannot be contained in R2. We conclude that 7z (T") is (up
to conjugacy) contained in the linear factor, which is impossible since in this case I' is
inside H given by span(Z, T).

00 0
e Suppose now (3.1.3) A, = | 00 —1 ). The R-action fixes Z and acts by rotations on
01 0
span(X, Y). We have I C Heis \ Z and by hypothesis, I" acts freely. So I' N Heis C Z
because the orbit of / under the conjugacy action covers Heis \ Z. Consider Now the
projectionw : G, — G,/Z = E&:(R% =R x R2, Then 7(I") C EE:(RZ) is abelian
(because [I", '] € Z) and itis not contained in the normal factor R2. Since ' NHeis C Z,
we deduce that 7 (I')NR? = 0. Now, we know that, except the center (which is isomorphic
to Z), every element of Euc(R?) either has exactly one fixed point or has no fixed point
if it belongs R? (the normal) which is not our case since 7 (I') N R? = {0}. Suppose that
there is « € 7 (I") with exactly one fixed point, then, up to conjugacy, one can suppose
that all elements fix the origin, that is, #(I') C Stab(0) = R. So I' C H given by
span(Z, T')) which is clearly impossible. Now if all elements of 7 (I") act trivially, then
(') is contained in the center of lallc(Rz), this means that I" is contained in the subgroup
generated by Z and a discrete subgroup of R generated by 7', which is impossible.
e Lastly, let R act on Heis via the representation p : R — Aut(Heis) generated by the
derivation (3.1.4)
010
A, =1001
000

In this case, the R-action on Heis is unipotent. Since all vectors in the complement
of Im(A,) ® RZ = RX @ RZ are equivalent, we can fix I to be the one parameter
subgroup generated by Y, in this case, the Lie subalgebra, isomorphic to heis, generated
by Z, X, T is transverse to all the conjugates of RY. So P, is isometric to a left-invariant
metric on Heis which is globally isometric to the Minkowski space (Lemma 7.1) and
admits compact quotients.
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Remark 12.6 Non-existence of compact models in the unimodular case (that is on spaces
that are locally isometric to Cahen-Wallach spaces) follows from [14] Corollary 2, and the
non-existence of compact quotients of 3-dimensional Cahen-Wallach spaces follows from
[13].

13 Appendix: Rosen and Brinkmann coordinates

Consider a metric g written in Rosen coordinates (v, x, u), u > 0as g = 2dudv + u2adx?,
Consider the following coordinate change

_ a__1_ g _
v=v+5u 2 x=u%, u=1u

We have -2 3z = (au’ “x,u=,0), 3% = (—%uz"_zxz, —au~'x, 1), and % = (1,0, 0). One
verifies that

_ 2 _ 22
g(af, 8*) 1, g(af, af)—(a ayu “x°, g(a,, 8,)—0

And,

77—75’( vg(

87’ ou ou’ 87) ox’

Therefore, we obtain that the metric g in the coordinates (v, X, u) has the form

3)—0
v

g = 2dudv + (a* — a)u *x*du* + dx*
This correspondence Rosen-Brinkmann covers cases of metrics of the form g = 2dudv +
bu=2xdu® + dx?, with b > — 1.
In general, for a metric g = 2dudv + §(u)dx?, one uses a coordinate change of the form
V=14 c)x%, x =8w)"V?x, u = u., where c is a function to be determined.
In order to get a Brinkmann form for the metric, we must have g(ax, au) 0. This
is equivalent to 4c(u) + 8w)2a(u) = 0, where a(u) is the derivative of §(u)~ /2. One

then verifies that indeed, the new form of the metric is of Brinkmann type g = 2dudv +
d(@)x*du* + dx?, where d(u) = 2¢'(u) + 8(u)a(u)>.
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