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Abstract This paper provides an introduction to Kundt spaces, clarifying several
important properties, many of which are typically scattered across the mathematical
literature or presented without explicit reference to Kundt terminology. While not
exhaustive, our approach aims to offer a pedagogical introduction, using a more
geometric language and focusing on key concepts directly related to these spaces,
such as lightlike totally geodesic foliations.
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1 Introduction

Kundt spaces play a significant role in general relativity and mathematical physics.
They constitute the underlying (as well as a unifying) structure for many Lorentzian
spaces arising in general relativity and alternative gravity theories, including plane
waves, pp-waves, and Siklos spaces. Our motivation here is to provide an introduc-
tion to the mathematics of Kundt spaces through a coordinate-free approach, which
is hard to find in the general relativity literature. We gather and present important
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properties and key concepts related to those spaces, often dispersed across the
mathematical literature and sometimes presented without use of this terminology.
This text is not intended to be exhaustive; several aspects are intentionally left out.

1.1 Some Vocabulary

We introduce here some vocabulary:

Definition 1 Let M be a Lorentzian manifold. A vector subspace E of the tangent
space TyM at x is said to be lightlike if the restriction of the metric to E is
degenerate.

By analogy, we say that a submanifold S C M is lightlike if for any point x € S,
T, S is lightlike.

Given a non-singular vector field V on M which is lightlike (i.e., V(x) is
lightlike, for all x € M), the distribution v+ is lightlike, and the quotient bundle
VL /RV inherits a Riemannian metric.

Definition 2 Let M be a Lorentzian manifold, and let V be a non-singular lightlike
vector field on M. The vector field V is said to be geodesic if it satisfies Vy V = 0.
In other words, the parameterized orbits of V are geodesics.

A non-singular geodesic lightlike vector field defines a family of lightlike geodesics
that fill the space, forming what is known as a null geodesic congruence. The fol-
lowing terminology can be found in [16], in the chapter entitled “null congruences,”
orin [17]:

Definition 3 Let M be a Lorentzian manifold. Let V be a non-singular lightlike
vector field on M. Then V is said to be:

1. Twist-free if the distribution V1 is integrable, hence tangent to a foliation F. In
this case, the leaves of F are lightlike, in which case we say that the foliation is
lightlike.

2. Shear-free if the flow of V preserves the conformal Riemannian structure on
vi/v.

3. Divergence-free if the flow of V preserves the volume form of V1/V.

A conformal map preserving the volume is necessarily an isometry. Consequently,
V is twist-free, shear-free, and divergence-free if and only if v6is integrable, and
the (local) flow of V (and hence the local flow of any vector field tangent to V')
preserves the Riemannian metric induced on V-+/V. The foliation V), defined by
such a vector field V, is said to be “transversally Riemannian” when restricted to
any leaf of the foliation F.
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1.2 Kundt Spaces

A Kundt space is defined in the literature as a Lorentzian manifold with a non-
singular lightlike vector field V which is geodesic, twist-free, shear-free, and
divergence-free (see, for instance, [3-5]). For a detailed account of their significance
in general relativity, we refer to the book [17], a comprehensive reference on exact
solutions to Einstein’s field equations in general relativity. This book discusses
Kundt spaces, including the properties of null geodesic congruences and their role
in defining Kundt geometries.

The conditions of being twist-free, shear-free, and divergence-free, or equiva-
lently, the “transversally Riemannian™ property of the foliation VV when restricted
to any leaf of F, turn out to be equivalent to another geometric property: F
being a lightlike, totally geodesic foliation. This equivalence was observed in [19],
where codimension one lightlike totally geodesic foliations are studied. In Sect. 2,
we review this equivalence as the first key result, enabling Kundt spaces to be
characterized in terms of totally geodesic foliations. This key concept is recalled
below:

Definition 4 Let M be a semi-Riemannian manifold. A submanifold L C M is
totally geodesic if any geodesic in M which is somewhere tangent to L is locally
contained in L: if y(¢) is a geodesic of M defined in a neighborhood of 0, and if
y'(0) € T, )L, then y(¢) € L in a neighborhood of 0. Equivalently, the space of
C! vector fields tangent to L is invariant under covariant derivation (this equivalence
holds for any torsion-free connection).

Definition 5 A totally geodesic foliation F of M is a foliation whose leaves are
totally geodesic submanifolds of M.

In Sect.4, we derive the local form of the metric for a Kundt space. By
specializing to certain simplified metric forms, we identify several well-known
subfamilies, including Brinkmann spaces and Siklos spaces.

1.3 Topology and Dynamics

It is well known that a smooth compact manifold admits a Lorentzian metric if
and only if it has zero Euler number, as discussed in [15, Proposition 37, p. 149].
However, the existence of a Kundt structure introduces additional topological
obstructions, due to the presence of a lightlike totally geodesic foliation. This
is addressed in Sect.5, starting with the straightforward rwo-dimensional case
and extending to the three-dimensional case. Another interesting question in this
context is: what dynamics lead to a Kundt (or locally Kundt) structure? Here,
“dynamics” refers to the action of the isometry group. The result we will review
in the final section is that, in the homogeneous case, a “big” isotropy group leads to
a structure that closely resembles a locally Kundt structure.
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2 Generalities: The Mathematics Behind Kundt Spaces

2.1 Totally Geodesic Lightlike Foliations

Codimension 1 totally geodesic and lightlike foliations are studied in [19]. As
shown in Proposition 1, such a foliation is characterized by the fact that it
contains a subfoliation of dimension 1 whose restriction to each leaf is transversally
Riemannian.

Notation Throughout this paper, for a Lorentzian manifold (M, F) with a codi-
mension 1 lightlike foliation F, we denote by V the one-dimensional subfoliation
tangent to 7 F . This subfoliation will be referred to as the normal foliation.

Proposition 1 Let (M, F) be a Lorentzian manifold with a codimension 1 lightlike
foliation. Then F is totally geodesic if and only if its normal foliation V is leafwise
transversally Riemannian, that is, any vector field tangent to V preserves the
degenerate Riemannian metric on T F.

Proof This is precisely the equivalence between items (1) and (2) in Lemma 1.

This proposition allows us to give the following equivalent definition of Kundt
spaces, first pointed out and adopted in [2].

Definition 6 A Kundt space is a Lorentzian manifold with a non-singular geodesic
and lightlike vector field V, such that the orthogonal distribution V= is integrable,
tangent to a foliation F which is totally geodesic.

We also introduce the following broader class:

Definition 7 A locally Kundt space is a Lorentzian manifold with a codimension
1 totally geodesic lightlike foliation F.

We now state and prove the key lemma underlying Proposition 1 and this
reformulation.

Lemmal Let (M, g, V) be a Lorentzian manifold with a non-singular lightlike
vector field V. The following are equivalent:

1. The distribution V- is integrable, tangent to a totally geodesic foliation F.

2. The distribution V- is integrable. Moreover, for any leaf F tangent to V=, the

local flow of any vector field collinear to V preserves the degenerate Riemannian

metric induced on F.

The line field RV is parallel along any curve tangent to V.

