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ABSTRACT
Kundt spacetimes are of great importance to general relativity. We show that a Kundt spacetime is a Lorentz manifold with a non-singular
isotropic geodesic vector field having its orthogonal distribution integrable and determining a totally geodesic foliation. We give the local
structure of Kundt spacetimes and some properties of left invariant Kundt structures on Lie groups. Finally, we classify all left invariant
Kundt structures on three-dimensional simply connected unimodular Lie groups.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0091202

I. INTRODUCTION
Kundt spacetimes are of great importance to general relativity, as well as alternative gravity theories. To begin with, let us say that Kundt

spacetimes constitute a natural generalization of pp-wave spacetimes. Roughly speaking, a Kundt spacetime is defined by the fact that it
supports a vector field; all of its scalar invariants vanish, without being Killing (see, for instance, Ref. 1, Chapter 6). One of our motivations
here is to provide a coordinate-free treatment of Kundt spacetimes, which is hard to find in the general relativity literature. More precisely, let
us define a Kundt spacetime as a Lorentz manifold (M, g) having the following property (see, for instance, Refs. 2, 4, 5, and 12):

(K1) There exists a non-singular vector field V on M such that

g(V , V) = g(∇V V ,∇V V) = tr(AV) = g(BV , BV) = g(CV , CV) = 0, (1)

where ∇ is the Levi-Cività connection, AV : TM → TM denotes the (1,1) tensor field given by AV(X) = ∇XV , B is its symmetric
part, and C is its skew-symmetric part, and if F : TM → TM is a (1,1)-tensor field, then g(F, F) = tr(F ○ F∗), where F∗ is its adjoint
with respect to g.

It turns out (see Proposition 2.1) that this property is equivalent to the following:
(K2) There exist a non-singular vector field V on M and a differential one-form α such that

g(V , V) = 0, ∇XV = α(X)V , and ∇V V = 0 (2)

for any vector field X orthogonal to V .
A fundamental observation for us was (see Proposition 2.1 and more details in Secs. II, III, and IV) that Kundt properties (K1)

or (K2) imply the following property (see also Ref. 3 for a somewhat similar approach):
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(LK) There exists on M a codimension one totally geodesic foliation, which is degenerate with respect to g. More precisely, there exists
a codimension one foliation F such that each leaf L of F is a lightlike (totally) geodesic hypersurface, that is, T�L ⊂ TL and any
geodesic γ : [a, b] →M, a < 0 < b, somewhere tangent to L, is locally contained in L: if γ′(0) ∈ Tγ(0)L, then there exists ϵ > 0 such
that γ([−ϵ,+ϵ]) ⊂ L.

Actually, until assuming the direction field T�F orientable (which is always possible up to passing to a double covering), the
property (LK) is equivalent to the following:

(LKbis) there exist a non-singular vector field V on M and a differential one-form α such that

g(V , V) = 0,∇XV = α(X)V (3)

for any vector field X orthogonal to V .

We will refer to a Lorentz manifold satisfying (LK) as a local Kundt spacetime. Indeed, (LK) implies (K1) locally near any point in M.
In other words, a spacetime admitting a codimension one lightlike geodesic foliation is locally Kundt.

Another major motivation to study Kundt Lorentz manifolds lies in their relation to CSI-spaces; those having all of their scalar curvature
invariants are constant. The simplest one is the scalar curvature Scalg , but one can also consider eigenvalues of the Ricci operator Ricg or
the g-norm of the Riemann tensor Rmg . All those are scalar curvature invariants of order 1. Higher order ones are obtained by considering
covariant derivatives of Rmg . Hence, CSI means, in particular, that all these quantities are constant functions on M.

Locally homogeneous spaces are CSI, and the existence of CSI spaces that are not locally homogeneous spaces is a non-Riemannian
phenomenon, which makes a one major difference between the positive and non-definite cases in pseudo-Riemannian structures. A typical
example is given by the (conformally flat) plane wave metric g = dx2 + dy2 − 2dvdu − 2 f (u)(x2 + y2)du2, which is VSI (i.e., has vanishing
scalar invariants) for any f , but locally homogeneous for only few f ’s. This example is Kundt; in fact, V = ∂

∂v is a parallel vector field.
It is believed that a CSI Lorentz space, if it is not locally homogeneous, must be of Kundt type. This conjecture has been proved in some

cases, e.g., in lower dimensions 3 and 4; see, for instance, Refs. 6–8. In another direction, there is a notion of I-degenerate metrics, meaning
that they have non-trivial (i.e., non-isometric) deformations keeping all the scalar curvature invariant functions the same (not-depending on
the deformation parameter, but maybe depending on the point of M); those are believed to be Kundt too.9,10

Not all locally homogeneous spacetimes are Kundt; neither all Kundt spacetimes are locally homogeneous, but it is worthwhile to consider
locally homogeneous Kundt spaces as a special class of both the homogeneous and Kundt categories. Our project is to study Kundt structures
on three-dimensional Lie groups G endowed with a left invariant Lorentzian metric g. It is natural, in this special homogeneous framework,
to introduce a stronger Kundt property as follows. We call (G, g) a Kundt Lie group (respectively, locally Kundt Lie group) if it admits a non-
singular left invariant vector field V satisfying (K2) [respectively, (LKbis)]. In other words, we assume here compatibility between the (K2)
or (LKbis) property and the algebraic structure of G.

A. Results
One of our principal results, Theorem 4.1, states, essentially, that a three-dimensional Lorentz group, which is Kundt as a spacetime, is,

in fact, a Kundt group. We also classify, up to isometric isomorphism, all unimodular three-dimensional Kundt groups.
This paper is organized as follows. In Sec. II, we provide a synthetic (coordinate-free) account on Kundt spacetimes emphasizing on their

relationship with lightlike geodesic foliations. We introduce Kundt groups and general facts about them in Sec. III. The Proof of Theorem 4.1
and further results are given in Sec. IV. Section V contains the classification up to automorphism of Kundt Lorentz groups.

II. KUNDT SPACETIMES AND GEODESIC FOLIATIONS
Recall from the Introduction that a Kundt spacetime is a Lorentz manifold satisfying the property (K1). Let us prove that this property

is equivalent to (K2) and implies (LK). Moreover, (LK) implies (K1) locally near any point of the Lorentz manifold.

Proposition 2.1. Let (M, g) be a Lorentz manifold. Consider the following assertions:

(i) (M, g) is a Kundt spacetime.
(ii) There exist on M an isotropic non-singular vector field V and a differential one-form α such that, for any X ∈ Γ(V�),

∇XV = α(X)V and ∇V V = 0.

(iii) There exists on M a totally geodesic codimension one foliation, which is degenerate with respect to g. This means that there exists a vector
sub-bundle F ⊂ TM of rank (dim M) − 1, where the restriction of g to F is degenerate, and for any X, Y ∈ Γ(F), ∇XY ∈ Γ(F), where ∇ is
the Levi-Cività connection of g.

