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Abstract This paper provides an introduction to Kundt spaces, clarifying several 
important properties, many of which are typically scattered across the mathematical 
literature or presented without explicit reference to Kundt terminology. While not 
exhaustive, our approach aims to offer a pedagogical introduction, using a more 
geometric language and focusing on key concepts directly related to these spaces,
such as lightlike totally geodesic foliations.
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1 Introduction

Kundt spaces play a significant role in general relativity and mathematical physics. 
They constitute the underlying (as well as a unifying) structure for many Lorentzian 
spaces arising in general relativity and alternative gravity theories, including plane 
waves, pp-waves, and Siklos spaces. Our motivation here is to provide an introduc-
tion to the mathematics of Kundt spaces through a coordinate-free approach, which
is hard to find in the general relativity literature. We gather and present important
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properties and key concepts related to those spaces, often dispersed across the 
mathematical literature and sometimes presented without use of this terminology .
This text is not intended to be exhaustive; several aspects are intentionally left out.

1.1 Some V ocabulary

We introduce here some vocabulary:

Definition 1 Let M be a Lorentzian manifold. A vector subspace E of the tangent
space TxM . at x is said to be lightlike if the restriction of the metric to E is
degenerate.

By analogy, we say that a submanifold S ⊂ M . is lightlike if for any point x ∈ S ., 
TxS . is lightlik e.

Given a non-singular vector field V on M which is lightlike (i.e., V (x). is 
lightlike, for all x ∈ M .), the distribution V ⊥

. is lightlike, and the quotient bundle
V ⊥/RV . inherits a Riemannian metric.

Definition 2 Let M be a Lorentzian manifold, and let V be a non-singular lightlike 
vector field on M . The vector field V is said to be geodesic if it satisfies ∇V V = 0.. 
In other words, the parameterized orbits of V are geodesics.

A non-singular geodesic lightlike vector field defines a family of lightlike geodesics 
that fill the space, forming what is known as a null geodesic congruence. The fol-
lowing terminology can be found in [16], in the chapter entitled “null congruences,”
or in [17]: 

Definition 3 Let M be a Lorentzian manifold. Let V be a non-singular lightlik e
vector field on M . Then V is said to be:

1. Twist-free if the distribution V ⊥
. is integrable, hence tangent to a foliation F .. In  

this case, the leaves of F . are lightlike, in which case we say that the foliation is
lightlike.

2. Shear-free if the flow of V preserv es the conformal Riemannian structure on
V ⊥/V .. 

3. Divergence-free if the flow of V preserves the volume form of V ⊥/V .. 

A conformal map preserving the volume is necessarily an isometry. Consequently, 
V is twist-free, shear-free, and divergence-free if and only if V ⊥

. is integrable, and 
the (local) flow of V (and hence the local flow of any vector field tangent to V )
preserves the Riemannian metric induced on V ⊥/V .. The foliation V ., defined by 
such a vector field V , is said to be “transversally Riemannian” when restricted to
any leaf of the foliation F ..
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1.2 Kundt Spaces

A Kundt space is defined in the literature as a Lorentzian manifold with a non-
singular lightlike vector field V which is geodesic, twist-free, shear-free, and
divergence-free (see, for instance, [3–5]). For a detailed account of their significance 
in general relativity, we refer to the book [17], a comprehensive reference on exact 
solutions to Einstein’s field equations in general relativity. This book discusses 
K undt spaces, including the properties of null geodesic congruences and their role
in defining Kundt geometries.