4. There exists a differential 1-form a such that VxV = «a(X)V for any X €
rvh.

w

Proof (1) <= (2): Let Z be a vector field collinear to V. Item (2) means that for
any vector field X tangent to F and invariant by the flow of Z, g(X, X) is constant
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along the orbits of Z, that is, Vz g(X, X) = 0. Let X be such a vector field. We
have

Z(g(X, X)) =2g(VzX,X) =2¢(VxZ,X) = —2g(Z, VxX),

where we used the facts that [Z, X] = 0 and g(Z, X) = 0 in the intermediate steps.
Now, F is geodesic if and only if Vx X is tangent to F for any X € I'(T F). This
is equivalent to the condition g(Z, Vx X) = 0 for all such X. From the previous
equalities, we see that this is equivalent to Z(g(X, X)) = 0 and thus to the fact that
the flow of Z preserves the restriction of g to T F.

(1) == (3): Let F be a leaf of F. By assumption, the distribution T F is
parallel along any curve contained in F. Consequently, when we parallel transport
a line tangent to V along a curve in F, we obtain a lightlike line tangent to F. This
line must be equal to RV, since RV is the unique lightlike line tangent to F'.

(3) = (4): Let X be a vector field tangent to V. When we parallel transport
V along an integral curve of X, we obtain a vector field collinear to V, i.e., of the
form fV, where f is a function along the curve. This implies that VxV is also
collinear to V. Consequently, we can write VxV = «a(X)V, where « is a 1-form
given by @ := g(VV, U), with U being a globally defined vector field such that
gV, U)=1.

(4) == (1): Let X and Y be two vector fields tangent to the distribution V.
We have g(VxY, V) = —g(¥,VxV) = —a(X)g(Y, V) = 0. This implies that v+
is integrable and tangent to a totally geodesic foliation.

In particular, Kundt spaces include Lorentzian manifolds that admit a parallel
lightlike line field or have a lightlike Killing field with an integrable orthogonal
distribution.

Convention From now on, we assume that the manifold, the foliation, and the
subfoliation are orientable.

From Lemma 1, we also obtain a criterion for a codimension 1 foliation to be
lightlike, totally geodesic for some Lorentzian metric. We recall that a C* foliation
is one for which the transition maps of the defining atlas are of class C*.

Corollary 1 A given C*t! foliation F on a manifold M is lightlike geodesic for
some C* Lorentzian metric on M, if there is a one-dimensional subfoliation V, of
class C¥1, which is leafwise transversally Riemannian for some C* degenerate
Riemannian metric on T F.

Proof Let h be the C* degenerate Riemannian metric on 7' F. Define a codimension
2 distribution E on M such that E is tangent to F and transversal to V. Let V be
a non-singular vector field tangent to V), and let Z be a vector field transversal to
F. Such objects exist by our orientability assumption and can be defined using an
auxiliary Riemannian metric on M. Next, define a Lorentzian metric g on M by
setting g = hon TF, and g(X,Z2) =0, g(V,2) =1, g(Z,Z) = 0, for any
X € I'(E). Then, by Lemma 1, V- defines a lightlike totally geodesic foliation.



262 L. Mehidi and A. Zeghib

In dimension 3, this yields

Corollary 2 (A Simple Criterion in Dimension 3) Let M be a three-dimensional
manifold and F a foliation by surfaces. If F is lightlike geodesic for some Lo-
rentzian metric on M, then any unit vector field tangent to F preserves the one-
dimensional subfoliation V tangent to T F*. Conversely, assume that F contains
a one-dimensional subfoliation V of class C*1. If there exists a C* vector field
tangent to F, transversal to V, and preserving V, then F is a lightlike geodesic
foliation for some Lorentzian metric on M of class C*.

Proof Let F be a surface with a one-dimensional foliation V. Let & be a degenerate
Riemannian metric on F with radical TV, and let X be a unit vector field tangent to
F. We claim that V preserves # (i.e., the local flow of any vector field tangent to V
preserves h) if and only if X preserves V. To see this, denote by ¢} the flow of X,
and by d), the semi-distance associated to 4. The metric 4 is V-invariant if and only
if dy is V-invariant, which in turn is equivalent to the following property (J3): “for
any V-leaf [y, and any two pairs of points (p, ¢) and (p’, ¢’) such that p, p’ € Iy, the
distances dj,(p, q) and dy(p’, q) are equal if and only if ¢ and ¢’ are on the same
V-leaf” Let p € F and g := ¢%(p). Since X is a unit vector field, the distance
dn(p, q) = s is equal to the time of the flow between the two points. Consequently,
for any two points p, p’ on the same V-leaf Iy, dj(p, ¢>§?(p)) =dy(p/, ¢>§(1 (p")) if
and only if 5o = s1. Assume now that & is V-invariant. Then, for the distances above
to be equal, we must have ¢y (p) and ¢y (p’) on the same V-leaf, and this holds
for any initial V-leaf Iy and p, p’ € lyp. This means that the flow of X maps any
V-leaf to a V-leaf, i.e., that X preserves V. Conversely, if X preserves V), then any
other unit vector field also preserves )V, since it is necessarily of the form X 4+ fV
for some function f and some vector field V tangent to V. Thus, the property (%)
above is satisfied, which means that the semi-distance dj, is V-invariant. This proves
our claim. From this claim, it follows that V is leafwise transversally Riemannian if
and only if there exists a vector field tangent to JF, transversal to V), and preserving
V. With this in hand, the corollary is simply a reformulation in dimension 3 of
Proposition 1 and Corollary 1.

2.2 Examples

Explicit examples of (locally) Kundt spaces are given here. More examples can be
found in Sect. 4.

Example 1 (Minkowski Space) The Minkowski space is a Kundt space: any
foliation by lightlike hyperplanes is a lightlike totally geodesic foliation.

Example 2 (Anti-de Sitter Space) Denote by R2Z#+1 5 > 1, the real vector space
R3*" equipped with the quadratic form:

q = 2duidvy + 2duydvy + d)cl2 +...+ dx371
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of signature (2, n + 1). Then we define
AdS™" = {x € R*"!| q(x) = —1}.

It is immediate to check that AdS?*" is a smooth connected submanifold of R2+!
of dimension n + 2. The tangent space T AdS>H" regarded as a subspace of R3*"
coincides with the orthogonal space x+ = {y € R"*3| ¢(x, y) = 0}. The restriction
of the quadratic form g to TAdS>*" has Lorentzian signature, making AdS*™ a
Lorentzian manifold. This defines the so-called quadric model of anti-de Sitter space
of dimension n + 2.

The lightlike vector field V' := u20y, —u19,, acts on R>"+1 by the one parameter
group of diffeomorphisms f; (u1, vy, us, v2, x) = (u1, v1 + tuz, uz, v2 — tuy, Xx),
where x := (x1,...,x,—1). It is easy to see that these diffeomorphisms preserve
g, so V is a lightlike Killing field for g. Moreover, V is tangent to AdS**". So, V
is also a (lightlike) Killing vector field of AdS>*". The distribution V+ of R3*+"
is integrable, since it is generated by the vector fields 9y,, 9y,, 0y;, ..., dy,_,, and
110y, +u20y,. Thus, the distribution E := VLNTAdS*™" on the anti-de Sitter space
is integrable, tangent to a foliation . This foliation is lightlike, totally geodesic, and
has codimension one in AdS*™".