Then, (i) and (ii) are equivalent and both imply (iii). Moreover, (iii) implies that (ii) holds in a neighborhood of any point in M.
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Proof. (i) ⇒ (ii). Assume that (M, g) is a Kundt spacetime. This means that there exists a non-singular vector field V satisfying (1).
Fix a point p ∈M, and denote by A the endomorphism given by Au = ∇uV for any u ∈ TpM. Choose an isotropic vector U ∈ TpM such that
g(U, V) = 1 and an orthonormal basis (e1, . . . , en−2) of {U, Vp}�. Note that

g(A(V), A(V)) = g(Vp, Vp) = g(A(V), V) = 0.

Thus, the vector subspace span{A(V), V} is totally isotropic; hence, its dimension equals 1, which means A(V) = α0V for some α0 ∈ R. On
the other hand, since g(V , V) = 0, for any u ∈ TpM, g(A(u), V) = g(∇uV , V) = 0; hence, A(TpM) ⊂ V�. This implies that for any u ∈ TpM,
g(A(u), A(u)) ≥ 0 and g(A(u), A(u)) = 0 if and only if A(u) = α(u)V . Now, from (1),

0 = tr(A∗A) = 2g(A(V), AU) +
n−2

∑
i=1

g(A(ei), A(ei)) =
n−2

∑
i=1

g(A(ei), A(ei)).

Moreover, we have

0 = tr(A) = g(AV , U) + g(AU, V) +
n−2

∑
i=1

g(Aei, ei) = α0.

Hence,∇V V = 0. This completes the proof of (i) Ô⇒ (ii).
Let us prove (ii) Ô⇒ (i). Fix a point p, and consider A and (U, V , e2, . . . , en−2) as defined above. We have A(TpM) ⊂ RV . Hence,

V� ⊂ ker A∗. With this fact in mind, we get

tr(A) = g(AU, V) + g(AV , U) +
n

∑
i=2

g(Aei, ei) = 0,

tr(BB∗) = 2g(BU, BV) +
n

∑
i=2

g(Bei, Bei) = 0,

tr(CC∗) = 2g(CU, CV) +
n

∑
i=2

g(Cei, Cei) = 0.

This completes the proof of (i) Ô⇒ (ii).
Let us prove now that (ii) Ô⇒ (iii). Let F = V�. We have for any X, Y ∈ Γ(F),

g(∇XY , V) = −g(Y ,∇XV) = −α(X)g(Y , V) = 0.

Hence,∇XY ∈ Γ(F). This shows that F is integrable and defines a degenerate codimension one totally geodesic foliation.
Now, we prove that if (iii) holds, then for any p ∈M, there exists a vector field V near p satisfying (1). Hence, suppose that there exists

an integrable degenerate codimension one sub-bundle F ⊂ TM, which defines a totally geodesic foliation. Fix a point p ∈M, and choose a
non-singular vector field V ∈ Γ(F�) ⊂ Γ(F) near p. It is obvious that V is isotropic. Moreover, since ∇V V ∈ Γ(F) and g(∇V V , V) = 0, then
∇V V = αV . As above, denote by A the endomorphism AV

p and choose a basis (u, Vp, e1, . . . , en−2). We have, obviously, that A(TpM) ⊂ Fp.
Moreover, since F is totally geodesic for any X, Y ∈ Γ(F),

0 = g(∇XY , V) = −g(Y ,∇XV),

which implies that A(Fp) ⊂ RV . So far, we have shown that locally near p for any X ∈ Γ(F),

AV = α0V , A(X) = α(X)V.

To finish the proof, we look for a vector field V′ = e f V , where f is a function such that V′ satisfies (ii). This is equivalent to V( f ) = −α0, and
such a function exists locally. ◻

A. Kundt coordinates
Another way to compare the Kundt property with the existence of a codimension one lightlike geodesic foliation is given by the following

fact, which asserts the existence of adapted local coordinates associated with lightlike geodesic foliations, where the metric has a special form.12

The same adapted coordinates are known to characterize Kundt spacetimes.
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Proposition 2.2. Let (M, g) be a Lorentz manifold satisfying (iii) of Proposition 2.1. Then, near any point in M, there exists a local
coordinates system (v, u, x = (x2, . . . , xn)) where the metric has the following form:

g = 2dudv +H(v, u, x)du2 +
n

∑
i=2

Wi(v, u, x)dudxi +∑
i,j

hij(u, x)dxidx j.

Remarks 2.1.

- Observe that the functions hij do not depend on v.
- The foliation in Proposition 2.1 corresponds to the (local) u-levels.
- One can also show the converse that a foliation admitting an adapted chart where the metric has such a form is lightlike geodesic.

Proof. Suppose that there exists a vector sub-bundle F of TM of rank (dim M) − 1 such that the restriction of the metric to F is degenerate
and Γ(F) is stable by the Levi-Cività product.

Fix a point p ∈M, and let Σ be a local hypersurface containing p and transversal to F�. Then, FΣ = F ∩ TΣ determines a foliation on Σ.
Hence, there exists a coordinates system (x 2, . . . , x n, u) on Σ such that the leaves of FΣ are the u-levels. There is a section T : ΣÐ→ (F�)∣Σ
such that g(T, ∂

∂u) = 2. Choose an injective immersion ϕ : Rn−1 Ð→M such that ϕ(Rn−1) = Σ. Then, there exists ϵ > 0 such that the map
Φ : R n−1 × (−ϵ, ϵ) Ð→M given by Φ(t, s) = expϕ(t)(sT) is a diffeomorphism into its image. Denote by V the image by Φ of the vector field
∂
∂s . Since F� is totally geodesic, then V is tangent to F� and, hence, satisfies g(V , V) = 0. By construction, we have∇V V = 0, and according to
the Proof of Proposition 2.1 for any X ∈ Γ(F),∇XV = α(X)V .

On the other hand, the vector fields ∂
∂u , ∂

∂x2 , . . . , ∂
∂xn on Σ define a family of vector fields on Rn−1 and, hence, define a family of vector

fields on Rn−1 × (−ϵ, ϵ), which commute with ∂
∂s . Let U, X2, . . . , Xn be their images by Φ. We deduce that V , U, X2, . . . , Xn are commuting

and give rise to a local coordinate system (v, u, x2, . . . , xn) on M such that

V = ∂

∂v
, U = ∂

∂u
, and Xi =

∂

∂xi
, i = 2, . . . , n.

Observe now that, for any vector field Z commuting with V , the scalar product g(V , Z) is constant along the V-trajectories. Indeed, since
g(V , V) = 0 and [Z, V] = 0, we get

V.g(V , Z) = g(∇V V , Z) + g(V ,∇V Z) = g(V ,∇ZV) = 0.

We deduce that for any i = 2, . . . , n, g(V , Xi) and g(U, V) are constant along the trajectories of V , and since they are constant along Σ, we get
that g(U, V) = 2 and g(V , Xi) = 0. Moreover, we have

V.g(Xi, Xj) = g(∇V Xi, Xj) + g(Xi,∇V Xj) = g(∇Xi V , Xj) + g(Xi,∇Xj V) = α(Xi)g(V , Xj) + α(Xj)g(Xi, V) = 0.

