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ISOMETRY GROUPS AND GEODESIC FOLIATIONS OF
LORENTZ MANIFOLDS.

PART II: GEOMETRY OF ANALYTIC LORENTZ
MANIFOLDS WITH LARGE ISOMETRY GROUPS

A. Zeghib

Abstract

This is part II of a series on noncompact isometry groups of Lorentz
manifolds. We have introduced in part I, a compactification of these
isometry groups, and called “bipolarized” those Lorentz manifolds
having a “trivial ” compactification. Here we show a geometric rigid-
ity of non-bipolarized Lorentz manifolds; that is, they are (at least
locally) warped products of constant curvature Lorentz manifolds by
Riemannian manifolds.

1 Introduction

We continue here our investigation of noncompact isometry groups of com-
pact Lorentz manifolds, started in part I [Z1] which contains dynamical
ingredients. Its fundamental tool was the notion of approximate stability.
This second part (which is in fact fairly independent of part I) is geo-
metrical, and has the warped product construction as a fundamental tool.
Recall that this is a construction in the class of pseudo-Riemannian mani-
folds, defined as follows. Let (L, h) and (N, g) be two pseudo-Riemannian
manifolds, and w : L → R+ a (warping) function. The warped product
M = L×w N , is the topological product L×N , endowed with the metric
h⊕ wg.

The warped product construction is very useful in Riemannian as well
as Lorentzian geometry, since it gives sophisticated examples from simple
ones. For instance, warped product models are omnipresent in cosmological
theories.

Here we are interested in the case where L is Riemannian, N is Lorent-
zian, and hence M = L×wN is Lorentzian. However, from a physical view-
point, it is more interesting to consider the situation where L is Lorentzian,
and N is Riemannian (the warping function is thus a universe expansion
function).
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There are two key properties of warped products:
1) If f : N → N is an isometry, then the trivial extension, f̄ : (x, y) ∈

L×N → (x, f(y)) ∈ L×N , is an isometry of L×w N (see §4.1).
In particular, in the class of Lorentz manifolds with large isometry

groups, one can perform warped products by (any) Riemannian manifolds.
In fact, the warped products are reminiscent of semi-direct products

in the category of groups, the factor N playing the role of the normal
subgroup. One may justify this by the fact that, indeed, Isom(N) is a
normal subgroup of the subgroup of elements of Isom(L ×w N), which
preserve the topological product L × N (i.e. the foliations determined by
the factors L and N). This suggests to us to call the factor N the normal
factor of the warped product. (This will be useful for us because we actually
need to distinguish between the factors).

2) The second fundamental fact about warped products is that if S is a
geodesic submanifold of N , then L×S is a geodesic submanifold in L×wN
(see 2.2).

It is very special when a Lorentz manifold (or in general a pseudo-
Riemannian manifold, or even just a manifold endowed with a connection)
admits many geodesic submanifolds of dimension > 1 (and codimension
6= 0). Generically, there is no such submanifold. The degenerate case,
when every tangent plane is tangent to a geodesic submanifold, corresponds
exactly to Lorentz manifolds of constant curvature (this is also true in the
general pseudo-Riemannian case), see §3.

Here, we are especially interested in the case where the factor N has
constant curvature. So, like N , L×w N has many geodesic hypersurfaces.

In this article we investigate the relationships between the following
three phenomena: being a warped product, having a large isometry group,
and having abundant geodesic hypersurfaces. In particular, we show that
in some situations, one of the second two properties may lead to a warped
product structure.

1.1 Abundance of geodesic hypersurfaces leads to a warped prod-
uct structure. Let M be Lorentz manifold. In order to analyze the set
of geodesic hypersurfaces in M , we associate to any x ∈ M a set Cx of
tangent directions at x (i.e. 1-dimensional subspaces of TxM) defined as
follows. A direction u ∈ P(TxM) belongs to Cx, if it is isotropic (this
choice is related to our anti-physical preference of signatures of the fac-
tors L and N), and the orthogonal u⊥ determines a geodesic hypersurface.
Equivalently, there is a lightlike geodesic hypersurface H passing through x,
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such that TxH = u⊥. (Recall here that, if 〈. , .〉 denotes the Lorentz scalar
on TxM , then a vector v is isotropic if 〈v, v〉 = 0, and a hyperplane E ⊂ TM
is lightlike if its orthogonal is isotropic, or equivalently, the restriction of
〈. , .〉 on E is degenerate. A hypersurface is lightlike if its tangent space is
everywhere lightlike).

Consider the open set W(M) of points M having a neighborhood iso-
metric to a warped product with the normal factor being a Lorentz manifold
of constant curvature and dimension ≥ 3. That is, x ∈ W(M), if and only
if there is a neighborhood U of x isometric to a warped product L ×w N ,
where N is a Lorentz manifold of constant curvature and dim N ≥ 3.

Section 3 is devoted to the study of the relationship between the map,
x→ Cx, and W(M). The following statement is a simple corollary of this
study, which will be fully proved only in the analytic case, but it needs
some results from [Z6] in the smooth case.

Theorem 1.1. Let M be a Lorentz manifold. Suppose that Cx is infinite
for all x ∈M . Then, W(M) is dense (and open by definition) in M .

Observe that this a local result and that its converse is obviously true.
This result admits a kind of generalization to the general pseudo-Rieman-
nian case. Notice that the condition on the existence of geodesic hypersur-
faces, cannot be relaxed to an existence condition of geodesic submanifolds
of higher codimension. For instance, in the Riemannian case, the symmet-
ric space CPn admits many geodesic submanifolds of (real) codimension
2, but none of codimension 1 (of course, it is far from being a warped
product).

1.2 From the local to the global in the analytic case. In the
presence of (real) analyticity, a somewhere local warped product leads to
an everywhere local warped product, and then to a global warped product
in the universal cover, and finally to full completeness.

Theorem 1.2. Let M be a compact (real) analytic Lorentz manifold.
Suppose that W(M)is nonempty. Then, the universal cover M̃ is isometric
to a warped product of a complete simply connected Lorentz manifold Ñ
of constant nonpositive curvature and dimension ≥ 3, by a complete sim-
ply connected Riemannian manifold L̃. Furthermore, M is (geodesically)
complete, and admits another metric for which M̃ is isometric to the direct
product L̃× Ñ .

The last part of this theorem contains in particular, Carrière’s theorem,
and its adaptation by B. Klingler, on completeness of compact Lorentz
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manifolds of constant curvature [C],[K]. We notice however, that we do
not reprove Carrière’s theorem here, but rather use it, by observing that
its proof may be adapted to the general situation in the theorem above.

1.3 Warped product or local bipolarization, when the isometry
group is noncompact. Let M be a compact Lorentz manifold, such
that IsomM is noncompact. From part I, there exists at least one geodesic
lightlike codimension 1 foliation of M .

Therefore, for all x in M , cardCx ≥ 1. This fact alone may also be
proved in a straightforward way, by looking at limits of graphs of the ele-
ments of IsomM .

Fuschian-like behavior of IsomM was described in part I, having as a
consequence a dichotomy (roughly speaking): cardCx ≤ 2, or Cx infinite.
From the results above, the last situation implies thatW(M) 6= ∅, and thus
M has the nice structure described above, in the analytic case.

Theorem 1.3. Let (M,g) be a compact (real) analytic Lorentz manifold,
such that IsomM is noncompact. Then, exactly one of the two following
possibilities holds:

1) There exists a new metric g′ on M such that

(i) The universal cover of (M,g′) is isometric to a direct product L̃×
Ñ , where L̃ is a complete simply connected Riemannian mani-
fold, and Ñ is a complete simply connected Lorentz manifold of
constant nonpositive curvature and dimension ≥ 3. This decom-
position is natural, in particular, Isom(M̃)= Isom(L̃)× Isom(Ñ).

(ii) The universal cover of (M,g) is a warped product L̃×w̃ Ñ , with
a warping function w̃ : L̃ → R+, invariant by the action of the
projection of π1(M) on Isom(L̃).

(iii) Isom(M,g) is the subgroup of elements of Isom(M,g′) whose lifts
to M̃ preserve w̃, where Isom(M̃) acts on L̃ via its projection
onto Isom(L̃).

2) There are two (not necessarily distinct) codimension 1 lightlike geod-
esic foliations F1 and F2, such that

(i) Any lightlike geodesic hypersurface in M , is contained in a leaf
of F1 or F2. In particular, any local isometry of M preserves
each of these foliations, or exchanges them.

(ii) For each i, there is an analytic structure on (the topological
manifold) M in respect to which Fi is an analytic foliation.

The two cases 1 and 2 in the theorem correspond to the situations
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W(M) 6= ∅ and W(M) = ∅, respectively. The structure of M in the case
W(M) 6= ∅ follows from Theorem 1.2 (which is proved in §4). The structure
of M when W(M) = ∅ (and Isom(M) noncompact) is studied in §5.

Some comments are in order.

Local bipolarization. Recall from part I, that M is called bipolar-
ized if its isometry group is noncompact and preserves a pair of lightlike
geodesic foliations. The situation 2(ii) in the theorem above, suggests the
definition of a local version of this notion (i.e. by means of the pseudo-
group of local isometries). We will say that M is locally bipolarized if there
are two lightlike geodesic foliations F1 and F2 such that for all x ∈ M ,
Cx = {(TxF1)⊥, (TxF2)⊥)}.

In order to get closer to a classification of compact Lorentz manifolds
with noncompact isometry group, the investigation of the geometric and
dynamical structure of locally bipolarized manifolds is clearly of interest.