We now express the metric of Ad in a system of adapted coordinates. This
will allow us to define the so-called Siklos spaces in the next section, and see them as
locally Kundt spaces that generalize the anti-de Sitter space. Consider the half-space
H> .= AdS“*" N{u; < 0} and define the diffeomorphism ¢~ : R?*" — H2*"

yn>0

2 2 .
that sends (u, v, y, y,) € Ry";"o to (uy, v, uz, v2, x) € H>™, with

82+n

(1,1, w2, 02,00 = 377 (=1 G2 1y 1P v, w0, )

where y := (y1,..., yn—1),and | y ||2:= Z:':]l yiz. Under this map, the pullback
of the AdS**" metric takes the form

¢S = (y,)"2Qdudv + dy? + ... + dy?). ey

Similarly, we can define ¢t : Rijﬁo — H}_"’" = ADS N {u; > 0}
These coordinates (1) are known as the Poincaré coordinates on the (half) anti-
de Sitter space. The lightlike hyperplanes u =constant form a lightlike totally
geodesic foliation, denoted by §. Indeed, as it appears from (1), its normal foliation,
defined by the lightlike vector field 0,, is transversally Riemannian on each leaf.
In particular, the transversal metric induced on each leaf is the hyperbolic metric.
Moreover, since 9, is mapped by the diffeomorphisms ¢* on V, the image of §
by ¢~ (resp. 1) coincides with the restriction of the lightlike, totally geodesic
foliation F to the open subset H>™ (resp. Hi"'") of AdS>*".

A final observation in this example is that the foliation on H>*" extends to

a foliation on the manifold with boundary H*™" = H>™" U 9 H*™", where the
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boundary dH*" is a leaf of the extended foliation. This phenomenon is not specific

to this case but holds more generally, at least locally. Indeed, an important property,
shown in [20], is that codimension 1 geodesic foliations of manifolds with a c!
affine connection are locally Lipschitz. As observed there, given such a manifold Y,
and a foliation F defined on a subset X C Y, this property allows to extend F as a
foliation of the closure X N U »» for some (convex) neighborhood U, of any point
p € 0X. In this extended foliation, the boundary d X N U, becomes a boundary leaf.

Example 3 (Suspensions) Let (N, S) be a Riemannian manifold with a codimen-
sion 1 foliation S. Let f be a diffeomorphism of N that preserves both S and the
induced Riemannian metric on . The maps (x, t) — (f"(x),t +n), n € Z, define
a proper and free action of Z on the product N x R. Let M denote the quotient
manifold of N x R by this action, i.e., M := N x R/(x,t) ~ (f(x),t + 1). This is
called the suspension manifold of f. The vector field 9, on N x R is invariant under
this action, so it determines a nowhere vanishing vector field V on M. The flow of
V is called the suspension flow of f and defines a foliation which we denote by V.
Now, define F as the saturation of S by V. By Corollary 1, F is lightlike geodesic
for some Lorentzian metric on M, with V' as a normal foliation. Note in particular
that this metric is not a product of metrics on N and R.

Example 4 (A Torus Bundle over the Circle) Let g be a Lorentzian quadratic
form on RZ, and consider the flat Lorentzian torus (T2 = R2 /Zz, g). Let h €
Oz(g) := O(g) N GL(2,Z) be a hyperbolic matrix, i.e., & is real diagonalizable
with eigenvalues different from = 1. The matrix 4 naturally defines an action on
T2. Consider the suspension manifold of %, defined as M := T2 x R/(x,t) ~
(h(x),t+1). Endow M with the Lorentzian (flat) metric g induced from the product
metric g + dt? on T? x R. Let e1 be an eigenvector of . It determines a foliation V
on T2, and & acts as a diffeomorphism of T? that preserves this foliation. Define F
as the saturation of V by the suspension flow of 4. The foliation F is lightlike and
totally geodesic with respect to the metric g, with VV as a normal foliation.

Example 5 (Compact Quotients of AdS?) Consider the one-parameter subgroups

of SL(2, R) given by
J = e (3 nt = 10 .
0e! r1

We will give, for n = 1, another description of the Kundt structure on Ad
described in Example 2 and obtain such a structure also on (compact) quotients
of AdS®. There is a special model of anti-de Sitter space in dimension 3 which
naturally endows it with a Lie group structure. To construct this model, consider the
vector space M (2, R) of 2 x 2 real matrices. Then, ¢ := —det is a quadratic form
of signature (2, 2), so there is an isomorphic identification of (M (2, R), —det) with
R22 .= (R?**2, 2du dv; + 2dusdv;) (unique up to composition by an element in
0O(2, 2)). Under this isomorphism, the anti-de Sitter space AdS? is identified with
the Lie group SL(2, R).

S2+n



Introduction to Kundt Spaces 265

We now determine the Lorentzian metric induced by this identification. The
tangent space at the identity element I of SL(2, R) is identified with the Lie algebra
of SL(2, R), given by sl(2,R) := {A - (“ b ) ca,b,ce R}. The quadratic

Cc —da
form ¢ induces a quadratic form g on s(2, R) given by g(A) = —det(A) = a’—bc.
This form has Lorentzian signature. The group SL(2, R) x SL(2, R) acts linearly
on M (2, R) by left and right multiplication:

(A,B)-X := AXB™ L.

This action preserves both the quadratic form ¢ = —det and the subspace
SL(2, R). Thus, it induces an isometric action on SL(2, R) endowed with the
Lorentzian metric induced by ¢, and this action corresponds to left and right
multiplications. Therefore, with this model, one has a natural identification of
AdS® with (SL(2, R), gAds), Where gags is the Lorentzian metric obtained by left-
translating the quadratic form g on s((2, R). This metric is also right-invariant. In
particular, the right action of 4’ on SL(2, R) generates a lightlike Killing field on
it, which, up to applying an element of O(2,2) on R?*?, coincides with the one
described in Example 2.

Now, for any uniform lattice I" in SL(2, R), we have an induced Lorentzian
metric on the quotient manifold X := I'\SL(2, R), on which SL(2, R) acts
isometrically on the right. The right action of 4’ generates a lightlike Killing field
on X, and its orthogonal distribution defines a lightlike, totally geodesic foliation F.
This foliation is given by the right action of D x H on X = I'\SL(2, R), where D
and H are the one-parameter subgroups of SL(2, R) defined by D := {d’,t € R},
H:={h',t € R}

2.3 Actions of Lie Groups

Certain cohomogeneity 1 actions of Lie groups induce codimension 1 foliations that
can be made lightlike and totally geodesic for some Lorentzian metric. Some of the
examples discussed in the previous paragraph are of this type:

— In Example 3, let N be a two-dimensional torus, and let V denote the vector
field that generates the suspension flow. Consider X, a unit vector field tangent
to S. Since f preserves both & and the Riemannian metric induced on it, X is
preserved by f. Define a vector field XonN xR by setting X (x,t) = X(x).
This vector field commutes with the horizontal translation vector field 9;. Since
X is preserved by f, X descends to the quotient M, defining a non-vanishing
vector field on M that is tangent to JF, transversal to V, and commutes with V.
Hence, the foliation F is induced by an (locally free) action of R2.

— In contrast to the previous example, the gluing diffeomorphism 4 in Exam-
ple 4 preserves a one-dimensional foliation of T2 but it does not preserve a
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parametrization of its leaves. In this example, the foliation F is defined by a
locally free action of the affine group. To see this, let 4’ be a one-parameter group
of hyperbolic matrices in O(g) such that ! = h. Let e1 and e, be two distinct
eigenvectors of 1. We have h(e;) = Aej, h(ez) = A Ley, for some A € R*,
A # =£1. Then, for all r € R, the matrices 4’ have the same eigenvectors, and
we have h'(e;) = Mey, h'(es) = A7 'es. As seen in Example 4, the choice
of an eigenvector determines a fwo-dimensional foliation F on M, which is
tangent to the direction field generated by the chosen eigenvector on T2 and to
the suspension flow of &. Fix an eigenvector, say e, and define two vector fields
on T? x R by

1
Xx,t)=Mey, Y(x,t) = ﬁat.
n

Both descend to the quotient M, and they are tangent to . Moreover, they satisfy
the Lie bracket relation [Y, X] = X. Therefore, these vector fields generate the
Lie algebra of the affine group. Since they are complete, they induce a locally
free action of the affine group, defining the foliation F.