This completes the proof. ◻

Remark 1. For a general codimension one lightlike foliation, not necessarily geodesic, we have similar adapted coordinates, but with the
functions hij also depending on v.

III. KUNDT GROUPS
A Lorentz Lie group is a Lie group G endowed with a left invariant Lorentzian metric g. Denote by g the Lie algebra of G and ⟨ , ⟩ = g(e).

We call (g, ⟨ , ⟩) a Lorentz Lie algebra. The Levi-Cività product is the product ● on g given by

2⟨u ● v, w⟩ = ⟨[u, v], w⟩ + ⟨[w, u], v⟩ + ⟨[w, v], u⟩, u, v, w ∈ g. (4)

A Kundt Lie group (respectively, locally Kundt Lie group) is a Lorentz Lie group (G, g) having an isotropic left invariant vector field
satisfying (2) [respectively, (3)].

Proposition 3.1. Let (G, g) be a connected Lorentz Lie group. Then, the following are equivalent:

(i) (G, g) is a locally Kundt Lie group.
(ii) There exists a codimension one subalgebra h of g, which is degenerate and stable by the Levi-Cività product.

Moreover, if (G, g) is a locally Kundt Lie group, then it is a Kundt Lie group if and only if, for any generator e of h�, e ● e = 0.
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Proof. Let us prove that (i) implies (ii). (G, g) is a locally Kundt Lie group if and only if there exists a left invariant vector field V
satisfying (3). The codimension one subspace h = V(e)� is degenerate, and for any u, v ∈ h, denote by ul and vl the corresponding left invariant
vector fields. Then,

g(∇ul vl, V) = ul.g(vl, V) − g(vl,∇ul V) = −α(ul)g(vl, V) = 0.

Hence,∇ul vl(e) = u ● v ∈ h. This means that h is stable by the Levi-Cività product, which completes the proof of (i) ⇒ (ii).
Let us show now that (ii) ⇒ (i). Suppose that there exists h, a codimension one degenerate subalgebra of g, which is stable by the Levi-

Cività product, and consider v as a generator of h�. Denote by V the left invariant vector field associated with v. Then, according to the Proof
of Proposition 2.1, we have, for any x ∈ h,

∇xl V = α(xl)V and ∇V V = α0V ,

where α0 is a constant. The last assertion is obvious. ◻

Definition 3.1. Let g be a Lie algebra. A Kundt pair on g is a pair (⟨ , ⟩,h), where ⟨ , ⟩ is a Lorentzian product on g and h is a ⟨ , ⟩-degenerate
codimension one subalgebra stable by the Levi-Cività product ● given by (4), and for any e ∈ h�, e ● e = 0.

There is a large class of Lie groups, which cannot carry a locally Kundt group structure.

Lemma 3.1. Let g be a semi-simple compact Lie algebra. Then, g cannot have a codimension one subalgebra.

Proof. Suppose that g has a codimension one Lie subalgebra h. Since g is compact, it carries a bi-invariant scalar product ⟨ , ⟩, i.e., adx
is skew-symmetric for any x ∈ g. For any x ∈ h, adx leaves h invariant, and since it is skew-symmetric, it leaves h� = Re invariant, so [x, e] = 0
and e is central, which contradicts the fact that g is semi-simple. ◻

Corollary 3.1. Let G be a compact semi-simple Lie group. Then, G cannot carry any structure of the locally Kundt Lie group.

The oscillator group is named so by Streater in Ref. 13 as a four-dimensional connected, simply connected Lie group, whose Lie algebra
(known as the oscillator algebra) coincides with the one generated by the differential operators, acting on functions of one variable, associated
with the harmonic oscillator problem. The oscillator group has been generalized to any even dimension 2n ≥ 4, and several aspects of its
geometry have been intensively studied, both in differential geometry and in mathematical physics (see Refs. 14–19). Oscillator Lie groups
have a natural left invariant Kundt structure.

Example 1. For n ∈ N∗ and λ = (λ1, . . . , λn) ∈ Rn with 0 < λ1 ≤ ⋅ ⋅ ⋅ ≤ λn, the λ-oscillator group, denoted by Gλ, is the Lie group with the
underlying manifold R2n+2 = R ×R ×Cn and product

(t, s, z).(t′, s′, z′) =
⎛
⎝

t + t′, s + s′ + 1
2

n

∑
j=1

Im[z̄j exp(itλj)z′j ], . . . , zj + exp(itλj)z′j , . . .
⎞
⎠

.

Its Lie algebra gλ is R ×R ×Cn with its canonical basis B = {e−1, e0, ej, ěj}j=1,...,n such that

e−1 = (1, 0, 0), e0 = (0, 1, 0), ej = (0, 0, (0, . . . , 1, . . . , 0)), and ěj = (0, 0, (0, . . . , ı, . . . , 0)),

and the Lie brackets are given by
[e−1, ei] = λiěi, [e−1, ěi] = −λiei, [ei, ěi] = e0 (5)

for i = 1, . . . , n. The unspecified products are either given by antisymmetry or zero. For x ∈ gλ, let

x = x−1e−1 + x0e0 +
n

∑
i=1
(xiei + x̌iěi).

The non-degenerate symmetric bilinear form

kλ(x, x) := 2x−1x0 +
n

∑
j=1

1
λj
(x2

j + x̌2
j ) (6)

satisfies
kλ([x, y], z) + kλ(y, [x, z]) = 0 for any x, y, z ∈ gλ

and, hence, defines a Lorentzian bi-invariant metric g on Gλ. The Levi-Cività connection of g is given by ∇XY = 1
2 [X, Y] for any left invariant

vector fields X, Y. Hence, the left invariant vector field associated with e0 is parallel and defines a Kundt group structure on Gλ.
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IV. KUNDT SPACETIMES VS KUNDT GROUPS
In dimension 3, we have the following result.

Theorem 4.1. Let G be a Lie group of dimension 3 endowed with a left invariant Lorentz metric g. Assume that there exists a degenerate
totally geodesic hypersurface Σ in (G, g) (not necessarily complete).

(i) Then, either (G, g) has a constant sectional curvature or (G, g) is a locally Kundt Lie group.
(ii) Furthermore, if the isotropy group of 1 in the isometry group Iso(G, g) is non-compact, then such a hypersurface Σ exists.

To prove this theorem, we need the following lemma, which also appears in Refs. 20–22.

Lemma 4.1. Let (G, g) be a Lorentz Lie group of dimension 3. If there are three non-tangent (i.e., having different tangent planes at 1)
lightlike geodesic hypersurfaces through 1, then (G, g) has a constant curvature.

Proof. Assume that there exist three different lightlike geodesic hypersurfaces Σ1, Σ2, and Σ3 through 1 ∈ G. Let T1, T2, T3 be their tangent
spaces and V1, V2, V3 be non-vanishing vectors in their orthogonals T�1 , T�2 , and T�3 .