Let us give some examples of locally bipolarized manifolds. Consider
SL(2,R) endowed with its Killing form. It has constant negative curvature,
and thus, it is by no means bipolarized. Now, endow SL(2,R) with a
left invariant Lorentz metric derived from a given Lorentz scalar product
〈. , .〉 on the Lie algebra sl(2,R). Suppose that 〈. , .〉 is a kind of “Berger’s
metric”, that is, it is given by scaling a hyperbolic element u ∈ sl(2,R)
(i.e. exp tu is a hyperbolic one parameter group) by a nontrivial factor, and
keeping the Killing form on u⊥. The metric so obtained admits as a local
bipolarization the stable and unstable foliations determined by exp tu (see
[GuL] about left invariant metrics on SL(2,R)).

The isometry group in the warped product case. Of course,
being locally bipolarized is stronger than being bipolarized. For instance,
“purely” irrational flat structures (which are of course not locally bipolar-
ized) on the torus, with noncompact isometry group, are bipolarized (see
part I, §15). Also, nonhomogeneous 3-anti-de Sitter manifolds are bipo-
larized, whenever they have a noncompact isometry group (this isometry
group is in fact, up to a finite index, isomorphic to R, and hence it is
amenable, which implies from part I that the underlying manifold is bipo-
larized).

Furthermore, we observed in part I, that if M is not bipolarized, and the
factor Ñ in Theorem 1.3 has constant negative curvature (that is, Ñ is an
anti-de Sitter space), then, dim Ñ = 3 (i.e. Ñ = ˜SL(2,R)). Equivalently,
if dim Ñ > 3, then, M is bipolarized. However, it seems that this situation
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never happens. That is, if M̃ = L̃× Ñ , where Ñ is an anti-de Sitter space
of dimension > 3, then IsomM is compact (from our definition, we do not
call M bipolarized in this case). This was proved in the case that the factor
L̃ is trivial, so M is an anti-de Sitter manifold of dimension > 3 [Z2].

Regularity. The lightlike geodesic foliations found in part I are, a
priori, only Lipschitz. However, in each of the cases, warped product or
locally bipolarized, there are extra reasons leading to higher regularity.
Indeed, in the warped product case, we essentially deal with global lightlike
geodesic foliations of the anti-de Sitter or the Minkowski spaces. They are
easy to handle, and can be shown to be analytic.

Here is the idea of the proof of regularity in the locally bipolarized case
(which is behind property 2(ii) of Theorem 1.3. Observe that the graph
(as a section) of a codimension 1 lightlike geodesic foliation F on M , is a
Lipschitz submanifold P (F), homeomorphic to M , contained in Gr0(M),
the Grassmann bundle of lightlike hyperplanes tangent to M . In fact P (F)
is contained in the subset D, the integrability domain of the tautological
plane field (see §3), defined by D =

⋃
x∈M C∗x, where C∗x ⊂ Gr0

x(M) is the
dual of Cx (see above). But, D is an analytic set. So, amusingly, when D
is poor, say it equals P (F1) ∪ P (F2), then we win regularity for F1 and
F2, because their graphs are open in an analytic set. This implies that F1
and F2 are “essentially” analytic. But, a priori, D may have an intrinsic
singularity locus, or a vertical locus (where it is regular but tangent to the
vertical). However, we guess, none of these singularities may occur in our
situation, and the foliations are actually analytic. Anyway, we have the
following corollary of Theorem 1.3 (2(ii)).

Theorem 1.4. Let M be a compact topological manifold which has no
codimension 1 analytic foliation, for any analytic structure on M . Then,
any analytic Lorentz metric on M has a compact isometry group.

A classical result of A. Haefliger (see for example [G]) states that com-
pact simply connected manifolds satisfy the condition of the theorem.
Therefore, they have compact isometry groups. This gives, another proof of
G. D’Ambra’s theorem [D], without using Gromov’s theory of rigid trans-
formation groups.

Recently, T. Barbot [B] has found another example of manifolds satisfy-
ing the condition of the theorem above. For instance, a compact manifold
with a fundamental group isomorphic to a finite index subgroup of SL(d,Z),
with d ≥ 3, has no analytic foliation. (This is presumably true for all ir-
reducible lattices in semisimple Lie groups of rank ≥ 2). Therefore, such
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a manifold has a compact isometry group, when endowed with an analytic
Lorentz metric.

A properness theorem. In fact, as was said in part I, one may ask
for a more stable compactness of isometry groups. Our method allows us
to prove the following result, which we state here without further details.

Theorem 1.5. Let M be a compact manifold, which is simply con-
nected, or has a fundamental group isomorphic to a finite index subgroup
of SL(d,Z), with d ≥ 3. Denote by Lorω,2(M) (resp. Diffω,2(M)) the space
of analytic Lorentz metrics on M (resp. analytic diffeomorphisms of M) en-
dowed with the C2 topology. Then Diffω,2(M) acts properly on Lorω,2(M).

An application: action of Lie groups. Due to the works [Zi], [Gr],
[DGr], [Ko], [ASt1,2], and [Z3,4], many things are now known about iso-
metric actions of connected Lie groups on compact Lorentz manifolds. For
example, we know that, if the affine group (of the line) AG acts isometri-
cally on a compact Lorentz manifold M , then, essentially, this action may
be extended to SL(2,R) (see [ASt2] or [Z4] for the correct statement of
this fact). Let us see how to deduce this fact, in the analytic case, from
Theorem 1.3. Of course this would follow by standard algebraic manip-
ulations, if we already knew that the manifold was a warped product, as
described in point 1 of Theorem 1.3. So, it suffices to show that a manifold
endowed with an AG-action is not bipolarized. For this, let ht and T t be
two one-parameter groups generating AG such that hsT th−s = T te

s
, and

for a fixed s, denote by φs the flow φts = {T shtT−s, t ∈ R}. Then, for any
two different values s1 and s1, the flows φs1 and φs2 have different approxi-
mately stable foliations. To see this, let X be the infinitesimal generator of
the flow ht. From the relation hsT th−s = T te

s
, it follows that the direction

of X is the positive Lyapunov space (with exponent 1) for any flow φs. By
volume preservation, there is a nontrivial negative Lyapunov space for φs,
which, since it is isotropic, must have dimension 1, say it is oriented by a
vector field Ys, such that 〈X,Ys〉 = 1.

The tangent bundles of the approximately stable foliations of the two
flows φs1 and φs2 are Y ⊥s1 and Y ⊥s2 , respectively, and therefore, they coincide,
iff, Ys1 = Ys2 . But, by definition, the flows φs1 and φs2 are conjugate by
a suitable power ht(s1,s2), and in the same way, Ys1 and Ys2 are conjugate,
and hence, if they are equal, the flow ht will preserve the vector field Y =
Ys1 = Ys2 (note that because of the equality 〈X,Y 〉 = 1, ht preserves the
vector field Y itself and not only its direction). Let us show that this



830 A. ZEGHIB GAFA

is impossible. Indeed, the orthogonal of RX ⊕ RY is spacelike, which
allows one to construct a Riemannian metric on the Lorentz manifold M ,
preserved by ht (keep the Lorentz metric on (RX ⊕ RY )⊥ and choose
X and Y to be orthogonal and having a unit length). Therefore, ht is
precompact, and its closure is a torus T. The affine group acts by conjugacy,
automorphically (and nontrivially) on this torus, which is impossible.

2 Geometry of Warped Products

Here, we will present standard geometric notions related to warped prod-
ucts, and state geometric criteria for the existence of such structures. We
will try to avoid the use of local calculus, and instead, we will use synthetic
arguments (see [O] for more details).

Umbilic and geodesic submanifolds. Let M be a Lorentz man-
ifold. Let S be a nondegenerate submanifold of M , that is the metric
restricted to TxS is nondegenerate for any x ∈ S. Recall that S is um-
bilic, if and only if for any x ∈ S, the second fundamental form IIx (which
is well defined because of the non-degeneracy hypothesis) has the form
IIx = 〈. , .〉nx, where nx is some normal vector to TxS, and where 〈. , .〉
denotes the Lorentz metric. The geodesic case corresponds to nx = 0, for
all x ∈ S.

Let x ∈ S, u ∈ TxS, and let γ : ] − ε,+ε[→ M be the geodesic in M
determined by u. For S geodesic, the image of γ is contained in S, for ε
sufficiently small. This fact is true also when S is umbilic, if in addition u
is isotropic (this is a remarkable rigidity fact in Lorentz geometry, which
has no equivalent statement in Riemannian geometry) .

For example, take M to be Minkowski space, i.e. Rn endowed with
a Lorentz form q. The geodesic hypersurfaces are contained in affine
hyperplanes. The umbilic hypersurfaces are contained in hyperquadrics
q(x−O) = c, where O ∈ Rn and c is a constant (the proof is formally the
same as in the Euclidean case). One can verify that such a hyperquadric is
ruled, that is, it contains the isotropic lines which are somewhere tangent
to it.

Umbilic and geodesic foliations. A foliation is called geodesic or
umbilic, if and only if its leaves are geodesic, or umbilic. The following is a
standard fact (see for instance [PR]).
Fact 2.1. Let F be a foliation of M such that the orthogonal TF⊥ is
integrable, that is, it determines a foliation F⊥, say. Then F is geodesic
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(resp. umbilic) if and only if the holonomy maps of the foliation F⊥, seen
as local diffeomorphisms between leaves of F , preserve the metric (resp.
the conformal structure) induced on these leaves (of F).