— In Example 5, the right action of D x H on X = I'\PSL(2, R) is locally free
and defines the foliation J. This group is isomorphic to the affine group.

These examples are particular cases of the following general situation. Let G be a
Lie group acting locally freely on a manifold M with codimension 1 orbits. Assume
that G has a normal, connected, 1-dimensional subgroup H. Denote by F the orbit
foliation of G and by V the subfoliation corresponding to H. Then

Proposition 2 There exists a Lorentzian metric on M such that F is lightlike and
totally geodesic, with V as normal foliation.

Proof Let Xy, ..., X4 be abasis of the Lie algebra of G, with X corresponding to
H. They determine fundamental vector fields X, ..., X4 on M, which span T F.
On T F, consider the degenerate Riemannian metric defined by: (X, X;) = 0 for
all i, and (X;, X;) = §;; for i, j # 0. Since H is normal, any bracket [Xo, X;] is
a multiple of X(. Consequently, the flow of X, corresponding to the action of H,
maps X; to a vector field of the form X; 4+ f X, for some function f. This shows
that )V preserves the degenerate Riemannian metric. The proposition then follows
directly from Corollary 1.

Example 6 In addition to Examples 3 (with N = T?), 4, and 5, Proposition 2
implies that any foliation of a three-dimensional manifold defined by a locally free
action of R? or Aff(R) can be made lightlike and totally geodesic with respect to
some Lorentzian metric.

Example 7 (Oscillator Group) Let Heis; denote the three-dimensional Heisen-
berg group, whose Lie algebra heis; = C @ R is generated by X, Y, Z, with the
only non-trivial Lie bracket [X, Y] = Z. Denote by C the center of Heis3, whose
Lie algebra is generated by Z. Consider a semi-direct product G, := St x o Heiss,
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where S! acts on Heis3 via a morphism p : S! — Aut(Heis3). Define a Lorentzian
scalar product on the Lie algebra g, as follows:

— (, ) : the usual Euclidean scalar product on C = R?,
- (T, T)=(Z,Z)=0,(T, Z) =1,
- RT®RZ LR~

Consider the left-invariant Lorentzian metric on G, induced by this scalar product.
The right action of Heisz on G, defines a left-invariant codimension 1 foliation F
of G,. In particular, the one-dimensional foliation V, generated by the right action
of C (the center of Heis3), is also left-invariant and therefore lightlike. On the other
hand, since C is a normal subgroup of G, the foliation V coincides with the one
defined by the left action of C. Indeed, for any x € G, we have xC x~! = C, hence
xC = Cx. So the left action of C generates a vector field tangent to V. This vector
field preserves the degenerate Riemannian metric induced on any leaf of F.

Therefore, the foliation V is transversally Riemannian on each leaf of F.
Consequently, F is lightlike, totally geodesic, with normal foliation given by V. In
the special case where the p-action of S! on Heiss is trivial on the center of Heis;
and acts by rotation on the C-factor, the resulting Lorentzian group G, has a bi-
invariant symmetric Lorentzian metric and is known as the oscillator group. Itis a
special example of a Cahen-Wallach space (see section “Cahen-Wallach Spaces”).
These spaces are important in the study of symmetric Lorentzian manifolds.

3 Anosov Flows and Kundt Spaces of Low Regularity

3.1 From Anosov Flows to Locally Kundt Structures

The last two examples in the previous paragraph belong to a more general family
of foliations, arising as the weak stable foliation of an Anosov flow. Recall that a
non-singular flow ¢’ of class C* on a compact three-manifold M is called Anosov
if there exists a decomposition of the tangent bundle 7'M into a direct sum of three
rank-1 subbundles, denoted by E*, E*, and E, such that the following properties
are satisfied:

1. E is the line bundle of the flow.

2. E* and E" are invariant under ¢’.

3. The stable distribution E* is uniformly contracted by ¢’, and the unstable
distribution E* is uniformly expanded by ¢’.

The plane fields £ @& E* and E @ E" define, respectively, what is called the
weak stable and weak unstable foliations of the Anosov flow. So the weak stable
foliation contains a one-dimensional subfoliation A/*, which is tangent to the stable
distribution E®. Similarly, the weak unstable foliation contains a subfoliation N*
tangent to E“, and the Anosov flow, which is tangent to the weak stable and the
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weak unstable foliations, preserves both A/* and N*. This structure suggests that
one could apply Corollary 2 to conclude that the weak stable and weak unstable
foliations of an Anosov flow are lightlike geodesic for some Lorentzian metric on
M. However, this argument faces a critical issue of regularity: for general (C*°)
Anosov flows, the distributions E£* and E* are only C 0 (see [8]). In fact, it is shown
in [19, Theorem 7] that if the weak stable foliation of an Anosov flow on a compact
three-manifold is lightlike geodesic for some C* metric, then, up to finite cover,
it is C* diffeomorphic to the weak stable foliation of an algebraic Anosov flow,
i.e., up to finite cover, the flow is either the geodesic flow of a compact hyperbolic
surface ¥, acting on its unitary tangent bundle 7' X, or it is the suspension of a
hyperbolic linear diffeomorphism of the 2-torus. The last two examples mentioned
in Par. 2.2 are precisely of this algebraic type:

— In Example 4, the flow of translations ¢’(x,s) = (x,s +t) acts on M =
T2 x R/(x,s) ~ (h(x),s + 1) as an Anosov flow. It is the suspension flow of
a hyperbolic linear diffeomorphism A of T2. This diffeomorphism preserves two
one-dimensional foliations on T2. And the weak stable and unstable foliations
on M are defined by saturating these foliations with the suspension flow.

— In Example 5, the foliation F is given by the right action of D x H on
X = I'\SL(2, R), where D and H are the one-parameter subgroups of SL(2, R)
defined by D := {d",t € R}, H := {h',t € R}. An easy computation gives

dthsdft — heXp(fzt)S and dt(hS)Tdfl — (hexp(Zt)S)T'

This shows that d’ acts as an Anosov flow on X. The weak stable foliation is
given by F, and the weak unstable foliation is defined by the right action of
Dx H" on X, where H' := {(h)",t € R}. Algebraically, the unit tangent
bundle of the 2-hyperbolic space is identified with the group SL(2, R)/{*I,} =
PSL(2, R). One can assume that I" is torsion-free, up to passing to a finite index
subgroup. This ensures that the (left) action of I" on the homogeneous space
SL(2, R)/SO(2) is proper and free. Since this homogeneous space is identified
with the rwo-hyperbolic space H?, the quotient I'\SL(2, R)/SO(2) defines a
hyperbolic surface I"\H?. Algebraically, the unit tangent bundle of the rwo-
hyperbolic space is identified with the group SL(2, R)/{£I,} = PSL(2, R),
so the unit tangent bundle of the hyperbolic surface I'\H? is identified with
I'\SL(2, R). The flow d’ introduced above corresponds precisely to the geodesic
flow on the unit tangent bundle of the hyperbolic surface I"\H? (for a proof, see,
for instance, [6, Chap. 9, Par. 9.2]).