Since Σi’s are geodesic, each Ti is invariant under the Riemann curvature: if u, v, w ∈ Ti, then R(u, v)w ∈ Ti.
Let e3 be a unit (spacelike) vector generating T1 ∩ T2, and consider Ae3 : V → R(e3, V)e3. Then, ⟨Ae3(V1), e3⟩ = ⟨R(e3, V1)e3, e3⟩ = 0, that

is, Ae3(V1) is orthogonal to e3. However, it is also orthogonal to V1 by curvature-invariance of V�1 . Therefore, Ae3(V1) is collinear to V1, say,
Ae3(V1) = λ12V1. Similarly, Ae3(V2) = λ21V2.

Consider ⟨R(e3, V1)e3, V2⟩, which equals ⟨R(e3, V2)e3, V1⟩. It also equals λ12⟨V1, V2⟩ = λ21⟨V1, V2⟩. Since V1 and V2 are both null,
⟨V1, V2⟩ ≠ 0, then λ12 = λ21. In conclusion, Ae3 is a homothety on (e3)�, of ratio, say, λ (= λ12 = λ21).

Since Ae3(e3) = 0, we conclude that R(e3, W)e3 = λ(W⟨e3, e3⟩ − ⟨W, e3⟩e3) for any W.
In a similar way, one defines e2 and e1 unit vectors generating T1∩T3 and T2∩T3, respectively, and deduces a similar formula for

R(ei, W)ei with the same λ.
In fact, up to orientation, ei are uniquely defined. More precisely, in a Lorentz linear three-space (E, ⟨ , ⟩), there is, up to isometry, a

unique system of three null directions. Indeed, with the notation above, we can choose generators V1, V2, and V3 of these directions such that
⟨V i, V j⟩ = 1 for any i ≠ j, so the matrix coefficients ⟨Vi, Vj⟩ij are fully given. This implies that any two such systems are related by an isometry.

Now, the system {e1, e2, e3} is given (up to orientation) by {V1, V2, V3}, so all scalar products ⟨ei, ej⟩ are given, i.e., computable by means
of ⟨, ⟩.

It follows that R(ei, ej)ei are given for any i, j.
Consider now X = R(ei, ej)ek with k ≠ i, j and i ≠ j. Then, ⟨X, ek⟩ = 0 and ⟨X, ei⟩ = ⟨R(ei, ej)ei, ek⟩ and, hence, computable and similarly

for ⟨X, ej⟩, and therefore, X is computable.
From all this, it follows that all the curvatures R(ei, ej)ek are computable, exactly as in the case of a space of constant curvature λ. ◻
Proof of Theorem 4.1

Proof.

(i) It follows from the lemma that if (G, g) does not have constant curvature, then through any point pass exactly one or two (germs of)
lightlike geodesic hypersurfaces.

For the sake of clarity, let us consider first the case where there exists exactly one germ of such hypersurfaces. More precisely, there
exists a geodesic lightlike hypersurface Σ containing 1. Uniqueness means that for any S, a geodesic lightlike hypersurface, with 1 ∈ S,
then Σ ∩ S is a neighborhood of 1 in both Σ and S.

For any x ∈ G, the translated hypersurface xΣ is the unique geodesic lightlike hypersurface passing through x.
Let us see that the tangent space of Σ is left invariant: if x ∈ Σ, then TxΣ = xT1Σ (the last notation means the left translation by x

of T1Σ). Indeed, both Σ and xΣ are geodesic lightlike hypersurfaces containing x; hence, they coincide near x and, thus, have the same
tangent space: TxΣ = Tx(xΣ) = xT1Σ.

This left invariance of TΣ means that Σ is a “local subgroup.” Its “maximal extension” will be a subgroup, which is a geodesic light-
like hypersurface. To be more formal, one defines a plane field E on G, with E(x) being the tangent space of the unique geodesic lightlike
hypersurface through x. Therefore, E(x) = Tx(xΣ), which implies that E is left invariant. Uniqueness implies that E is integrable: Σ is a
local leaf of E through 1. The global leaf of E is a subgroup.

Let us now consider the case where we have two geodesic lightlike hypersurfaces Σ1 and Σ2 through 1, which do not coincide near
1. This is equivalent to E(1) = T1Σ1 ≠ T1Σ2 = F(1).

Let x ∈ Σ1. Then, through x, we have three geodesic lightlike hypersurfaces: Σ1, xΣ1, and xΣ2. Therefore, two among them coincide
locally. Let us assume that x is close to 1, and deduce that Σ1 and xΣ2 cannot coincide near x. For this, it is enough to show they have
different tangent spaces A = TxΣ1 ≠ Tx(xΣ2) = B. If they were equal, they would have the same translation to 1, x−1A = x−1B. On the
one hand, x−1B = TxΣ2 = F(1), and on the other hand, x−1A = x−1TxΣ is close to E(1) = T1Σ1 by continuity of the tangent space of Σ1

and the fact that x is close to 1. Since E(1) and F(1) are transversal, the same is true for x−1A and x−1B for x sufficiently close to 1, and
in particular, they are not equal; hence, A ≠ B. From all of this, we infer that Σ1 and xΣ1 coincide near x.
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As in the case of a unique geodesic lightlike hypersurface, one deduces that Σ1 is a “local group.” More precisely, one defines two
left invariant plane fields E and F, extending E(1) and F(1), respectively. Our previous argument implies that Σ1 is a local leaf at 1 of
E, and so E is integrable, and the same applies for F. The E and F leaves of 1 are, therefore, two subgroups, which are geodesic lightlike
hypersurfaces.

(ii) Now, assume, I, that the isotropy group of 1 in the isometry group Iso(G, g) is non-compact.
Let fn ∈ I be a diverging sequence (it has non-convergent sub-sequence), and consider their graphs Fn = Gr( fn) ⊂ G ×G. Endow

G ×G with the metric g ⊕ (−g). Then, Fn’s are isotropic and totally geodesic. Then, we will consider a limit L of a subsequence of Fn.
To give a formal meaning of this, consider a small convex neighborhood C of (1, 1) in G ×G. This means any two points of C can
be joined by a unique geodesic segment contained in C. Consider Fn ∩ C, and note F0

n, the connected component of (1, 1) in Fn ∩ C.
Now, one can give sense to convergence of Fn, exactly as in the situation of affine subspaces in an affine flat space. More precisely, F0

n
converge to L if the tangent spaces T(1,1)F0

n converge to T(1,1)L.
Such a limit L is a geodesic isotropic submanifold in G ×G of dimension equal to dim G, but it is no longer a graph of some

map f : G→ G since otherwise fn will converge to f . Thus, L intersects non-trivially the vertical {1} ×G and, hence, projects onto a
degenerate geodesic submanifold Σ in G × {1}. The intersection L ∩ ({1} ×G) has dimension one since it is isotropic; therefore, Σ is a
hypersurface. ◻

A. Comments on the constant curvature case
It is natural to ask what happens if (G, g) has a constant sectional curvature, say, c? Let us give here some examples and hints; details

will appear elsewhere. The Proof of Theorem 4.1 does not apply since there are infinitely many “germs” of lightlike geodesic hypersurfaces
through 1: any lightlike hyperplane in T1G is tangent to a lightlike geodesic hypersurface exactly as in the universal Lorentz space M̃(c) of
constant curvature c.