Let F and F⊥ be the local leaves through some point for F and F⊥,
respectively, leading to a local diffeomorphism of M with F × F⊥. If F
is geodesic, then the metric has the form mx,y = hx ⊕ g(x,y), where h is a
metric on F and for any x ∈ F , g(x,.) is a metric on F⊥.

If F is umbilic, then the metric has the form mx,y = w(x, y)hx ⊕ g(x,y),
where w is a function on F × F⊥.

Warped products. As was said in the introduction, a Lorentz man-
ifold M is a warped product of a Lorentz manifold (N, g) by a Riemannian
manifold (L, h), if M is isometric to the product L × N , endowed with a
metric of the form h⊕wg, where w is some positive function defined on L.
We call N the normal factor of the warped product.

The factors L and N define two foliations denoted by L and N re-
spectively; N is called the normal foliation of the warped product. From
the form of the metric and the above discussion, we infer the following
geometric properties: L is geodesic, and N is umbilic.

In terms of holonomy pseudogroups, this means that the holonomy of N
(resp. L) preserves the transverse metric (resp. the transverse conformal
structure). In fact, to characterize warped products, we just need that
the holonomy maps of L have constant conformal distortion, that is, they
are homothetic. In particular the holonomy of L is projective, i.e. maps
geodesics to geodesics. Here is a related stronger property:

Fact 2.2. A submanifold S of N is geodesic in N , if and only if L× S is
geodesic in M = L×N .

Proof. It suffices to consider the case dimS = 1.
Suppose that S is geodesic in N . By considering the family of normal

geodesic of a hypersurface orthogonal to S, we can locally extend S to a
geodesic foliation S of N , admitting an orthogonal foliation S⊥. Consider
the foliation F of M with leaves of the form L×Sy where Sy is a leaf of S.
It has a normal foliation F⊥ with leaves {x} × S⊥y . It then follows that
a holonomy map of F⊥ has the form ψ : (x, y) ∈ L × Sy1 → (x, φ(y)) ∈
L×Sy2, where φ is a holonomy map of S⊥, which is isometric by hypothesis.
Because the metric on {x}×N is a constant times the metric of N , φ sends
{x} × Sy1 isometrically onto {x} × Sy2 . Therefore φ is isometric. Hence
from Fact 2.1, F is geodesic, and in particular L× S is geodesic in M .
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For the converse, that is, L×S being geodesic implies that S is geodesic,
we use the following general fact. Its proof follows from a standard calcu-
lation.

Proof.

Fact 2.3. Let A and B be submanifolds of M , and suppose that B is
geodesic. Suppose that B is transverse and orthogonal to A, that is, for all
x ∈ A ∩B, TxB contains (TxA)⊥. Then B ∩A is geodesic in A.

Criterion for warped products. Here is the proposition which we
will apply to prove the existence of warped products in §3.

Proposition 2.4. Let M = L×N be endowed with a metric such that
the foliation L (resp. N ) is geodesic (resp. umbilic).

Suppose that for all (x, y) ∈ L×N , there are geodesic hypersurfaces in
M , H1, . . . ,Hd, containing (x, y) and such that

i) H i is invariant by the foliation L (i.e. it is a union of leaves of L),
and

ii) The directions (T(x,y)H
1)⊥ ∩ TyN, . . . , (T(x,y)H

d)⊥ ∩ TyN generate
TyN .

Then the leaves {x} × N have constant curvature, and M is a warped
product.

Proof. One can write H i = L× Si, where Si is a hypersurface of N . From
Fact 2.2, {z} × Si is a geodesic hypersurface in {z} ×N , for all z ∈ L.

Thus, {z} × N , admits, at each point, geodesic hypersurfaces, whose
orthogonal directions generate the tangent space at each point. It will be
shown at Proposition 3.2, that this implies that {z} ×N has constant cur-
vature. We may assume that the sign of curvature is independent of z ∈ L.

A holonomy map (of L) taking {x} ×N to {x′}×N , maps {x} × Si to
{x′} × Si. One may then call it “partially projective”.

The warped product property means that any holonomy map (of L)
{x1} × N → {x2} × N , is homothetic. By hypothesis, N is umbilic, and
hence these holonomy maps are conformal. The question then becomes, is
a conformal and “partially projective” map between two Lorentz manifolds,
homothetic? In our case, the leaves {z}×N have constant curvature of the
same sign, and therefore are homothetic. The proof of the warped product
property can then be achieved with help of the following fact. �

Fact 2.5. Let N be a Lorentz manifold of constant curvature, with
dimension ≥ 3. Let φ : N → N be a conformal local diffeomorphism,
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which satisfies the following condition. For any y ∈ N , there is S1, . . . , Sd,
geodesic hypersurfaces containing y, such that (TxS1)⊥, . . . , (TxSd)⊥ gen-
erate TxN , and such that, their images φ(Si) are geodesic. Then φ is a
homothety. (In fact φ is an isometry unless M is flat). (Interpretation: a
conformal and “partially projective” transformation is homothetic).

Proof. We think that the interpretation of the fact is sufficiently convincing,
and so, to avoid complicated notation, we restrict ourselves to the flat case.
Also, we will assume that the involved geodesic hypersurfaces S1, . . . , Sd

are lightlike, because, that is what we need for application, in the present
paper. Thus M is the Minkowski space R1,n−1. By composing with an
isometry, we may suppose that φ is a local conformal diffeomorphism fix-
ing 0, and that D0φ is a homothety. In particular D0φ keeps invariant
any tangent line at 0. It then follows that φ keeps invariant each isotropic
line through 0, since conformal diffeomorphisms preserve isotopic geodesics.
Furthermore, φ keeps invariant the geodesic hypersurfaces S1, . . . , Sd (be-
cause they are sent by φ to geodesic hypersurfaces with the same tangent
space). Also, by considering intersection of sub-families of these hypersur-
faces, we infer the existence of a basis {v1, . . . , vn} of T0Rn, determining
lines kept invariant by φ. These vectors are spacelike, that is 〈vi, vi〉 > 0,
since the hypersurfaces Si are lightlike.

Let P be an affine 2-plane, so φ(P ) is 2-dimensional generalized sphere,
i.e. an affine plane, or a quadric defined by means of the Lorentz form (this
follows from the fact that φ is conformal, as in the Riemannian case).

There are two possibilities for a generalized 2-sphere which is not an
affine plane. If it is (somewhere and hence everywhere) timelike (i.e. the
induced metric on it is of Lorentz type), then it is ruled, by means of a
pair of foliations by isotropic lines. In contrast, if it is spacelike (i.e. the
induced metric on it is Riemannian), then it contains no line.

Let P be a spacelike affine plane which contains a line defined by
some vi. Then φ(P ) is a spacelike generalized 2-sphere which contains
a line. From the above discussion, φ(P ) must be an affine plane. But, since
D0φ is a homothety, we have φ(P ) = P . Thus all the affine spacelike 2
planes containing a line determined by some vi are invariant by φ. A stan-
dard analyticity argument show that this extends to all the affine 2-planes
without the spacelike condition. Taking the intersection of these planes, for
various vi, and again by an analyticity argument, we conclude that every
line through 0 is invariant by φ.

But the same argument works for any point ofM (by composing with an
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appropriate isometry). This means that φ is projective. In particular the
restriction of φ to an affine plane P through 0 is conformal and projective.
This is equivalent to a conformal and projective local transformation of
the Euclidean plane R2, if P is spacelike. This is easily seen to be a
homothety. Because, there are many such planes, one concludes that φ
itself is a homothety. �

3 The Tautological Geodesic Plane Field

An affine connection (e.g. a pseudo-Riemannian structure) on a manifold
M , permit to define a tautological geodesic plane fields on the Grassmann
bundles of tangent k-planes Grk(M)→ M , which generalizes the classical
construction of the geodesic flow for k = 1. Fix an integer 1 ≤ k ≤ dim M .
The connection yields a horizontal bundle H, supplementary to the vertical
of the fibration Grk →M . For p ∈ (Grk)x, we identify Hp with TxM . Then
Pp ⊂ Hp is identified with p ⊂ TxM . The bundle P is called a tautological
geodesic plane field on Grk(M). In general, P is not integrable. Indeed one
may prove (see below), for M pseudo-Riemannian, that if P is integrable
for k 6= 1 and k 6= dim M , then M has constant curvature. (It seems that
when M is merely affine, then the conclusion is that M is projectively flat).

Observe that (maximal) integral submanifolds of P project on geodesic
submanifolds of dimension k in M . Conversely, if L is a geodesic k-
submanifold of M , then the image of the Gauss map x→ TxL is an integral
submanifold of P.

We denote by exp : TM → M , the exponential map defined on its
domain of definition, which is a neighborhood of the zero section. For
p ∈ Grk(M), let exp p denote the image by exp of the intersection of p with
the domain of definition of exp.

Definition 3.1. The domain of integrability of P is the set of p ∈ Grk(M)
such that, if p ⊂ TxM , then a neighborhood of x in expx p is geodesic.

3.1 The Grassmannian of lightlike hyperplanes of a Lorentz man-
ifold. Let M be a Lorentz manifold and denote by Gr0(M) ⊂ Grn−1(M)
the Grassmannian of lightlike hyperplanes tangent to M (n is the dimension
of M).