As mentioned above, in both examples, the stable and unstable distributions are
C®°. In particular, the existence of a Kundt structure on them also follows from
Corollary 2. Observe that the Lorentzian metric yielding a Kundt structure is not
unique.
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3.2 Kundt Spaces of Low Regularity

The definition of a Kundt space involves a Lorentzian metric and a codimension 1
lightlike foliation F that is totally geodesic. To consider totally geodesic foliations,
a C! metric is required. However, the property that there exists a one-dimensional
subfoliation V, whose restriction to each leaf is transversally Riemannian, only
requires a C° metric. This property can be formulated as follows: for any points
P1, P2, 41, g2 on a leaf of F, and for any two curves y; and y» joining pj to p;
and g1 to g2, respectively, if p; and g; lie on the same V-leaf, then y; and y» have
the same length if and only if p, and ¢» lie on the same V-leaf. This allows us to
define a low-regularity locally Kundt structure as a manifold with a low-regularity
Lorentzian metric (which may be C?), admitting a codimension 1 lightlike foliation
JF with the aforementioned property.

Remark 1 (Hyperbolic 3-manifolds) In [7], the authors construct many examples
of hyperbolic 3-manifolds admitting Anosov flows with low regularity for their
stable and unstable foliations (see [7, Theorem 6.2]), giving rise to low regularity
Kundt structures.

4 Local vs. Global

4.1 Adapted Coordinates

Given a Lorentzian manifold (M, F) with a codimension 1 lightlike foliation F, we
denote by V the one-dimensional subfoliation tangent to 7 F.

Proposition 3 A Lorentzian (n +2)-dimensional manifold (M, F) with a codimen-
sion 1, lightlike totally geodesic foliation F admits local coordinates adapted to the
foliation, in which the metric has the following form:

n
g =2dudv+ H(u, v, x)a’u2 + Z Wi(u,v, x)dudxi + Zhij(u, x)dxidxj.
i=1 ij

2

Proof Consider a local (n + 1)-submanifold ¥ in M that is transversal to V (and
therefore also to ). The foliation F induces an n-dimensional foliation on X. Let
(u, x1, ..., x,) be coordinates on X' such that the leaves of F|x are given by the
levels of u. Define (locally) the vector field V along X' such that it is tangent to
and satisfies g(d,, V) = 1. For each point x € X, consider the lightlike geodesic
with initial velocity V,. These geodesics, parametrized by v, define a local flow on
M. Denote again by V the infinitesimal generator of this flow. Using the flow of V,
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extend the coordinate vector fields on X' to the saturation of the latter by the flow of
V. We obtain n + 2 commuting vector fields

U := 8u, V.= av, Xi = axi’

satisfying g(V,V) = 0 and VyV = 0. Now, observe that g(U, V) is constant
along the integral curves of V. Indeed, V(g(U, V)) = g(VyU, V)+g(U, VyV) =
g(VyV,V) 4+ 0 = 0. Since g(U, V) is constant along ', it follows that g(U, V)
is constant everywhere. Finally, the fact that F is totally geodesic is equivalent to
V being transversally Riemannian on every leaf of F, which in turn is equivalent to
the fact that the functions %;; do not depend on v.

4.2 Hierarchy

Kundt spaces with special form of coordinates give rise to well-known classes of
Lorentzian spaces, having some special geometry on the leaves:

Brinkmann Spaces Brinkmann spaces are Kundt spaces for which the foliation F
is tangent to a distribution V-, where V is a (global) lightlike parallel vector field.

For the metric (2), one can see that V := 9, is parallel if and only if the functions
H and W; do not depend on v, hence the following equivalent definition:

Fact 1 A Brinkmann space M is a Lorentzian manifold admitting a global vector
field V, such that any point of M admits a coordinate chart (u, v, x1, ..., X,) where
the metric takes the form

n
g =2dudv + H(u, x)du* + Y Wi(u, x)dudx' + " hjj(u,x)dx'dx’,  (3)
i=1 ij

with V = 9.
These coordinates are known as Brinkmann coordinates.

Example 8 Let G := R x Heisz denote a semi-direct product, where R acts on
Heis; by a one parameter group of automorphisms p () = ¢4, for some derivation
A € Der(heisz). Let (X, Y, Z) be a basis of heiss, such that [X, Y] = Z. Extend it
to abasis (T, X, Y, Z) of the Lie algebra g. Define a Lorentzian scalar product on g
as follows:

— {, ) :the usual Euclidean scalar product on R? = Spang (X, 7).
- (T, TY=({Z,Z2)=0,(T,Z) = 1.
- RT®RZ L R%

This scalar product induces a left-invariant Lorentzian metric g on G. We consider
the Lorentzian space (G, g). Denote by V' the right-invariant vector field on G gen-
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erated by Z. Since V is right-invariant, its flow corresponds to left multiplications
by a one parameter subgroup of G. This action is isometric, since the metric is left-
invariant, and thus, V is a Killing field. The Koszul formula for three Killing fields
U, V, W is given by

28(VyV, W) =g(IU, V], W) +g([V, W] U) — g(IW, U], V).

Applying this to V, one shows that VV = 0, meaning that V is a parallel vector
field. In particular, it is also lightlike. Hence, the space (G, g) is a homogeneous
Brinkmann space.

Compact Brinkmann spaces exhibit interesting geometric properties: their
geodesic completeness and the dynamics of the lightlike parallel flow are studied in
[14].

Weakly Brinkmann These are Lorentzian manifolds admitting a lightlike parallel
line bundle. In other words, they are locally Kundt spaces in which the line field
T F+ is parallel on M. These spaces are sometimes referred to as Walker manifolds,
which more broadly refer to pseudo-Riemannian manifolds with a parallel lightlike
distribution [9].

Fact 2 The metric of a weakly Brinkmann manifold has the form (2), where the
functions W; do not depend on v. The parallel lightlike line field is then given by
RO,.

Proof We use the same notations as in the proof of Proposition 3 for the coordinate
vector fields. Assume that the line field 7F~ is parallel on M, then T F is also
parallel. Consequently, Vy X; € I'(TF), so g(VyX;, V) = 0. On the other hand,
applying the Koszul formula yields 2g(Vy X;, V) = —V(g(U, X;)) = —d,W,,
which yields 9, W; = 0, hence the first implication. Conversely, suppose that the
W;’s do not depend on v (equivalently, that Vy X; € ['(TF) for all i). Since
g(X;, V) = 0, we have g(VyX;, V) = —g(X;, VyV), which implies, by our
assumption, that g(X;, VyV) = 0 for all i. On the other hand, 2g(V, Vy V) =
U(g(V,V)) =0.So VyV isorthogonal to F, hence collinear to V. Combined with
the fact that RV is parallel along the leaves of F (see Lemma 1), this proves that
RV is a parallel lightlike line field.