● It turns out that if the isotropy group I is non-compact and has dimension 1 or 2, then (G, g) is a Kundt group. Indeed, the Proof
of Theorem 4.1 can be adapted well to this situation where dim I = 1 or 2. Consider for this the derivative action of I on g = T1G. It
preserves exactly one or two hyperplanes, which are, in fact, lightlike. Indeed, let L be a closed connected non-compact subgroup of
O(1, 2). If dim L = 1, then it is either a hyperbolic one parameter group; in this case, it preserves exactly two lightlike hyperplanes or
it is a unipotent one parameter group, and in this case, it preserves exactly one lightlike hyperplane. In case dim L = 2, it is conjugate
to the triangular subgroup of SL(2,R) and preserves exactly one lightlike hyperplane. All these claims can be confirmed by a direct
check-in. In summary, if dim I = 1, 2, the argument in the Proof of Theorem 4.1 can be adapted and yields a left invariant plane field
E and, thus, a lightlike geodesic subgroup H.
Let us give the following example with c = 0. Consider on R3 the Lorentz metric dx2 + dydz. The plane E = {z = 0} is lightlike. Its
linear stabilizer is a subgroup S of dimension 2 in SO(1, 2), and hence, its stabilizer in the full Poincaré group SO(1, 2) ⋉R3 is
S ⋉ E. It contains, in particular, the three-dimensional (non-unimodular) group G of elements (t, a, b) ∈ R × E acting by (x, y, z)
→ (x + a, ety + b, e−tz). This action is free and transitive on the upper half space {z > 0}, and hence, G inherits a left invariant (non-
complete) flat metric. It is Kundt since its (Abelian) subgroup E has lightlike geodesic orbits. Observe here that the full isometry group
of this left invariant metric is S ⋉ E. In particular, the isotropy group has dimension one.

● Assume now that the isotropy group has dimension 3. Thus, dim Iso(G, g) = 6, and (G, g) is locally isometric to the universal space
M̃(c) of constant curvature c. However, a subgroup of dimension 3 in O(1, 2) contains at least its identity component, and also,
a subgroup of dimension 6 in Iso(M̃(c)) contains at least its identity component Iso0(M̃(c)). Therefore, as a homogeneous space,
(G, g) is globally isometric to M̃(c) = Iso0(M̃(c))/O0(1, 2). In other words, G acts transitively and freely on M̃(c) [or equivalently,
(G, g) has constant curvature c and is complete].
Let us give the example of the Euclidean group Euc2. Its universal cover Ẽuc2 acts simply transitively isometrically on (R3, dx2 + dy2

− dz2) by ((x, y), z) → ((Rt(x, y) + (a, b)), z + t), where Rt is the rotation of angle t and (t, a, b) ∈ Ẽuc2. Its unique two-dimensional
subgroup isR2, which acts by translations (x, y, z) → (x + a, y + b, z). It has spacelike geodesic orbits. Therefore, Ẽuc2 is a flat complete
Lorentz group that is not a Kundt group.
We believe this is the unique complete Lorentz group of constant curvature, which is not a Kundt group.

● Finally, there are examples of flat groups (G, g)with isotropy group I of dimension 0, which are not Kundt groups. To see an example,
consider as above the metric dx2 + dydz. Let S ⊂ SO(1, 2) be the stabilizer of the isotropic direction R ∂

∂y and T be the subgroup of
translations in this direction. Take G = S ⋉ T. It has an open orbit on which it acts freely, which allows one to endow it with a flat
(non-complete) metric. One can show that it is not a Kundt group.

V. CLASSIFICATION OF THREE-DIMENSIONAL UNIMODULAR SIMPLY CONNECTED KUNDT LIE GROUPS
In this section, we give a complete classification of Kundt Lie group structures on three-dimensional unimodular Lie groups. According

to Proposition 3.1, the classification of Kundt Lie group structures on a simply connected Lie group G is equivalent to the classification of
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Kundt pairs (h, ⟨ , ⟩) on its Lie algebra g. Two Kundt pairs (h1, ⟨ , ⟩1) and (h2, ⟨ , ⟩2) are called equivalent if there exists an automorphism
of Lie algebra ϕ : gÐ→ g such that ϕ(h1) = h2 and ϕ∗(⟨, ⟩2) = ⟨, ⟩1.

In dimension 3, we have the following useful characterization of Kundt pairs.

Proposition 5.1. Let (g, ⟨ , ⟩) be a Lorentzian Lie algebra, and let h be a codimension one subalgebra. Then, we have the following:

(i) If h is Abelian, then (h, ⟨ , ⟩) is a Kundt pair if and only if h is degenerate, and if e is a generator of h�, then ade(g) ⊂ h.
(ii) If h is non-Abelian, then (h, ⟨ , ⟩) is a Kundt pair if and only if h� = [h,h], and if e is a generator of h�, then ade(g) ⊂ h.

Proof. Let e be a generator of h�. Then, (h, ⟨ , ⟩) is a Kundt pair if and only if e ∈ h�, ⟨e, e⟩ = 0, and e ● e = 0, and for any u, v ∈ h,

0 = 2⟨u ● v, e⟩ = ⟨[e, u], v⟩ + ⟨[e, v], u⟩. (7)

Note first that e ● e = 0 and ⟨e, e⟩ = 0 if and only if, for any u ∈ g,

0 = ⟨e ● e, x⟩ = ⟨[u, e], e⟩,

which is equivalent to ade(g) ⊂ h.
If h is Abelian, then (7) holds trivially.
Suppose now that dim g = 3 and h is not Abelian. Then, there exists a basis (u, v) of h such that ⟨u, v⟩ = 0 and [u, v] = u. Put e = au + bv.

Then, from the relation above, we get

0 = −b⟨u, v⟩ + a⟨u, u⟩ = a⟨u, u⟩ and 0 = ⟨[e, u], u⟩ = b⟨u, u⟩.

This implies that ⟨u, u⟩ = 0, and hence, h� = [h,h]. The converse is obviously true. ◻

There are five simply connected three-dimensional unimodular non-Abelian Lie groups:

1. The nilpotent Lie group Nil known as Heisenberg group whose Lie algebra will be denoted by n. We have

Nil =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜
⎝

1 x z

0 1 y

0 0 1

⎞
⎟⎟⎟⎟
⎠

, x, y, z ∈ R

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

and n =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜
⎝

0 x z

0 0 y

0 0 0

⎞
⎟⎟⎟⎟
⎠

, x, y, z ∈ R

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

.