The tautological geodesic plane field onGrn−1(M) is tangent toGr0(M).
We will denote the tautological plane field restricted to Gr0(M) by τ , and
by D its integrability domain.
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Therefore, as in §1.3, the fiber Dx, is the dual of Cx. Recall that a
direction u belongs to Cx, if and only if u⊥ is tangent to a lightlike geodesic
hypersurface.

To start with, notice the following rigidity.

Proposition 3.2. Let M be a Lorentz manifold of dimension ≥ 3, such
that Cx generates TxM , for any x ∈M . Then M has constant curvature.

Proof. The hypothesis means that for any x ∈ M , there are H1, . . . ,Hd,
geodesic lightlike hypersurfaces containing x, such that (TxH1)⊥,...,(TxHd)⊥

generate TxM .
Fix x ∈ M , denote TxH i by Bi, and choose bi an isotropic vector such

that Bi = (bi)⊥.
For u ∈ TxM , denote by Au the curvature operator Au : v ∈ TxM →

R(u, v)u ∈ TxM . Then, for u ∈ Bi, Au preserves Bi (since geodesic sub-
manifolds are “invariant” by the curvature operator). Moreover, Au(bi) is
collinear to bi (for u ∈ Bi). Indeed 〈Au(bi), v〉 = 〈Au(v), bi〉. The last quan-
tity equals 0 if v ∈ Bi since Au(v) ∈ Bi, and hence Au(bi) ∈ (Bi)⊥ = Rbi.

Choose ei a unit director vector of
⋂
j 6=iB

j , and consider Aei . Since
ei ∈ Bj , for j 6= i, there is λi,j , such that Aeib

j = λi,jb
j (for i 6= j).

Since Aei is symmetric, λi,j〈bj, bk〉=〈Aeibj , bk〉=〈Aeibk, bj〉=λi,k〈bj, bk〉,
and we have λi,j = λi,k (for j 6= k, 〈bj , bk〉 6= 0, because both bj and
bk are isotropic). Write λi = λi,j . Thus, the sectional curvature of any
nondegenerate plane which contains ei equals λi. From this, we infer that
λ1 = · · · = λn (to see this, consider 2-planes generated by two vectors ei
and ej). One may use standard algebraic manipulations to show that all
the 2-planes in TxM have the same sectional curvature, and then deduce
from Schur’s lemma that M has constant curvature. �

3.2 Main result

Theorem 3.3. For x ∈ M , denote by Ex the linear space generated
by Cx. Suppose that for an open subset U ⊂M , we have

i) x ∈ U → Ex determines a smooth plane field of dimension ≥ 3, and
ii) cardCx > dimEx, for x in a dense subset of U .

Then E determines a local warped product structure on U (i.e. E is tangent
to the normal foliation of a local warped structure on U), with the leaves
of E having constant curvature.

Proof. There are several steps.
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Step 1. E⊥ is integrable and has geodesic leaves. We denote its tangent
foliation by L.

Proof. Let H1, . . . ,Hd, be geodesic lightlike hypersurfaces containing a
point x ∈ U , such that (TxH1)⊥, . . . , (TxHd)⊥ generate Ex. Denote L =⋂
iH

i, and let us show that it is a leaf of E⊥.
Denote by Xi a nonsingular isotropic vector field tangent to H i (Xi

is defined along H i). Then for y ∈ H i, Xi(y) ∈ Cy. Hence, if y ∈ L =
H1 ∩ . . .Hd, then X1(y), . . . ,Xd(y) ∈ Cy. Thus, by continuity of E, Ey
is generated by X1(y), . . . ,Xd(y). Observe now that TyL =

⋂
i TyH

i =⋂
i(X

i(y)⊥ = (ΣiRXi(y))⊥ = Ey. Therefore L is a leaf of E⊥ containing x,
which (being an intersection of geodesic hypersurfaces) is a geodesic sub-
manifold. �

Step 2. Weingarten’s endomorphism for plane fields.
The following is a general discussion on the geometry of planes fields,

which will be, in particular, applied to E. For a plane field x→ Gx ⊂ TxM ,
such that the metric restricted to Gx is nondegenerate, one defines a sec-
ond fundamental form and Weingarten’s endomorphism as follows. For
X and Y vector fields tangent to G, and Z a vector field orthogonal
to G, II : G×G→ G⊥, and AZ : G → G, are defined by the equali-
ties: 〈II(X,Y ), Z〉 = 〈∇XY,Z〉 = 〈−AZX,Y 〉. We have 0 = X〈Y,Z〉 =
〈∇XY,Z〉 + 〈Y,∇XZ〉, and hence AZ(X) is just the projection of ∇XZ
on G. It turns out that II and AZ are tensorial, that is, they depend only
on the pointwise values of X,Y and Z. Notice the following property.
Fact 3.4. A plane field G is integrable if and only if its second fundamental
form, or equivalently its Weingarten’s endomorphisms, are symmetric.

In particular, if every Weingarten’s endomorphism of G is a homothety
(that is, it induces a scalar multiplication on G), then, G is integrable, and
has umbilic leaves.

Our plane fieldE is nondegenerate, since it contains at least two isotropic
directions.
Step 3. End of proof of the theorem, assuming that all Weingarten’s
endomorphisms are homotheties.

Proof. In this case, from the fact above, E is integrable and has umbilic
leaves. Then we use Proposition 2.4, to deduce that E and E⊥ give rise to a
warped product (with E and E⊥ corresponding to N and L, respectively).
Indeed, E is umbilic, E⊥ is geodesic, and furthermore, the condition on the
existence of geodesic hypersurfaces saturated by L, is well satisfied. Indeed,
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the hypersurfaces, H1, . . . ,Hd, introduced in the beginning of the proof of
the integrability of E⊥, are saturated by E⊥. �

Now follow the steps of the proof that the Weingarten’s endomorphisms
are actually homothetic.

We will consider eigenspace splittings for E, and then splittings of the
factors of the initial splitting, and so on... All these splitting are smooth,
if we restrict ourselves to an open dense subset.

Notice that this does not cause any loss of generality. Indeed, if we are
able, at the final stage, to prove that the Weingarten’s endomorphisms are
homothetic, in a dense set, then they will be homothetic everywhere. So,
in the sequel, we will always suppose that we are near a generic point.
Step 4. Let Z be a smooth vector field tangent to E⊥(= TL). Then,
for any u ∈ Cx, u⊥ ∩ Ex is invariant by the Weingarten’s endomorphism
AZ(x) (or equivalently, u is an eigenvector of the dual Weingarten’s endo-
morphism A∗Z(x)).

Proof. Let u ∈ Cx, and consider H a lightlike geodesic hypersurface such
that TxH = u⊥. Observe that Z is tangent to H (over points of H). This
is because E⊥ itself is tangent to H (or equivalently H is saturated by
the foliation L). Since H is geodesic, the covariant derivative ∇XZ(x)
belongs to TxH, for X ∈ TxH ∩ Ex = u⊥ ∩ Ex, and hence, its orthogonal
projection AZX(x) (onto Ex) belongs to u⊥ ∩ Ex (since E⊥x ⊂ u⊥). That
is, AZ(u⊥ ∩Ex) ⊂ u⊥ ∩Ex. �

Step 5. The 3-dimensional case.
To start with, let us give the proof when dimE = 3. The cardinality

condition in the theorem means that cardCx ≥ 4, for any x ∈ U . Hence
A∗Z(x) has at least 4 isotropic eigenvectors. Thus, since dim E = 3, the
eigenspace decomposition of Ex has at most two factors Ex = A ⊕ B. If
this is nontrivial, then up to a switch of factors, we have dimA = 2 and
dimB = 1. Of course our isotropic eigenvectors belong to A ∪ B. But, a
two-dimensional (resp. one-dimensional) subspace of a Lorentz space has at
most two (resp. one) isotropic lines (line). This contradiction implies that
the decomposition is trivial, that is A∗Z(x) is a homothety, and thus, also
is AZ(x).
Step 6. Getting a partial warped product structure.

From Step 4, we infer that all the dual endomorphisms A∗Z(x), for
Z ∈ E⊥x are simultaneously diagonalizable. This determines a splitting
Ex = E1

x ⊕ . . . ⊕ Ekx of common eigenspaces of all the A∗Z(x). Denote
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Cix = Cx ∩ Eix, then, we have Cx = C1
x ∪ . . . ∪ Ckx , since the elements of

Cx are eigenvectors of A∗Z(x). Therefore, for some factor, say, E1
x, we have

cardCix > dimE1
x. In particular, since E1

x contains at least three isotropic
lines, we have dimE1

x ≥ 3.
Observe now that if H is a lightlike geodesic hypersurface containing x,

such that u = TxH
⊥ belongs to Cix, then for all y near x, TyH⊥ belongs

to Ciy. Indeed, TyH⊥ belongs to Cy = C1
x ∪ . . . ∪ Ckx , and by continuity,

TyH
⊥ ∈ Cix.

This observation allows us to prove the same properties for E1, as were
already proved for E itself (that is E1⊥ is integrable and geodesic, and
the dual Weingarten endomorphisms of E1 admit the elements of C1 as
eigenvectors). Also, by the same argument, the pair (E1, (E1)⊥) would
determine a warped product structure, if the Weingarten’s endomorphisms
of E1 are homothetic. If not we get in a similar way, a splitting of E1. By
induction, we arrive at a sub-bundle G of E, with dimG ≥ 3, which gives
rise to a warped product structure.

We may sum all the intermediate decompositions, and write E = G⊕R,
where R is a sub-bundle of E, such that Cx = (Cx ∩Gx) ∪ (Cx ∩Rx).