We wish to highlight a subtle phenomenon that occurs here, and that does
not occur in Riemannian signature. Let (M,[) be a weakly Brinkmann space,
with / a lightlike parallel line field on M. Locally, it is always possible to define
parallel lightlike vector fields spanning /. If [ were timelike or spacelike, then, by
passing to a time-orientable cover of M, one would obtain a global parallel vector
field spanning / by taking a constant-length section that is compatible with the
orientation. However, when [ is lightlike, there is no natural way to select a global
parallel section. In this case, time orientation does not help to patch together the
existing local parallel sections. Let us give a concrete example.
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Example 9 Consider again the Lorentzian space defined in Example 8. Keeping the
same notations, we have [T, w] = A(w) for all ® € heisy. Assume that A(Z) = Z,
sothat [T, Z] = Z. For w € g, let w denote the right-invariant vector field generated
by w. We claim that the line field RZ is left-invariant, but the vector field V := Z
is not left-invariant. Let us prove this. Since [w, Z] is collinear to Z for all € g,
the (right-invariant) vector field [, V'] is collinear to V for all w € g. This implies
that the line field RV is left-invariant, since the flow of a right-invariant vector field
corresponds to left multiplication by a one parameter subgroup of G. On the other
hand, the bracket [T, Z] = Z yields [T, V] = V. Thus, the vector field V is not
invariant by the left action of the R-factor in G. This proves the claim. Now, consider
the quotient space X := I'\G, where I is a discrete torsion-free subgroup of G.
Assume that I has a non-trivial projection to the R-factor. Then it contains elements
that act on V by scaling, sending V to AV, with A # 1. Consequently, only the
lightlike parallel line field RV descends to the quotient. Such a quotient is therefore
a weakly Brinkmann space.

A subclass of Brinkmann Spaces: pp-waves In a Brinkmann space, the codimen-
sion one foliation F is totally geodesic. Thus, for any vector fields X, Y tangent
to F, VxY is also tangent to F, inducing a connection on 7T.F. A pp-wave is a
Brinkmann space for which the leaves of F are flat with respect to this induced
connection.

Fact 3 A pp-wave is a Lorentzian manifold with a global vector field V, such that
each point admits local coordinates of the form (3), where W; = 0 and h =
Y (dx")? is the Euclidean metric of R". In these coordinates, V is represented
locally by 0. Thus, the metric of a pp-wave is locally given by

n
gu™ = 2dudv + H(u, x)du® +» (dx')*. (4)

i=1

Proof Consider a geodesic y (1) that is transversal to F and satisfies g(y'(r), V) =
1. Let (Xy,...,X,) be a frame field along y, where each X; is tangent to F,
transversal to V), and satisfies g(y’(fp), X;) = 0 at some point fy. Since the
distribution T F is parallel on M, the parallel transport of X; (y (f)) along y defines
a vector field along y which is tangent to F and transversal to V. Therefore, we
may assume that the frame field (X, ..., X,) is parallel along y. In particular,
gy’ (1), X;) = 0 for all . We assume further that the frame is orthonormal with
respect to the (degenerate) Riemannian metric on each leaf.

Now, extend the frame field (X1, ..., X)) to a parallel frame field along the
leaf of F containing y (¢). Since F is totally geodesic, this extension defines a frame
field in a neighborhood of y, which we denote again by (X1, ..., X,,), tangent to F
and parallel along each leaf. Finally, extend the vector field y’'(¢), defined along y,
by means of the flows of V and X; fori = 1, ..., n. We obtain a coordinate frame
field (U, V, X1, ..., X,) in a neighborhood of y that satisfies the aforementioned
properties.
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ey

@

Remark 2 A pp-wave generalizes the Minkowski space. When H = 0, g

We claim that g(U, V) = 1. To see this, first note that the flow of V is isometric
and preserves both V and U. Consequently, we have V(g(U, V)) = 0. Next,
using the Koszul formula, we write

28(Vx, V. U) = Xi(g(V,U)) + V(g(Xi, U)). &)

Since X; is also preserved by V, we have V(g(X;, U)) = 0. Moreover, V is
parallel, so Vy,V = 0. Then (5) yields X;(g(V,U)) = 0. Thus, g(V, U) is
constant along the leaves of F. Since it is also constant along the geodesic y, it
must be globally constant and hence equal to 1.

Next, we will show that g(U, X;) =0 foranyi = 1, ..., n. To begin, we will
show that

VyXi € RYV. (6)

Using successively the facts that [U, X;] = 0, g(U,V) = 1, and that V
is parallel, we write g(VyX;, V) = g(Vx,U, V) = —g(U,Vy, V) = 0. It
follows that Vi X; is orthogonal to V and hence can be written as Vy X; =
Y« fiXj+ ¢V, where f; and ¢ are smooth functions, and f; is zero along
y by construction. We will prove that f; is constant on the leaves of F. We
proceed in two steps, using the flatness of the leaves:

(a) By construction, Vx, X; = 0 for all j,k = 1,...,n. Using this, com-
pute Xi(g(VuXi. X)) = ¢(Vx,VuXi, X;) = g(R(Xy. U)X:, X;). On
the other hand, g(R(Xy, U)X;, X;) = g(R(X;, X;)Xx,U) = 0. Thus,
X (g(VuXi, X)) = 0; hence, f; = g(VyX;, X;) is constant along the
integral curves of Xy for any k.

(b) Similarly, V(g(VUX,', Xj)) = g(VVvUX,', Xj), since vaj = VXjV =
0. But g(VyVy X;, X;) = g(R(V,U)X;, X;) = g(R(X;,X;)V,U) = 0.
It follows that V(g(Vy X;, X)) = 0, proving that f; is constant along the
integral curves of V.

Therefore, f; is constant on each leaf of F, and since f; vanishes on the
curve y, which is transversal to F, it follows that f; = 0 everywhere, which
confirms (6).

Now, using (6), we write X ;(g(U, X;)) = g(VyX;, X;) = 0. Moreover, it
follows from (5) that g(U, X;) is constant on a leaf of V. So finally, g(U, X;) is
constant on a leaf of F. Since it is zero on y, which is transversal to JF, it must
be zero everywhere.

Mink ;
0 1S

the Minkowski metric.

Foliations with a Tangential Structure It is well known that a flat affine connec-
tion on a smooth (n + 1)-manifold is equivalent to a (Aff(R**1), R"*+1)-structure on
it. So when (M, F) is a pp-wave, the leaves of F inherit a tangential affine structure.
Moreover, the leaves of F admit a tangent parallel lightlike vector field V and an
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induced parallel degenerate Riemannian metric with radical RV. This endows the
leaves with a special affine geometry, referred to in [11] as the “affine unimodular
lightlike geometry” and denoted by (Ly(n), R"*!). This is a subgeometry of the
affine geometry, where Ly(n) = O(n) x Heisa, 1 is the subgroup of Aff(R"*1)
preserving the degenerate Riemannian scalar product ¢ := dx% —}-a'x32 +.. .+dx3 1
and the lightlike vector field dy,. This group Ly(n) is thus called the “affine

unimodular lightlike group.”

Plane Waves A plane wave is a specific class of pp-waves, in which the function H
in (4) is quadratic in the variables (x?), with coefficients that depend on u. Explicitly,
H(u,x) = x " S(u)x, where S(u) is a symmetric matrix depending on u. Thus, the
metric of a plane wave can be written locally as

n
g = 2dudv + x " S)x du® + ) "(dx')*. (7

i=1

The Algebra of Killing Fields Plane waves among Brinkmann spaces can also be
characterized through their local isometry algebra of Killing fields. Let go denote the
subalgebra of the isometry algebra that fixes a leaf of the F-foliation and preserves
the vector field V. From the definition of a pp-wave, it follows that there exists a
(faithful) representation

7 :go— o(n) X heisy, g,

where o(n) X heisy, | is the Lie algebra of the affine unimodular lightlike group.
It is a known result (see, for instance, [1]) that the Lie algebra of Killing fields of a
plane wave contains the Heisenberg algebra heis,, ;. We also have the converse:

Fact 4 ([11]) A plane wave is a pp-wave for which (go) contains beisy, ;.

Cahen-Wallach Spaces A Cahen-Wallach space is a plane wave with adapted local
coordinates of the form (7), where the matrix S(u) is constant (does not depend on u)
and non-degenerate. These spaces are characterized as indecomposable (reducible)
symmetric plane waves.