The Lie algebra n has a basis B 0 = (X1, X2, X3), where

X1 =
⎛
⎜⎜⎜⎜
⎝

0 1 0

0 0 0

0 0 0

⎞
⎟⎟⎟⎟
⎠

, X2 =
⎛
⎜⎜⎜⎜
⎝

0 0 0

0 0 1

0 0 0

⎞
⎟⎟⎟⎟
⎠

, and X3 =
⎛
⎜⎜⎜⎜
⎝

0 0 1

0 0 0

0 0 0

⎞
⎟⎟⎟⎟
⎠

,

where the non-vanishing Lie bracket is [X1, X2] = X3.

2. SU(2) = {(a + bi −c + di

c + di a − bi
), a2 + b2 + c2 + d2 = 1} and su(2) = {( iz y + ix

−y + xi −zi
), x, y, z ∈ R}. The Lie algebra su(2) has a basis

B 0 = (X1, X2, X3),

X1 =
1
2

⎛
⎜
⎝

0 i

i 0

⎞
⎟
⎠

, X2 =
1
2

⎛
⎜
⎝

0 1

−1 0

⎞
⎟
⎠

, and X3 =
1
2

⎛
⎜
⎝
−i 0

0 i

⎞
⎟
⎠

,

where the non-vanishing Lie brackets are

[X1, X2] = X3, [X2, X3] = X1, and [X3, X1] = X2.

3. The universal covering group P̃SL(2,R) of SL(2,R) whose Lie algebra is sl(2,R). The Lie algebra sl(2,R) has a basis B 0 = (e, f , h),
where

e =
⎛
⎜
⎝

0 1

0 0

⎞
⎟
⎠

, f =
⎛
⎜
⎝

0 0

1 0

⎞
⎟
⎠

, h =
⎛
⎜
⎝

1 0

0 −1

⎞
⎟
⎠

,

where the non-vanishing Lie brackets are

[e, f ] = h, [h, e] = 2e, and [h, f ] = −2f .
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4. The solvable Lie group Sol =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

ex 0 y

0 e−x z

0 0 1

⎞
⎠

, x, y, z ∈ R
⎫⎪⎪⎬⎪⎪⎭

whose Lie algebra is sol =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

x 0 y

0 −x z

0 0 0

⎞
⎠

, x, y, z ∈ R
⎫⎪⎪⎬⎪⎪⎭

. The Lie algebra sol has a

basis B0 = (X1, X2, X3), where

X1 =
⎛
⎜⎜⎜⎜
⎝

1 0 0

0 −1 0

0 0 0

⎞
⎟⎟⎟⎟
⎠

, X2 =
⎛
⎜⎜⎜⎜
⎝

0 0 1

0 0 0

0 0 0

⎞
⎟⎟⎟⎟
⎠

, X3 =
⎛
⎜⎜⎜⎜
⎝

0 0 0

0 0 1

0 0 0

⎞
⎟⎟⎟⎟
⎠

and

where the non-vanishing Lie brackets are
[X1, X2] = X2 and [X1, X3] = −X3.

5. The universal covering group Ẽ0(2) of the Lie group

E0(2) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜
⎝

cos(θ) sin(θ) x

− sin(θ) cos(θ) y

0 0 1

⎞
⎟⎟⎟⎟
⎠

, θ, x, y ∈ R

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

.

Its Lie algebra is

e0(2) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜
⎝

0 θ x

−θ 0 y

0 0 0

⎞
⎟⎟⎟⎟
⎠

, θ, y, z ∈ R

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

.

The Lie algebra e0(2) has a basis B0 = (X1, X2, X3), where

X1 =
⎛
⎜⎜⎜⎜
⎝

0 −1 0

1 0 0

0 0 0

⎞
⎟⎟⎟⎟
⎠

, X2 =
⎛
⎜⎜⎜⎜
⎝

0 0 1

0 0 0

0 0 0

⎞
⎟⎟⎟⎟
⎠

, and X3 =
⎛
⎜⎜⎜⎜
⎝

0 0 0

0 0 1

0 0 0

⎞
⎟⎟⎟⎟
⎠

,

where the non-vanishing Lie brackets are
[X1, X2] = X3 and [X1, X3] = −X2.

Let us find the two-dimensional subalgebras of the three-dimensional unimodular Lie algebras.

Proposition 5.2.

1. Let h be a two-dimensional subalgebra of n. Then, h = span{X3, aX1 + bX2}, (a, b) ≠ (0, 0).
2. su(2) has no subalgebra of dimension 2.
3. Let h be a two-dimensional subalgebra of sol. Then, either h = span{X2, X3}, h = span{X2, X1 + aX3}, or h = span{X3, X1 + aX2}
(a ∈ R).

4. Let h be a two-dimensional subalgebra of e0(2). Then, h = span{X2, X3}.
5. Let h be a two-dimensional subalgebra of sl(2,R). Then, there exists an automorphism of sl(2,R), which sends h to span{h, e}.

Proof.

1. A two-dimensional subalgebra h of n must be Abelian and contains the center. Hence, h = span{X3, aX1 + bX2} and (a, b) ≠ (0, 0).
2. It is a consequence of Lemma 3.1.
3. Denote h0 = span{X2, X3}. If h is Abelian and h ≠ h0, then h = span{X1 +U, V}, where U, V ∈ h0, and hence, [X1, V] = 0, which is

impossible. Hence, if h is Abelian, then h = h0.
If h is not Abelian, then h ≠ h0. Thus, h = span{X1 +U, V}, where U, V = aX2 + bX3 ∈ h0 and [h,h] = RV . Now,

[X1 +U, V] = aX2 − bX3.

Hence, the vectors aX2 + bX3, aX2 − bX3 must be linearly dependent; hence, ab = 0, which completes the proof.
4. We can use the same argument as above and get a2 + b2 = 0.
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5. Note first that [e, f ] = h, [h, e] = 2e, [h, f ] = −2 f . Let h be a two-dimensional subalgebra of sl(2,R). Then, there exists a basis (u, v) of
h such that [u, v] = 2v. The endomorphism adu is skew-symmetric with respect to the Killing form; hence, tr(adu) = 0. It has 2 and 0
as eigenvalues, so the third eigenvalue is −2. Hence, there exists w ∈ sl(2,R) such that [u, w] = −2w. Now,

[u, [v, w]] = 2[v, w] − 2[v, w] = 0.

Hence, [v, w] = αu. By replacing w by 1
α w, we get that the automorphism ϕ, which sends (u, v, w) to (h, e, f ) sends h to span{h, e},

which completes the proof. ◻

Theorem 5.1. Let (h, ⟨ , ⟩) be a Kundt pair of n. Then, (h, ⟨, ⟩) is equivalent to (h0, ⟨, ⟩0), where

1. ⟨, ⟩0 =
⎡⎢⎢⎢⎢⎣

1 0 0

0 −1 0

0 0 μ

⎤⎥⎥⎥⎥⎦
, μ > 0, and h0 = span{X1 ± X2, X3};

2. ⟨, ⟩0 =
⎡⎢⎢⎢⎢⎣

1 0 0

0 0 1

0 1 0

⎤⎥⎥⎥⎥⎦
and h0 = span{X1, X3}.