Step 7. Contradiction

As we said in the beginning of this paper, a (local) isometry, of the of
the normal factor, extends to a (local) isometry of the warped product (see
§4.1). In our case, a leaf of G has constant curvature. In particular, for
any x ∈ U , its local isotropy group contains O(1, d− 1), where d = dim G.

The infinitesimal action of O(1, d−1) on TxM preserves Gx and Rx. In
fact, from the exact definition of the extension of the action of O(1, d−1), its
action on TxM is conjugate to that on R1,d−1⊕Rn−d, where it acts as usual
on the first factor, and trivially on the second one. Here Gx corresponds
to R1,d−1 and G⊥x to Rn−d. Observe that the subspace of fixed vectors of
this action is exactly Rn−d.

To Rx corresponds a O(1, d−1)-invariant subspaceA intersecting R1,d−1

trivially. This space is not spacelike, since it is generated by isotropic
vectors.

To conclude, we just note that this is impossible. Indeed, if dimA = 1,
then, O(1, d− 1) acts trivially on it, since O(1, d− 1) has no nontrivial 1-
dimensional representation. If not, A is Lorentzian, and thus A⊥ is spacelike
andO(1, d−1)-invariant. ButO(1, d−1), as a simple noncompact Lie group,
has no nontrivial representation preserving a positive scalar product. Thus
O(1, d− 1) acts trivially on A⊥. This contradicts the fact that the space of
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fixed elements of the representation is exactly Rn−d. �

Remark 3.5. Although it was crucial in our proof (especially at Step 5),
the cardinality condition cardCx > dimEx might perhaps be relaxed to
the more natural condition dimEx ≥ 3 (of course, by definition we always
have cardCx ≥ dimEx. In fact, this is exactly the content of Proposition
3.2, in the extremal case when dimEx = dimM .

3.3 The structure of W(M). Recall from §1.1 that W(M) denotes
the open set of points of M , having a neighborhood isometric to a warped
product of a Lorentz manifold of constant curvature and dimension ≥ 3, by
some Riemannian manifold. Observe that, a priori, a Lorentz manifold may
be written as a warped product in many fashions. However, the structure
given by the theorem above is unique, because it is associated to the map
x → Cx. It is in a natural sense the maximal warped product structure
(among those with a normal factor of constant curvature) on M .

Define Msmooth = {x ∈ M/ there is a neighborhood V of x such that
y ∈ V → Ey is smooth }, and M≤k = {x ∈M/ cardCx ≤ k}.

Note that, if x /∈M≤dimM , then cardCx > dim M ≥ dim Ex, and hence
the cardinality condition of Theorem 3.3 is satisfied.

In addition, M − int(M≤dimM ) contains a dense set of points where
cardCx > dimM (here int denotes the interior). Therefore, we have the
following corollary:

Theorem 3.6. int(Msmooth − int(M≤dimM )) ⊂ W(M).
More precisely, int(Msmooth−int(M≤dimM )) has a canonical pair (N ,L)

of foliations which determines a local warped product with the leaves of N
having constant curvature. Furthermore, this pair of foliations is invariant
under the pseudo-group of local isometries of M .

The analytic case. In this case the integrability domain D is an
analytic set. The smoothness (in fact the analyticity) condition on E, is
always satisfied, away from some analytic sets. Indeed, the assignment
x → Dx = C∗x, is analytic, in an obvious sense, away from some analytic
set. Therefore, we have the following corollary.

Corollary 3.7. Suppose that M is analytic. ThenW(M) 6= ∅, whenever
int(M≤dimM ) is not dense.
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4 Completeness Properties. Proof of Theorem 1.2

Here, we prove Theorem 1.2, which is essentially that, if M is analytic and
W(M) 6= ∅, then in fact, W(M) = M .

4.1 Extension of the warped product structure. Here are our two
fundamental extension tools.

1) The first one, mentioned in the introduction of this article, is the
extension to a warped product of the isometries of its normal factor. Indeed,
let M = L ×w N , then, any (local) isometry f : N → N induces a (local)
isometry f̄ : (x, y) ∈ L × N → (x, f(y)) ∈ L × N . The fact that f̄ is an
isometry, follows from the fact that the metric of M has the form h⊕ wg,
where w = w(x) is a positive function defined (only) on L. Thus f̄ preserves
and acts isometrically on the leaves of the foliations determined by each of
the factors N and L.

By the same rule, Killing fields of N determine Killing fields on M .

2) The second key extension fact is that a Killing field defined on an
open subset of a simply connected analytic Lorentz manifold, extends (as a
Killing field) to the whole manifold ([N] and [Am]).

Now letM be a compact analytic Lorentz manifold such thatW(M) 6= ∅.
Let x0 be a point of W(M̃), for which the dimension of the normal factor
(with constant curvature) is maximal (among all points ofW(M̃)). Denote
this dimension by d, and let Ñ be the complete simply connected constant
curvature Lorentz manifold of dimension d, and having the same scalar
curvature as the leaf of x0 (in the local warped product).

Denote by G the Lie algebra of Killing fields of Ñ . From the exten-
sion facts recalled above, there is a faithful action of G on M̃ , that is a
monomorphism X ∈ G → X̄ ∈ K, where K is the Lie algebra of Killing
fields on M̃ . We denote the G-orbit of a point x by Gx.

By definition, near x0, the G-orbits determine a local warped product.
The goal is to prove that the G-orbits determine a local warped product
everywhere. That is, firstly, the G-action gives rise to a regular foliation
(i.e. of constant dimension), with leaves locally homothetic to Ñ . Secondly,
the orthogonal is integrable, and form together with the G-foliation a local
warped product. The analyticity reduces the proof to the following non-
degeneracy fact.

Fact 4.1. Let U be the set of points of M̃ having a Lorentzian (also called
timelike) orbit, i.e. the induced metric on these orbits is of Lorentzian type.
Then U is open, and on it, the G-action determines a local warped product.
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In particular, in order to prove that the G-action determines everywhere a
local warped product, it suffices to prove the equality: U = M̃ .

Proof. Observe that dimGx ≤ d, for all x ∈ M̃ , with equality in an open
dense set. This follows by analyticity (indeed, if X1, . . . ,Xd+1 ∈ G, then
X̄(x) ∧ . . . ∧ X̄d+1(x) = 0 in an open set).

Recall that, if a pseudo-Riemannian manifold of dimension ≤ d, has a
Killing algebra of the same dimension as that of a manifold of constant
curvature and dimension d, then this manifold has dimension d and is of
constant curvature, of the same sign. (This is, at least in the Riemannian
case, a folk fact, but since it is somewhat difficult to localize in literature,
let us give a sketch of proof of it. Recall that all the orthogonal algebras
o(p, q), with p+q = d′ have the same dimension, which equals in particular
the dimension of o(d′). Let x be a point of the given pseudo-Riemannian
manifold. Its stabilizer algebra can be identified to a subalgebra of some
o(p, q), with p+ q ≤ d. But by hypothesis, this stabilizer has a dimension
≥ dim o(d). It then follows that p + q = d, and that the stabilizer equals
o(p, q) itself. One deduces in particular that the dimension of the manifold
equals d. To check that the curvature is constant, one may observe that
O(p, q) acts transitively on the space of spacelike 2-planes at x).

This shows in particular that U is open, and that the G-orbit of any point
of U is locally homothetic to Ñ . The orthogonal plane field x→ TG⊥ is ana-
lytic on U . Consider its second fundamental form, II : TG⊥ × TG⊥ → TG.
Its vanishing means that the orthogonal is integrable and has geodesic
leaves. To check that IIx = 0, for x ∈ U , we just use its equivariance under
the action of the isotropy algebra o(1, d− 1) (in G) of x. Indeed, o(1, d− 1)
acts trivially on TxG⊥, since it preserves a positive scalar product on it.
Therefore, for all u, v ∈ TxG⊥, IIx(u, v) is invariant under the action of
o(1, d− 1) on TxG, and hence IIx = 0.

Finally, to verify the warped product condition, that is, that any holon-
omy map of G⊥ seen as a local diffeomorphisms between two leaves of G is
homothetic, we just observe that this holonomy map commutes with the
action of G on these two leaves. �

Remark 4.2. Here (in the fact above) as well as in the next section (§4.1.1)
we do not use that M̃ is the universal cover of a compact manifold. We
will need this hypothesis at §4.2.

4.1.1 The nonpositively curved case. We have the following
stronger result in the nonpositively curved case:
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Proposition 4.3. Let the Lie algebra G = G(Ñ), where Ñ is a complete
simply connected nonpositively curved Lorentz manifold, act isometrically
on an analytic Lorentz manifold M̃ (not necessarily the universal cover of a
compact manifold), and determine somewhere a local warped product, with
a normal factor locally homothetic to Ñ . Then G determines everywhere a
local warped product (M̃ is assumed to be connected).

Behind the proposition is the existence in the nonpositively curved case,
of lightlike Killing fields. They do not exist at all in the positively curved
case. The proposition itself is false in this case (see below). Later on (§4.2),
we will generalize the proposition to the positively curved case, assuming
in addition that M̃ is the universal cover of a compact manifold, and that
it is the action related to W(M).

Lightlike Killing fields. A vector field V on a Lorentz manifold is
lightlike (or isotropic) if for all x, 〈V (x), V (x)〉 = 0.

Killing lightlike vector fields have the following remarkable property.