Siklos Spaces: A Hyperbolization of pp-waves Siklos spaces are another special
class of Kundt spaces, defined similarly to pp-waves, but with a different geometry
on the leaves: the induced Riemannian metric on V-/RV is the hyperbolic metric
instead of the Euclidean one. More precisely, a Siklos space has a local coordinate
system given by

Ads _ 2dudv + H(u, x)du® + euc,
i = ()2

)
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where euc,, is the Euclidean metric on the variable x = (xl, ..., x").ForH =0,
Mink
the metric becomes g@ds = i‘:n 5, which is the AdS-metric, a hyperbolization of

the Minkowski metric. A Siklos space is, on the other hand, a “hyperbolization” of
pp-waves, as

Mink
AdS _ 8H
H (xm)2’

and gl'\gi”k is the metric of a pp-wave.

Remark 3 A metric of the form g; = ¢% g, where g is Kundt and o is a function
that does not depend on v, is also Kundt. So Siklos spaces are obtained by a special
conformal change of pp-waves, within the broader class of Kundt spaces.

The following diagram sketches the hierarchy mentioned above (the arrows
indicate inclusions):

Totally geodesic
lightlike foliations

\

Kundt spaces

T

Kundt spaces with flat leaves Brinkmann spaces
pp-waves Siklos spaces

| |

Plane waves

T |

Cahen-Wallach spaces

T T

Minkowski space Anti-de Sitter space

5 Global Topology of Kundt Spaces

We assume here that the manifold M is compact. Thurston [18] has shown using
sophisticated topological tools that a manifold admits a codimension 1 foliation if
and only if its Euler characteristic is zero. Apart from this topological obstruction,
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codimension 1 foliations are extremely flexible. However, requiring the additional
condition that the foliation is lightlike and totally geodesic for some Lorentzian
metric is considerably more restrictive regarding the topology of the manifolds on
which such foliations can be defined.

Question 1 Given a compact manifold M with zero Euler characteristic, does it
admit a locally Kundt structure for some Lorentzian metric on M?

Question 2 Given a foliation F on a manifold M, is there a smooth Lorentzian
metric g on M such that F is lightlike and totally geodesic for g?

On the other hand, it is natural to ask whether these foliations coincide with those
that are geodesic with respect to some Riemannian metric.

5.1 Dimension 2

Up to a double cover, a Lorentzian surface is diffeomorphic to a torus. Any one-
dimensional foliation F on the 2-torus can be made lightlike geodesic for some
Lorentzian metric g. This can be achieved by defining a supplementary foliation F’
and taking g such that its lightcones are tangent to F and F'. In contrast, not every
foliation on the torus T2 can be geodesic for a Riemannian metric. In fact, a one-
dimensional foliation on T? is geodesic for a Riemannian metric if and only if it is
a suspension foliation. Let us explain this in more details.

In [10, Chap. IV], a smooth classification of the foliations of the 2-torus is given.
A smooth foliation on the 2-torus either contains a Reeb component (Fig. 1) or
is differentiably conjugate to the suspension foliation of a diffeomorphism of the
circle. We recall some definitions and facts from [10, Chap. IV].

(a) Suspension Foliations Let f be a diffeomorphism of the manifold N = S!.
Let M := N x R/(x,t) ~ (f(x),t + 1) be the suspension manifold of f. The
manifold M is diffeomorphic to the torus T2 if f € Difft(S) (i.e., if f preserves

e

X

Fig. 1 A Reeb component on R2. The foliation induced on T2 by the action of ZZ on R?: (x, y)
(x 4 n, y + m) is a Reeb component on T?
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orientation), and to the Klein bottle otherwise. The foliation on M determined by R
is called the suspension foliation of f.

Any foliation of T2 that has no Reeb components is smoothly conjugate to a
suspension foliation.

The suspension foliation is geodesible for a Riemannian metric on T2. Such a
metric can be constructed as follows. Let gg be an arbitrary Riemannian metric
on N. Define g; := f*go, the pullback of gy by f, and consider the family of
Riemannian metrics on N, depending on ¢t € R, given by g; := %(1 +cos(mt))go +
%(1 — cos(r1))g1. Then, the metric g; + dt> on N x R induces a metric on M. The
lines {p} xR, for p € N, are geodesics of N x R (while this can be checked directly,
one possible geometric argument is that the foliation orthogonal to these lines, given
by the fibers N x {t}, ¢t € R, is, by definition, transversally Riemannian). Therefore,
the leaves of the suspension foliation are geodesics of M.

(b) Foliations with Reeb Components In contrast, a foliation with a Reeb
component cannot be totally geodesic for a Riemannian metric. Indeed, it is well
known that a foliation F is totally geodesic with respect to a Riemannian metric
if and only if its orthogonal foliation G is transversally Riemannian. This means
the following property: for any two curves c¢; and ¢, of G, and for any two points
p1 € c1 and py € ¢; on the same leaf of F, the points p; and p, must be equidistant
with respect to the distance measured along the leaf of F. However, the presence of
a Reeb component in F implies that G also has a Reeb component. Hence, any two
such curves ¢ and ¢ have a limit cycle, which contradicts the previous property.

5.2 Dimension 3

Case of a Brinkmann Space In this discussion, we consider the case where F is
the foliation of a three-dimensional compact Brinkmann space; that is, F is tangent
to V1, with V being a parallel lightlike vector field for some Lorentzian metric. This
setting allows us to derive some topological consequences on the foliation. We will
make use of the following fact:

Fact 5 In dimension 3, any Brinkmann space is a pp-wave.

Proof Recall that since F is totally geodesic, the restriction of the Levi-Civita
connection to T F induces a connection on T F. In dimension 3, a leaf F of F is a
surface with a tangent lightlike parallel vector field V. Such a surface is necessarily
flat. To see this, let X be a (local) vector field tangent to F' and transversal to V.
Since V is parallel, we have R(X,Y)V = 0, for any Y € Span(X, V). Moreover,
for any Y, Z tangent to F, (R(X, V)Y, Z) = (R(Y, Z)X, V), and the latter vanishes
since TFL c RV. This yields R(X, V)Y = 0. This means that the Riemann
curvature tensor is identically zero; hence, F is flat with respect to the induced
connection.
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By Fact 5, F inherits a tangential affine unimodular lightlike structure coming
from the induced flat affine connection on 7 F. This structure forces topological
obstructions, which are detailed below. We assume that both the manifold and the
foliation are orientable.

A leaf F of the foliation can be homeomorphic to either a plane, a cylinder,
or a torus. Indeed, since compact pp-waves are geodesically complete [13], and F
is totally geodesic, F is complete with respect to the induced affine unimodular
lightlike structure (Ly(1), R?) = (O(1) x Heisz, R?) (this is completeness in the
sense of (G, X)-structures). Thus, the universal cover of F develops bijectively onto
R2. In particular, the image of the holonomy representation pr : 7 (F) — Heis;
(we assumed everything orientable) acts properly discontinuously and freely on R2,
which implies that 771 (F) is abelian. Therefore, F must be either a plane, a cylinder,
or a torus.

Furthermore, the foliation has no vanishing cycles. Recall that a vanishing cycle
of a foliation F on M is a mapping o : S' x I — M such that:

— Forany s € I, the oop ys := 01 () lies in a certain leaf of F.
— For s # 0, the loop ys is homotopic to zero in the leaf.
— Yo is not homotopic to zero.