Proof. Let (h, ⟨ , ⟩) be a Kundt pair on n. According to Ref. 23, Theorem 3.1, there exists an automorphism ϕ of n such that the matrix
of (ϕ−1)∗(⟨ , ⟩) in the basis (X1, X2, X3) has one of the following forms:

n1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 −1 0

0 0 μ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, n2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 0 −μ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, or n3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 0 1

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, μ > 0.

By virtue of Proposition 5.2, ϕ(h) = h0 = span{X3, aX1 + bX2} with (a, b) ≠ (0, 0). According to Proposition 5.1, (ϕ(h), (ϕ−1)∗(⟨ , ⟩)) is a
Kundt pair if and only if h0 is degenerate and ade(n) ⊂ h0, where e is a generator of h�0 . Since [n,n] ⊂ h0, then the last condition holds.

Now, h0 cannot be n2-degenerate, and it is n3-degenerate if and only if b = 0. Finally, h0 is n1-degenerate if and only if a2 − b2 = 0, which
completes the proof. ◻

Theorem 5.2. Let (h, ⟨ , ⟩) be a Kundt pair of sol. Then, (h, ⟨, ⟩) is equivalent to (h0, ⟨ , ⟩0), where either

1. ⟨ , ⟩0 =
⎛
⎝

λ 0 0

0 0 −1

0 −1 0

⎞
⎠

, λ > 0, and h0 = span{X2, X1} or h0 = span{X3, X1};

2. ⟨ , ⟩0 =
⎛
⎝

λ2 0 0

0 λ 1

0 1 0

⎞
⎠

and h0 = span{X3, X1};

3. ⟨ , ⟩0 =
⎛
⎜⎜
⎝

0 0 − 2

b
0 1 1

− 2

b
1 1

⎞
⎟⎟
⎠

, b > 0, and h0 = span{X2, X3};

4. ⟨, ⟩0 =
⎡⎢⎢⎢⎢⎣

0 0 1

0 1 0

1 0 0

⎤⎥⎥⎥⎥⎦
and h0 = span{X2, X3}.

Proof. Let (h, ⟨ , ⟩) be a Kundt pair on sol. Then, according to Ref. 23, Theorem 3.4, there exists an automorphism ϕ of sol such that
the matrix of (ϕ−1)∗(⟨ , ⟩) in the basis (X1, X2, X3) has one of the following forms:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sol1 =

⎛
⎜⎜⎜⎜⎜
⎝

4
u2 − v2 0 0

0 1
u
v

0
u
v

1

⎞
⎟⎟⎟⎟⎟
⎠

, v > 0, u < v, sol2 =

⎛
⎜⎜⎜⎜⎜
⎝

4
v2 − u2 0 0

0
u
v
−1

0 −1
u
v

⎞
⎟⎟⎟⎟⎟
⎠

, v > 0, u < v, sol3 =

⎛
⎜⎜⎜⎜⎜
⎝

1
u + v

0 0

0 − v
u

1

0 1 1

⎞
⎟⎟⎟⎟⎟
⎠

, u > 0, v > 0,

sol4 =
⎛
⎜⎜⎜⎜
⎝

1
u

0 0

0 −1 0

0 0 1

⎞
⎟⎟⎟⎟
⎠

, u > 0, sol5 =

⎛
⎜⎜⎜⎜⎜
⎝

0 0 −2
b

0 1 1

−2
b

1 1

⎞
⎟⎟⎟⎟⎟
⎠

, b > 0, sol6 =
⎛
⎜⎜⎜⎜
⎝

λ2 0 0

0 λ 1

0 1 0

⎞
⎟⎟⎟⎟
⎠

, λ ≠ 0, sol7 =
⎛
⎜⎜⎜⎜
⎝

0 0 1

0 1 0

1 0 0

⎞
⎟⎟⎟⎟
⎠

.
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By virtue of Proposition 5.2, ϕ(h) = h0, where either h0 = span{X2, X3}, h0 = span{X2, X1 + aX3}, or h0 = span{X3, X1 + aX2} (a ∈ R).
If h0 = span{X2, X3}, then it is Abelian, and it is sol5-degenerate and sol7-degenerate. For sol5, h�0 = R(X2 − X3), and we have

adX2−X3(sol) ⊂ h0. We have the same situation for sol7. Thus, (h0, sol5) and (h0, sol7) are Kundt pairs.
If h0 = span{X2, X1 + aX3}, then [h0,h0] = RX2. We have obviously adX2(sol) ⊂ h0, and according to Proposition 5.1, (h0, ⟨ , ⟩) is a

Kundt pair if and only if ⟨X2, X2⟩ = ⟨X2, X1 + aX3⟩ = 0. This is possible if and only if ⟨, ⟩ = sol2 with u = 0 and a = 0.
If h0 = span{X3, X1 + aX2}, then [h0,h0] = RX3. We have obviously adX3(sol) ⊂ h0, and according to Proposition 5.1, (h0, ⟨ , ⟩) is a

Kundt pair if and only if ⟨X3, X3⟩ = ⟨X3, X1 + aX2⟩ = 0. This is possible if and only if ⟨, ⟩ = sol2, u = 0, and a = 0 or ⟨, ⟩ = sol6 and a = 0. ◻

Theorem 5.3. Let (h, ⟨ , ⟩) be a Kundt structure on e0(2). Then, (h, ⟨ , ⟩) is equivalent to (h0, ⟨ , ⟩0), where ⟨ , ⟩0 =
⎡⎢⎢⎢⎢⎣

0 1 0

1 0 0

0 0 μ

⎤⎥⎥⎥⎥⎦
, μ > 0,

and h0 = span{X2, X3}.

Proof. Let (h, ⟨ , ⟩) be a Kundt pair on e0(2). Then, according to Ref. 23, Theorem 3.5, there exists an automorphism ϕ of e0(2) such
that the matrix of (ϕ−1)∗(⟨ , ⟩) in the basis (X1, X2, X3) has one of the following forms:

⟨ , ⟩1 =
⎛
⎜⎜⎜⎜
⎝

0 1 0

1 u 0

0 0 v

⎞
⎟⎟⎟⎟
⎠

, u > 0, v > 0, ⟨ , ⟩2 =
⎛
⎜⎜⎜⎜
⎝

0 1 0

1 u 0

0 0 v

⎞
⎟⎟⎟⎟
⎠

, u > 0, v > 0, ⟨ , ⟩3 =
⎛
⎜⎜⎜⎜
⎝

0 1 0

1 0 0

0 0 u

⎞
⎟⎟⎟⎟
⎠

, u > 0.