Proposition 4.4 ([BeEM], [ASt1]). Let V be a nontrivial lightlike Killing
field. Then V has no singularity. Furthermore, V has geodesic orbits.
(In fact, more generally, V is singularity free, when it is nonspacelike, i.e.
〈V (x), V (x)〉 ≤ 0).

Proof. For the Minkowski space, a Killing vector field vanishing at 0 is
a linear Killing vector field. It is tangent to the “pseudo-sphere” q =
constant, where q is the Lorentz form. But for a negative constant, this
level is spacelike (it is a Riemannian hyperbolic space). Hence, the Killing
field is somewhere spacelike, near any neighborhood of 0. The proof in the
general case, follows by conjugating by the exponential map expx, where x
is assumed to be, by contradiction, a singular point of V .

Let us now show that the orbits of V are geodesic. As a Killing field, V
satisfies the following anti-symmetry: 〈∇V V,U〉 + 〈∇UV, V 〉 = 0, for any
vector field U . Hence, 〈∇V V,U〉 = −(1/2)U.〈V, V 〉 = 0, since V is lightlike.
Therefore ∇V V = 0. �

The following proposition treats lightlike Killing fields on constant cur-
vature Lorentz manifolds. Its proof may be handled by a standard calcu-
lation.

Proposition 4.5. Let G = G(Ñ) be the Killing algebra of Ñ (as above).
Denote by I = I(Ñ) the subset of G consisting of lightlike Killing fields.
Then,
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i) If Ñ is the anti-de Sitter space (i.e. it has negative curvature), then
I generates G as a vector-space.

ii) If Ñ is the Minkowski space (i.e. it is flat), then the vector space
generated by I equals the radical Rd of G. More precisely, X ∈ I if
and only if X is parallel (i.e. it generates a flow of translations) and
is (somewhere) isotropic.

iii) If Ñ is the de Sitter space, then I = {0}.
Beginning. It is crucial to notice that, if X ∈ G is lightlike, as a

Killing field on Ñ , then the same is true for X̄, as a Killing field on M̃ .
Suppose by contradiction that U 6= M̃ (see Fact 4.1 for notation), and

let N1 be the orbit of a point in the boundary of U . By definition of U , N1
is lightlike (i.e. the metric on TN1 is positive nondefinite). If dimN1 6= 0,
denote by F its characteristic foliation (of dimension 1), i.e. that deter-
mined by the direction field x ∈ N1 → (TxN1)⊥ ∩ TxN . We denote by Q
the (local) quotient space N1/F .
Fact 4.6. If X is a lightlike Killing field, then the restriction of X̄ to N1 is
tangent to F (equivalently, the flow of such a Killing field preserves individ-
ually the leaves of F). Then (from Proposition 4.4), we have dimN1 ≥ 1,
and the leaves of F are lightlike geodesics (in M̃).

Proof. A lightlike field X is tangent to F , because the direction of F is the
unique isotropic direction tangent to N1. �

The anti-de Sitter case. In the case where Ñ is the anti-de Sitter
space, I generates G, and therefore, G preserves (individually) the leaves
of F . Hence N1 has dimension 1 (since N1 is a G-orbit). One then verifies
that G cannot act faithfully on such a manifold. One may see this in an
easier way in our situation here because N1 reduces (at least locally) to the
orbit of any element X ∈ G. Thus, it is an isotropic geodesic of M̃ . The
action of G preserves the affine parameter of this geodesic. Therefore, G
would admit an injective homomorphism in the affine group of R, which is
impossible.

The flat case. If N1 has dimension 1, we get a contradiction as in
the anti-de Sitter case. If not, consider the quotient space Q = N1/F . The
G-action on N1, factors through a faithful action of o(1, d − 1) (= G/Rd)
on Q. Observe that Q inherits a natural Riemannian metric. Indeed, the
Lorentz metric restricted to N1 is positive degenerate, with kernel TF . But
F is parameterized by any lightlike Killing field X ∈ I (this is the meaning
of the fact that the flow of X̄ preserves individually the leaves of F). In
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particular, the transversal action of the holonomy of F is equivalent to that
of the flow of X̄. Therefore, it preserves the transverse metric, which thus
determines a metric on Q. This metric is invariant by the o(1, d−1)-action.
As in the proof of Fact 4.1, since dimQ ≤ d − 1, we have dimQ = d − 1,
and furthermore, Q has constant curvature. Also, we recognize from the
list of Killing algebras of constant curvature manifolds that Q has constant
negative curvature, i.e. Q is a hyperbolic space.

It then follows that dimN1 = d, and in particular that the orbits of G
determine a regular foliation near N1. The idea, to find a contradiction,
is that, the leaves in U0 have (intrinsic) constant 0 curvature, but not N1,
because the quotient space Q is hyperbolic.

To do this in a more rigorous manner, let X0 ∈ I be a lightlike Killing
field, and for all x ∈ M̃ , consider Qx the orbit space of X0 restricted to
Gx. In a natural sense, the so obtained quotient Riemannian spaces depend
smoothly on x ∈ M̃ . However, for x ∈ U0, Qx is Euclidean (because Gx is
Minkowskian), but, as stated above for x ∈ N1, Qx is hyperbolic. This is a
contradiction. Therefore U = M̃ .

4.2 The de Sitter case. In this case, G = o(1, d). Recall the example
of the usual action of o(1, d) on the Minkowski space R1,d. This contrasts
with the case of nonpositive curvature, because the orbits do not determine
a (regular) foliation, since 0 is a fixed point. Observe that there are 3 types
of regular orbits: (Lorentzian) de Sitter orbits, (Riemannian) hyperbolic
orbits, and the isotropic cone at 0 (without 0), which is lightlike.

In the general case, we have a partition of M̃ into degenerate and non-
degenerate orbits. As mentioned in the proof of Fact 4.1, a nondegenerate
orbit is a pseudo-Riemannian manifold of dimension≤ d, and endowed with
a faithful action of o(1, d), and hence, it is (locally and up to a multiple
constant) either the (Riemannian) hyperbolic space or the (Lorentz) de
Sitter space.

Therefore, we get a partition D ∪H of the set of nondegenerate orbits
into de Sitter and hyperbolic orbits, respectively. We write the complemen-
tary set as M̃−D∪H = L∪S, where S is the subset of singular orbits (i.e.
one point orbits), and L is the subset of degenerate but nonsingular orbits.

From Fact 4.1, for all x ∈ D, Cx contains the isotropic cone of TxGx.
We have in fact equality: Cx = Cone(TxGx), by the property of d as a
maximal dimension.

Invariance of the G-foliation under the fundamental group.
Now, our goal is to show that essentially, the G-foliation passes to M .
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Indeed, consider f ∈ π1(M). Denote by G′ the image by f of the G-action.
It induces an analogous partition M̃ = D′ ∪ H ′ ∪ L′ ∪ S′. Of course,
Cfx = f(Cx), and hence Cy = Cone(TyG′x), for y ∈ D′ = f(D). In partic-
ular, in the open set D ∩ D′, the G and G′ foliations coincide. Therefore,
by analyticity, if D ∩D′ 6= ∅, the G and G′-foliations coincide everywhere
in M̃ . Assume now that D ∩ D′ is empty and let x ∈ D ∩ H ′. Consider
the stabilizer K of x for the G′-action. It is isomorphic to o(d) (the leaf
G′x is isometric to the hyperbolic space Hd). It preserves Cx and hence
TxGx. Therefore, we get a representation of o(d) in o(1, d− 1) (the algebra
of orthogonal transformations of the Lorentz space TxGx). But such a rep-
resentation must be trivial. Hence K acts trivially on TxGx, and thus also
on its projection on TxG′x. This projection is therefore trivial, since the
K-action on TxG′x is irreducible. This means that the G and G′-orbits of x
are orthogonal at x (if x ∈ D ∩H ′). This extends by analyticity to all M̃ .

In conclusion, exactly one of two possibilities occurs for the G and G′
foliations: they coincide everywhere, or they are everywhere orthogonal.
But there is a finite number of mutually orthogonal subspaces of dimension
d in a tangent space TxM̃ . Therefore, there is a finite index subgroup of
π1(M) which preserves the G-foliation. For the sake of simplicity, we shall
suppose that π1(M) itself preserves the foliation.

Structure of orbits. The central flow. A description of orbits,
similar to that of the special case of the action of o(1, d) on the Minkowski
space R1,d, holds in the general case. Indeed, as was mentioned above,
nondegenerate orbits are locally isometric to the de Sitter or to the hy-
perbolic space of dimension d. It remains to consider the case of lightlike
(nontrivial) orbits. Let N1 be a such orbit. The quotient space Q (of the
characteristic foliation of N1, see above) is a o(1, d)-homogeneous space of
dimension ≤ d−1. A standard analysis of subalgebras of o(1, d) shows that
d− 1 is the minimal nontrivial dimension of a space on which o(1, d) acts.
Furthermore, the minimal dimension is achieved in the case of the usual
conformal action on the sphere Sd−1.

Therefore, we have either Q is a single point, or Q is (locally) the con-
formal sphere Sd−1. Of course, Q cannot be a single point, since otherwise,
dim N1 = 1, but o(1, d) cannot act nontrivially on R.

Knowing that Q is the usual conformal sphere, it is not difficult to
identify N1 itself (locally) with the isotropic cone of R1,d, as a o(1, d)-
homogeneous degenerate Riemannian space.