A typical example of a foliation with a vanishing cycle is given by the Reeb foliation
on S*: a loop y on the compact fiber T2 of the Reeb foliation, which represents one
of the generators in 771 (T?), is a vanishing cycle. The holonomy along a vanishing
cycle is trivial. So the presence of a vanishing cycle in F contradicts the injectivity
of the holonomy representation mentioned above.

Case of a Locally Kundt Space More generally, we have the following result from
[19].

Theorem 6 ([19, Theorem 11]) Let F be a C° lightlike geodesic foliation in a
compact Lorentzian 3-manifold. Then:

— A leaf of F is homeomorphic to a plane, a cylinder, or a torus.
— F has no vanishing cycles.
— The universal cover is homeomorphic to R3, foliated by planes.

As a consequence, S does not admit a locally Kundt structure.

Remark 4 In dimension > 4, the universal cover of a compact Kundt space is not
necessarily contractible. For instance, consider the product manifold M := S' x S3
in dimension 4. Fix a base point p € S!, and consider a codimension 1 foliation F
on {p} x S?. Choose a vector field V tangent to S, which induces an S'-action on
M. Using the action of V, we extend the foliation F to a codimension 2 foliation
of M. We keep the same notation for the extended foliation. Next, let 4 be any
Riemannian metric on T F(,, 3, which we pull back using the S'-action of V to
define a Riemannian metric on 7' F. Now, take a vector field U on M that commutes
with V and is transversal to F. We define a Lorentzian metric g on M as follows:
g(V,V)=g(U,U)=0,g(U,V)=1,and g = h on T F. Thus, the foliation S' x
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F is lightlike and tangent to V. Moreover, by definition, the foliation determined
by V is transversally Riemannian on each leaf of S' x F. Consequently, S! x F is
totally geodesic for the metric g. Here, S® can be replaced by S**! for any [ > 1,
providing a similar example in any (even) dimension.

Remark 5 (Fundamental Groups of Compact Three-Dimensional Kundt
Spaces) The fundamental group of a compact three-dimensional Brinkmann
space is (virtually) solvable. However, Example 5 shows that the fundamental
group of a compact Kundt space can be non-solvable. In this particular example,
the manifold is a Seifert fiber manifold with a hyperbolic base (this is shown in
[12]), i.e., it is finitely covered by a circle bundle over a closed orientable surface of
genus > 2. Consequently, its fundamental group is (up to finite index) an extension
of a compact surface group of genus > 2 by an infinite normal cyclic subgroup
generated by a regular fiber. On the other hand, by Remark 1, Kundt spaces of lower
regularity allow a broader set of possible fundamental groups.

6 Dynamics Leads to a Kundt Structure

This section deals with homogeneous Lorentzian manifolds. We will see that a “big”
isotropy group leads to a structure close to that of a locally Kundt structure.

Theorem 7 ([21]) Let M be a homogeneous Lorentzian manifold with a non-
compact isotropy group. Then, M contains a lightlike totally geodesic hypersurface
(and, by homogeneity, such a hypersurface passes through any point of M ).

We follow the proof in [21]. Let H denote the isotropy group of a point p € M.
Consider an isometry f € H and its graph, Graph(f) € M x M. According to the
next lemma, Graph(f) is an isotropic, totally geodesic d-dimensional submanifold
of M x M, equipped with the metric g ® (—g) (where d := dim M). Recall that an
isotropic submanifold is one for which the metric restricted to the tangent bundle is
identically zero.

Lemma 2 Let (M, g) be a semi-Riemannian manifold of dimension n. Let [ €
Isom(M, g), and S := Graph(f) = {(x, f(x)),x € M}. Then S is an isotropic
totally geodesic submanifold of (M x M, g ® (—g)).

Proof We have T(, r(p)S = {(v,dpf(v),v € T, X} If V = (v,d,f(v)) is
tangent to S, then the geodesic in (M x M, g @ (—g)) tangent to V is given by
¥ = (y1, v2), with y; the geodesic in M such that y(0) = v, and y, the geodesic
in M such that yz’(O) = d, f(v). Since f is an isometry, we have y» = f o yj.
Therefore, y lies in §, showing that § is totally geodesic. The fact that S is isotropic
for g @ (—g) is straightforward.
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In fact, the property that S is totally geodesic also follows from the more general
observation below:

Fact 8 Let (M, h) be a semi-Riemannian manifold of dimension n = 2d and index
d. An isotropic submanifold S of M of dimension d is totally geodesic.

Proof Let X € I'(TS). We claim that for any Y € I'(TS), g(VxX,Y) = 0. To
prove this, write: h(VxX,Y) = Vxh(X,Y) — h(X, VxY). Since S is isotropic,
h(X,Y) =O0forall X,Y € I'(TS), so the first term of the sum vanishes. Thus,
h(VxX,Y)=—h(X, VxY).Next,since VxY —Vy X € I'(TS), we have h(VxY —
Vy X, X) = 0. This implies 7(VxY, X) = h(Vy X, X), which yields h(Vx X, Y) =
—h(VyX, X). But Vyh(X, X) = 2h(Vy X, X) = 0; our claim follows. This shows
that VxX € I'(T1S). Given that the index is 2d = n, we have T+S = TS.
Therefore, Vx X € I'(TS) for all X € I'(TS), proving that S is totally geodesic.

Now, let f, € H be a diverging sequence, meaning it has no convergent
subsequence. Consider the graphs S, := Graph(f,). By compactness of the
Grassmannian of d-dimensional subspaces of T,M x T, M, we can find a limit
L of a subsequence of S,,.

To give a formal meaning to this, consider a small convex neighborhood C of
(p, p) in M x M. This means that any two points in M can be joined by a unique
geodesic segment contained in M. Consider S, N C and let Sg denote the connected
component of (p, p) in S, N C. Now, one can give sense to the convergence of the
graphs S, exactly as in the situation of affine subspaces in an affine flat space. More
precisely, SO converge to L if the tangent spaces T{,. ) SY converge to T(p, »)L.

Such a limit L is an isotropic, totally geodesic submanifold of M x M of
dimension equal to dim M. However, L is no longer the graph of some map
f M — M, since otherwise f, would converge to f.

Thus, the intersection of L with {p} x M is non-trivial, but has at most
dimension 1, because the intersection is isotropic and M is Lorentzian. Therefore,
the projection L’ of L onto M x {p} is a totally geodesic hypersurface in M x {p}.

To show that L’ is lightlike, consider vectors (X, Y) and (0, Yy) € TL. Then
(X,Y — Yy) € TL is isotropic for g & (—g), which implies that g(Y, Yp) = 0O for
any Y € p>(TL). Moreover, we obtain g(X, X) = g(¥,Y) > 0. In particular, the
projection p(T'L) spans a lightlike subspace, of dimension > n — 1. Thus, L/,
which has dimension n — 1, must contain a lightlike vector, as otherwise, p(T L)
would contain a subspace of dimension #n — 1 on which the metric is positive definite,
contradicting the presence of a lightlike vector orthogonal to it. Hence, L’ is a
lightlike subspace.

This completes the proof of Theorem 7.

Comment We have shown that on a homogeneous Lorentzian manifold M with a
non-compact isotropy group, there exists a lightlike totally geodesic hypersurface
through every point of M. However, in order for M to admit a locally Kundt
structure, there must be a collection of hypersurfaces with a local product structure.
This occurs, for example, if the hypersurface through a point p € M (and hence,
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through any point of M) is unique. More generally, an interesting question is to
investigate under which conditions this setup leads to a locally Kundt structure.
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