By virtue of Proposition 5.2, ϕ(h) = h0 = span{X2, X3}. According to Proposition 5.1, (ϕ(h), (ϕ−1)∗(⟨ , ⟩)) is a Kundt pair if and only
if h0 is degenerate and ade(n) ⊂ h0, where e is a generator of h�0 . Now, h0 cannot be ⟨, ⟩1-degenerate neither ⟨, ⟩2-degenerate. Finally, h0 is
⟨, ⟩3-degenerate, h�0 = RX2, and adX2(e0(2)) ⊂ h0. ◻

Theorem 5.4. Let (h, ⟨ , ⟩) be a Kundt pair on sl(2,R). Then, there exists an automorphism ϕ of sl(2,R) such that ϕ(h) = span{e, h}
and the matrix of ϕ∗(⟨, ⟩) in the basis (e, f , h) has one of the following forms:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 4 α 0

4 α 0 0

0 0 8 β

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 4 α 0

4 α 1 0

0 0 8 β

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, or

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 4 α 0

4 α 0 2
√

2

0 2
√

2 8 α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, β > 0, α ∈ R∗.

Proof. Let (h, ⟨ , ⟩) be a Kundt pair on sl(2,R). According to Proposition 5.2, we can suppose that h = span{e, h}. A direct computation
using the software Maple shows that the automorphisms of sl(2,R) leaving h invariant are of the form

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a −ab2 −2 ab

0 a−1 0

0 b 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, a, b ∈ R.

Denote by B the Killing form of sl(2,R). Its matrix in the basis (e, f , h) is given by

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 4 0

4 0 0

0 0 8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We consider the isomorphism A, symmetric with respect to B, and it is given by B(Au, v) = ⟨u, v⟩ for any u, v ∈ sl(2,R). According to
Proposition 5.1, the pair (h, ⟨ , ⟩) is Kundt if and only if ⟨e, e⟩ = ⟨e, h⟩ = 0 and ade(sl(2,R)) ⊂ h. This is equivalent to Ae, which is a generator
of the orthogonal of h with respect to B, which is equivalent to the existence of α ≠ 0 such that Ae = αe. The normal form of isomorphisms,
which are symmetric with respect to a Lorentzian scalar product, is known. We give here the normal form of those having an isotropic
eigenvector. According to Ref. 24, there exists a basis B = ( f1, f2, f3) of sl(2,R) such that
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(i) Mat(A,B) =
⎡⎢⎢⎢⎢⎣

β 0 0

0 α 0

0 0 α

⎤⎥⎥⎥⎥⎦
and Mat(B,B) =

⎡⎢⎢⎢⎢⎣

1 0 0

0 0 1

0 1 0

⎤⎥⎥⎥⎥⎦
;

(ii) Mat(A,B) =
⎡⎢⎢⎢⎢⎣

β 0 0

0 α 1

0 0 α

⎤⎥⎥⎥⎥⎦
and Mat(B,B) =

⎡⎢⎢⎢⎢⎣

1 0 0

0 0 1

0 1 0

⎤⎥⎥⎥⎥⎦
;

(iii) Mat(A,B) =
⎡⎢⎢⎢⎢⎣

α 1 0

0 α 1

0 0 α

⎤⎥⎥⎥⎥⎦
and Mat(B,B) =

⎡⎢⎢⎢⎢⎣

0 0 1

0 1 0

1 0 0

⎤⎥⎥⎥⎥⎦
.

Let P be the passage matrix from B0 = (e, f , h) to B.

● The case (i). The relation A(e) = αe implies that we can choose f2 = e, and the relation PtMP =Mat(B,B) gives that

P =
⎡⎢⎢⎢⎢⎣

−
√

2 1 −1

0 0 1/4
1/4
√

2 0 1/2

⎤⎥⎥⎥⎥⎦
. The matrix of ⟨, ⟩ in the basis B0 is given by Mat(A,B0)tM and Mat(A,B0) = PMat(A,B)P−1. Hence, we get

Mat(⟨ , ⟩,B0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 4 α 0

4 α 32 β − 32 α −16 β + 16 α

0 −16 β + 16 α 8 β

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now, the automorphism

T1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −4 −4

0 1 0

0 2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

satisfies

Tt
1Mat(⟨ , ⟩,B0)T1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 4 α 0

4 α 0 0

0 0 8 β

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

● The case (ii). We have

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
√

2 1 −1

0 0 1/4
1/4
√

2 0 1/2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

and T2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −1 −4

0 1/4 0

0 1/2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Tt
2Mat(⟨ , ⟩,B0)T2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 4 α 0

4 α 1 0

0 0 8 β

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

● The case (iii). We have

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −
√

2 −1

0 0 1/4
0 1/4

√
2 1/2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

and T3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −1 −4

0 1/4 0

0 1/2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Tt
3Mat(⟨ , ⟩,B0)T3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 4 α 0

4 α 0 2
√

2

0 2
√

2 8 α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

◻
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A. Kundt vs locally Kundt Lie groups
In fact, it turns out from the previous proofs that we have shown that any three-dimensional unimodular locally Kundt Lie group is, in

fact, a Kundt Lie group. This result is not true, in general, as the following example shows.

Example 2. Consider R4 endowed with the Lie algebra structure where the only non-vanishing Lie bracket is given by [e1, e2] = e2 and the
Lorentzian scalar product is given by

⟨ , ⟩ =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

.

The Lie subalgebra h = span{e1, e3, e4} is Abelian and satisfies h� = Re1 and, hence, according to Proposition 3.1, defines a local Kundt Lie group
structure on the corresponding simply connected Lie group. However, ade1(R4) ⊄ h, and hence, according to Proposition 5.1, this structure is not
global.

We think, however, it is worthwhile to investigate the natural question: Is a locally Kundt Lie group, without being a Kundt group, still a
(globally) Kundt spacetime?

VI. CONCLUSIONS
The starting point of this article is the reformulation of the notion of a Kundt spacetime in a more geometric and synthetic language. This

gives, in fact, a local version of the Kundt propriety and leads naturally to ask in which circumstances the local property implies the global
one.

However, our most important contribution is to introduce this notion of a Kundt Lie group to mean a Lie group with a left invariant
Kundt structure, that is, not only the Lorentz metric is left invariant but also the codimension one geodesic foliation involved in the definition
of Kundt spacetimes is left invariant.

We investigated Kundt groups in the three-dimensional case by giving an explicit classification.
More importantly, we proved that a Lorentz group (i.e., a Lie group with a left invariant Lorentz metric) is, in fact, a Kundt group, unless,

it is very special, that is, more precisely, it has constant sectional curvature, or, equivalently, it acts isometrically with some open orbit on
Minkowski, de Sitter, or anti de Sitter spacetimes of dimension 3.

This rigidity fact seems to admit a higher-dimensional version that is worthwhile to investigate, but classification seems more complicated
since the (practical Bianchi) classification of Lie algebras is available only in dimension 3.

The four-dimensional case is particularly interesting for physical applications. It was very recently considered in Ref. 25 where the authors
studied spacetimes admitting Killing spinors with a non-zero real constant. They call them supersymmetric Kundt configurations since they
are automatically Kundt and are supersymmetric configurations of supergravity.

Kundt groups and supersymmetric Kundt spacetimes (and also plane waves, pp-waves, Brinkmann spacetimes, etc.) are manageable sub-
classes of Kundt spacetimes, defined by compatibility with an extra geometric structure. Their study is a natural step toward the understanding
of the general Kundt case, which is of great importance in general relativity.
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