In the Minkowski space R1,d, the action of o(1, d) on the isotropic cone
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commutes with the multiplication flow (t, x) → etx. In a similar way, one
constructs a (local) central flow φ̃t on D which is tangent the G-foliation,
and commutes with the G-action. This flow passes to a flow φt on the
projection of D in M .

Structure near the singular set. Let x0 be a singular point of
the G-action. Then, we get an infinitesimal representation of o(1, d) in
o(1, n−1), the orthogonal algebra of Tx0M̃ (n is the dimension of M). In a
standard way, one may prove that such a representation is equivalent to the
usual inclusion o(1, d) ⊂ o(1, n − 1). In particular, there is an orthogonal
decomposition Tx0M = E ⊕R1,d, and the infinitesimal action of o(1, d) is
the product of the trivial action on E and the usual action of o(1, d) on R1,d.
The exponential map expx0

conjugates (locally) the action of o(1, d) on M̃
with its infinitesimal action on Tx0M̃ . In particular the set of G-singular
points (near x0) equals the geodesic spacelike submanifold F = expx0

E.
For x ∈ F , the isotropic cone of TxF⊥ has two sheets Sh±x (here we do
not mind the possibility of a continuous orientation of these sheets when x
runs over the singular set S). The degenerate leaves near x0 are given by
expx Sh±x for x ∈ F . The (oriented non-parameterized) orbits of φ̃t (near
x0) have the form expx tu, t > 0, where u ∈ Sh±x , and x ∈ F . Here, it is
essential to observe that F is a repulsor of φ̃t. More precisely, for y ∈ L,
near x0, the orbit φ̃t(y) converges to a point x ∈ F , when t→ −∞.

From this, one sees that the flow φ̃t can be continuously extended to
the G-singular set S, by letting it act trivially on S. Therefore, the flow
φ̃t is now defined on the closed subset D ∪ S. Its quotient flow φt is thus
defined on a compact space and in particular φ̃t is complete.

Let V be a “conical” neighborhood of S in S∪L, that is, V has the form
V = ∪x∈SVx, where Vx is the intersection of the isotropic cone of TxS⊥,
with a ball in TxS̃ (with respect to any Riemannian metric on M̃). Suppose
that V is π1-invariant (choose V to come from a similar neighborhood of
the projection of S in M). From the repelling property described above,
the complement L∗ = L− V is φ̃t-invariant for t > 0.

We will get a contradiction by showing that D is (a codimension 1) sub-
manifold of M̃ , and for t big enough, the Jacobian Jac(Dxφ̃

t) is uniformly
> 1, for x ∈ D∗.

Structure of L. From above, the singular set S has codimension at
least 3, so M̃ − S (= D ∪ L ∪ H) is connected. There, the orthogonal
plane field of the G-foliation has constant dimension n − d. Therefore, it
is analytic, and integrable, and has geodesic leaves (since this is the case
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in an open subset of D). We denote by L its tangent foliation (defined on
M̃ − S).

For x ∈ L, we have TxL = (TxGx)⊥. Hence, as the G-orbit of x, the
geodesic leaf Lx is degenerate. Since it is geodesic, TyLx is degenerate,
for all y ∈ Lx, and thus the G-orbit of y is degenerate, that is y ∈ L. In
conclusion, L is invariant by both the G and the L-foliations.

For x ∈ L, the intersection TxL∩TxGx, is exactly the isotropic direction
of TxGx, which is nothing but the tangent direction of φ̃t at x. In other
words, the leaves Gx and Lx meet along the φ̃t-orbit of x.

From this, we infer that, around any x in M̃ , there is a hypersurface
(of M̃) contained in L. In fact, L which is an analytic set of M̃ − S is a
regular hypersurface. To see this, one constructs an analytic distribution
∆, for which L is a union of integral leaves, as follows. Locally, ∆ is gener-
ated by a family X1, . . . ,Xd, Y1, . . . , Yn−d of vector fields, where X1, . . . ,Xd

(resp. Y1, . . . , Yn−d) generate the tangent space of the G-foliation (resp. the
tangent space of the foliation L). From the previous discussion, one sees
that L is the union of singular leaves of ∆.

Let g be a π1-invariant Riemannian metric on M̃ . Denote by X the
vector field generating the flow φ̃, and for x ∈ L, let Eu(x) (resp. E0(x))
be the orthogonal (with respect to g) of X(x) in TxGx (resp. TxLx). These
two plane fields on L are spacelike (with respect to the Lorentz metric
of M̃). We change the Riemannian metric on L, by equipping Eu and E0

with the restriction of Lorentz metric, and decreeing that X,Eu and E0

are orthogonal. With respect to this new Riemannian metric, we have the
following relations: |Dφ̃tu| = et|u| for u ∈ Eu, and |Dφ̃tu| = |u| for u ∈ E0

(and of course |Dφ̃tu| = |u| for u ∈ RX). The first relation comes from the
fact that this is the case, in the model space (of Gx, which is the isotropic
cone of the Minkowski space R1,d, see above).

The second relation follows from the following general property of light-
like geodesic submanifolds in Lorentz manifold [Z5]. It is that the (one
dimensional) characteristic (isotropic) foliation of such a lightlike subman-
ifold is a transversally Riemannian foliation. A flow parameterizing the
characteristic foliation, preserves the degenerate Riemannian metric of the
lightlike geodesic submanifold.

Now, the projection of D∗ in M is a compact manifold (with boundary),
preserved by the (semi-)flow φt (t > 0), and Jac(φt) = e(d−1)t. This is
impossible. This means that the lightlike locus L is empty, and therefore,
M̃ = D, that is all the G-leaves are of de Sitter type. Thus, by Fact 4.1,
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M is everywhere, locally a warped product.

4.3 Completeness.
Global topological product. The foliation G⊥ is geodesic, in the

sense of the Lorentz metric. Therefore, the holonomy of G preserves the
metric on TG⊥. Thus G is a transversally Riemannian foliation, since G⊥
is spacelike.

Transform the Lorentz metric of M into a Riemannian metric, by keep-
ing the same metric on TG⊥, keeping G and G⊥ orthogonal, and choosing
any (π1-invariant) Riemannian metric on TG.

The foliation G is still transversally Riemannian in the sense of the new
metric, because we have not changed the metric on its orthogonal. It then
follows that G⊥ is geodesic (in the sense of the new Riemannian metric).

Now, we use a result of [BlH] (see also [PR]) which states that if a
geodesic foliation L of a compact Riemannian manifold M admits an or-
thogonal foliation N (that is TL⊥ is integrable), then the pair (L̃, Ñ ) gives
a global topological product in M̃ . More precisely, let L̃x and Ñx be the
leaves of a point x of M̃ . Then, the inclusion of L̃x ∪ Ñx in M̃ extends to
a diffeomorphism L̃x × Ñx → M̃ sending the foliations determined by the
factors, to L and N , respectively.

A new Lorentz product metric. Let x0 ∈ M̃ , then M̃ is home-
omorphic to L̃x0 × Ñx0 , endowed with a warped metric h ⊕ wg, where h
(resp. g) is the Riemannian (resp. Lorentzian) metric on L̃x0 (resp. Ñx0),
and w : L̃x0 → R is a warping function.

Our aim here is to show that the product metric h⊕g is π1(M)-invariant
(and hence descends to a locally product metric on M). This is equivalent
to the invariance of the warping function w by the π1-action on L̃x0 .

If Ñx0 is not flat, w is π1-invariant, since w(x) = κ(x)−2, where κ(x) is
the sectional curvature of Ñx.

Now, we give briefly an idea of how to prove the invariance of w in the
flat case. Let us start by considering the case dim L̃x0 = 1. In M , we have
a codimension one transversally Riemannian foliation N . Let φt be the
flow generated by a unit vector field orthogonal to N . Then, φt preserves
N (this is exactly the meaning of N being transversally Riemannian). In
fact, because of the local warped product structure, φt sends leaves homo-
theticaly to leaves. More precisely, let φ̃t be the lift of φt to M̃ . Then, for
x, y ∈ L̃x0 , we have Jac(φ̃tx) = Jac(φ̃tx|Ñ ) = (w(y)/w(x))n−1/2, where t is
such that φ̃t(x) = y (n = dimM).

There are two possibilities. The first is that all the leaves of N are
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dense. In this case, Jac(φt) = constant, and hence equals 1, and thus, w
is constant. The second case is that all the leaves of N are closed. We
then have: for x, y ∈ L̃x0 , VolNπ(x)/VolNπ(y) = (w(x)/w(y))n−1)/2, where
π : M̃ →M is the projection. Therefore, w is π1-invariant.

The same proof works in the higher dimensional case if we suppose that
there is a parallelism, i.e. a frame of vector fields X1, . . . ,Xk, tangent to L,
preserving the foliation N , and also preserving the volume along L. But,
such a parallelism is exactly what Molino’s theory on Riemannian foliations
[Mo] yields, up to passing to another foliation naturally associated to N .

Completeness along the constant curvature factor. Recall that
compact Lorentz manifolds of constant curvature, are (geodesically) com-
plete. This result was proved by Y. Carrière [C], in the flat case, and then
the proof was adapted to the general case by B. Klingler [K]. Our obser-
vation here is that the Carrière’s proof may be easily updated to handle
the case of compact Lorentz manifolds whose universal cover is a global
(direct) product of a Lorentz manifold of constant curvature by a Rieman-
nian manifold. The point is to develop, M̃ which is the product L̃x0 ×Ñx0 ,
into the product M̃ = L̃x0 × Ñ where Ñ is the simply connected Lorentz
manifold with the same curvature as Ñx0 . Then, instead of triangles, as
used in the Carrière’s proof, we use subsets of M̃ of the form B×∆, where
B is a ball of L̃x0 and ∆ is a triangle in Ñ . This leads to the conclusion
that M̃ is isometric to M̃ .

Completeness. We infer from [RoS], that M , endowed with the old
warped Lorentz metric, is complete. Indeed the warping function w is
bounded, since it is π1-invariant.

End of the proof of Theorem 1.2. It remains to show that the
factor Ñ has nonpositive (constant) curvature. This fact was observed in
part I, §15, as being a slight generalization of the Calabi-Markus phenom-
ena.

5 Analytic Bi-polarized Manifolds. Proof of the Second
Half of Theorem 1.3

The possibilities (1) and (2) of Theorem 1.3, correspond to the casesW(M)
6= ∅, and W(M) = ∅, respectively. The structure of M when W(M) 6= ∅
follows from Theorem 1.2. The goal of the present section is to study the
other situation. So, let M be a compact Lorentz manifold, with IsomM
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noncompact, and W(M) = ∅. We will show that, in the analytic case, M
satisfies the description stated in point (2) of Theorem 1.3. As was said in
the introduction, the noncompactness of IsomM implies that cardCx ≥ 1
for all x ∈M (this follows from part I, or a direct proof).

Bi-polarization. In what follows, except for Proposition 5.1, M will
be supposed to be analytic. In fact, in the proof of this proposition itself,
we will use the fact that Msmooth is dense in M . This was observed to
be true in the analytical case (see 3.7), but its proof in the smooth case
is harder ([Z6]). Also, from the latter reference, we infer that one may
slightly change the definition of Msmooth so that it remains open and dense,
and not only the map x→ Ex (the space generated by Cx) is smooth, but
the map x→ Cx itself is semi-continuous in an obvious manner. Again, in
the analytic case, this fact follows from that the integrability domain is an
analytic set.
Proposition 5.1. Let M be a compact Lorentz manifold, with IsomM
noncompact, and W(M) = ∅. Then, 1 ≤ cardCx ≤ 2, for all x ∈Msmooth.

In particular M is bipolarized, that is, IsomM) preserves two (perhaps
identical) lightlike geodesic foliations F1 and F2 (see [Z1, §11] for details).

In fact, in Msmooth, we have Cx = {TxF⊥1 , TxF⊥2 }.
Proof. From Theorem 3.6, we infer, since W(M) = ∅, that int(M≤dimM )
is dense in Msmooth. Consider A = ∪{Cx/x ∈ int(M≤dimM )}. This is an
IsomM -invariant subset of the projective isotropic tangent bundle PT 0M ,
with finite fibers Ax (over M). Furthermore, it is measurable, since x→ Cx
is semi-continuous [Z6]. From the barycenter construction (Theorem 2.6 of
part I), IsomM would be compact, if we didn’t have cardAx ≤ 2 almost ev-
erywhere. This implies that almost everywhere, dimEx ≤ 2. This extends
to all Msmooth, since the map x → Ex is smooth, and hence cardCx ≤ 2,
for all x ∈Msmooth.

In particular, the fibers of the limit set Λ of IsomM in PT 0M also
satisfy: card Λx ≤ 2. Therefore IsomM is elementary, or equivalently, M
is bipolarized (see part I, §11).

Finally, let us check the equality Cx = {TxF⊥1 , TxF⊥2 }, along Msmooth.
We have seen that, dimEx ≤ 2, for x ∈Msmooth. Therefore, if x belongs to
the transversality set T = {x∈M | TxF⊥1 6=TxF⊥2 }, then, card{TxF⊥1 ,TxF⊥2 }
= 2, and hence Cx = {TxF⊥1 , TxF⊥2 }. This extends by continuity to the
closure of T in Msmooth.

In the coincidence set C = M − T , we have card{TxF⊥1 , TxF⊥2 } = 1.
Suppose that in some (open) component U of int(Msmooth ∩ C), we have
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cardCx = 2. Then, we get a continuous IsomM -invariant isotropic di-
rection field X along U , such that Cx = {TxF⊥1 = TxF⊥2 ,X(x)}. This
contradicts the “source-sink” dynamical behavior of the derivative action
of IsomM on PT 0M . Indeed, on U , the dynamics has only one “pole”
TF⊥1 |U = TF⊥2 |U . Thus, for an IsomM -recurrent point x (which exists
since U is open), we must have X(x) = TxF⊥1 = TxF⊥2 , which contradicts
the definition of X. This finishes the proof of the proposition. �

Local bipolarization in the analytic case. The foliations F1 and
F2 determine two sections of the Grassmann bundle Gr0(M)→M . Their
images P (F1) and P (F2) are (topological) submanifolds of Gr0(M), home-
omorphic to M . Let D0 denote P (F1) ∪ P (F2).

Consider D, the integrability domain of τ on Gr0(M). Obviously,
D0 ⊂ D.
Fact 5.2. Keep the hypotheses of the previous proposition, and assume
that M is analytic. Let p ∈ D −D0, and Σ ⊂ Gr0(M), a small transversal
to the tautological plane field τ , containing p. Then p is isolated in Σ∩D.

Proof. Suppose the contrary. Then, by analyticity, Σ∩D contains a curve,
which is in fact contained inD−D0 if Σ is small enough (sinceD−D0 is open
inD). In other words, we obtain a one parameter family of lightlike geodesic
hypersurfaces, which are not leaves of F1 or F2. This one parameter family
fills, at least, some open set U , say. This contradicts the validity of the
equality Cx = {TxF⊥1 , TxF⊥2 }, in the open dense set Msmooth. �

Corollary 5.3. We have: D = D0 (equivalently, Cx = {TxF⊥1 , TxF⊥2 },
for all x ∈M).

Proof. We deduce from the fact above that D −D0 is closed in D. Indeed,
let p ∈ D0, and Σ a transversal as above. Then, from the previous fact,
Σ ∩ (D − D0) is open and discrete in the analytic set Σ ∩ D. This latter
set has finitely many connected components. Therefore, Σ∩ (D−D0) must
be finite. In particular p cannot be an accumulation point of D − D0, so
D −D0 is closed.

It then follows that D − D0 consists of a finite union of closed leaves
of τ . By projecting in M , we get closed lightlike geodesic hypersurfaces
S1, . . . , Sk. Up to a subgroup of finite index, we may suppose that IsomM)
preserves each hypersurface Si. Observe that Si is nowhere tangent to F1
(or F2) since otherwise, it would be a leaf of this foliation.

As in the proof of the proposition above, for f ∈ Isom(M), the action of
Df on the projective isotropic cone PT 0M |Si, along Si, preserves (TSi)⊥,
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which contradicts the fact that it is a source-sink dynamics determined by
the attractor-repulsor pair ((TF1)⊥|Si, (TF2)⊥|Si). �

Regularity. The analytic set D equals P (F1)∪P (F2), a union of two
topological manifolds. As above, let Σ be a transversal to τ , at a point
p ∈ D, and consider the 1-dimensional (local) analytic set A = D ∩ Σ.
Topologically, A is a union of one or two topological curves, depending
on the projection of p in M belongs to the transversality set T , or to the
coincidence set C respectively (recall that C is the closed subset of M where
F1 and F2 are tangent).

From the structure theory of 1-dimensional (real) analytic sets ([Ch]),
A is a union finitely many branches, i.e. images of analytic curves. Here, an
analytic curve means an analytic injective map from an interval ] − ε,+ε[
to Gr0(M), and sending 0 to p. In our situation, there are two analytic
curves c1 and c2, such that A = Image(c1) if p projects on T , and A =
Image(c1) ∪ Image(c2) if p projects on C.

One starts (if necessary) by permuting branches, or equivalently chang-
ing the foliations F1 and F2, so that, above the coincidence set C, we have:
Σ ∩ P (F1) = Image(c1) and Σ ∩ P (F2) = Image(c2). One sees that this
manipulation gives rise to new foliations (always denoted F1 and F2) which
coincide with the former ones in each side of the coincidence set C. Observe
furthermore that the new decomposition D = P (F1) ∪ P (F2) is canonical,
since the decomposition A = Image(c1) ∪ Image(c2) is canonical (although
there are no canonical parameterizations c1 and c2).

Now, let us consider one of the foliations, say F1, and perform some
change of the induced analytic structure of P (F1), so that it becomes an
analytic manifold. Consider as above a transversal set A = Σ ∩ P (F1) =
Image(c1). Then, p is a regular point of P (F1), if and only if p is a regular
point of A, if and only if we may choose c1 having 0 (the pre-image of p)
as an immersion point.

If p is a singular point, we choose a less singular curve c1, and define an
(abstract) analytic structure on A such that c1 is a parameterization (i.e.
c−1
1 is a chart). One then changes the analytic structure of P (F1) near p

accordingly. More precisely, in P (F1), p admits a neighborhood which is
the image of a foliated homeomorphic analytic map φ : (t, u) ∈ I×Rn−1 →
(c1(t), f(u)) ∈ P (F1), where f is an analytic diffeomorphism. Then we
decree that φ−1 is a chart for the new analytic structure. One then can
verify that this is a well defined analytic structure on P (F1), for which F1
(or equivalently the plane field τ) is analytic. Endow M with the pull-back
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of the so defined structure on P (F1) by the section map x→ TxF1. Then
F1 is analytic with respect to this structure. This finishes the proof of the
second half of Theorem 1.3.
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