The conditions of being twist-free, shear-free, and divergence-free, or equiva-
lently, the “transversally Riemannian” property of the foliation V . when restricted 
to any leaf of F ., turn out to be equivalent to another geometric property: F . 

being a lightlike, totally geodesic foliation. This equivalence was observed in [19], 
where codimension one lightlike totally geodesic foliations are studied. In Sect. 2, 
we review this equivalence as the first key result, enabling Kundt spaces to be 
characterized in terms of totally geodesic foliations. This key concept is recalled
below:

Definition 4 Let M be a semi-Riemannian manifold. A submanifold L ⊂ M . is 
totally geodesic if any geodesic in M which is somewhere tangent to L is locally
contained in L: if γ (t). is a geodesic of M defined in a neighborhood of 0, and if
γ (0) ∈ Tγ (0)L., then γ (t) ∈ L. in a neighborhood of 0. Equiv alently, the space of
C1

.vector fields tangent to L is invariant under covariant derivation ( this equivalence
holds for any torsion-free connection).

Definition 5 A totally geodesic foliation F . of M is a foliation whose leaves are 
totally geodesic submanifolds of M .

In Sect. 4, we derive the local form of the metric for a Kundt space. By 
specializing to certain simplified metric forms, we identify several well-known
subfamilies, including Brinkmann spaces and Siklos spaces.

1.3 Topology and Dynamics

It is well known that a smooth compact manifold admits a Lorentzian metric if 
and only if it has zero Euler number, as discussed in [15, Proposition 37, p. 149]. 
However, the existence of a Kundt structure introduces additional topological 
obstructions, due to the presence of a lightlike totally geodesic foliation. This
is addressed in Sect. 5, starting with the straightforward two-dimensional case 
and extending to the three-dimensional case. Another interesting question in this 
context is: what dynamics lead to a Kundt (or locally Kundt) structure? Here, 
“dynamics” refers to the action of the isometry group. The result we will review
in the final section is that, in the homogeneous case, a “big” isotropy group leads to
a structure that closely resembles a locally Kundt structure.
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2 Generalities: The Mathematics Behind Kundt Spaces

2.1 Totally Geodesic Lightlik e Foliations

Codimension 1 totally geodesic and lightlike foliations are studied in [19]. As 
shown in Proposition 1, such a foliation is characterized by the fact that it 
contains a subfoliation of dimension 1 whose restriction to each leaf is transversally
Riemannian.

Notation Throughout this paper, for a Lorentzian manifold (M,F). with a codi-
mension 1 lightlike foliation F ., we denote by V . the one-dimensional subfoliation 
tangent to TF⊥

.. This subfoliation will be referred to as the normal foliation.

Proposition 1 Let (M,F). be a Lorentzian manifold with a codimension 1 lightlike
foliation. Then F . is totally geodesic if and only if its normal foliation V . is leafwise 
transversally Riemannian, that is, any vector field tangent to V . preserves the 
degenerate Riemannian metric on TF .. 

Proof This is precisely the equivalence between items (1) and (2) in Lemma 1. 

This proposition allows us to give the following equivalent definition of Kundt
spaces, first pointed out and adopted in [2]. 

Definition 6 A Kundt space is a Lorentzian manifold with a non-singular geodesic 
and lightlike vector field V , such that the orthogonal distribution V ⊥

. is integrable, 
tangent to a foliation F . which is totally geodesic.

We also introduce the follo wing broader class:

Definition 7 A locally Kundt space is a Lorentzian manifold with a codimension
1 totally geodesic lightlike foliation F .. 

We now state and prove the key lemma underlying Proposition 1 and this 
reformulation.

Lemma 1 Let (M, g, V ). be a Lorentzian manifold with a non-singular lightlike 
vector field V . The following are equivalent:

1. The distribution V ⊥
. is integrable, tangent to a totally geodesic foliation F .. 

2. The distribution V ⊥
. is integrable. Moreover, for any leaf F tangent to V ⊥

.,  the  
local flow of any vector field collinear to V pr eserves the degenerate Riemannian
metric induced on F .

3. The line field RV . is parallel along any curve tangent to V ⊥
.. 

4. There exists a differential 1-form α . such that ∇XV = α(X)V . for any X ∈
Γ (V ⊥).. 

Proof (1) ⇐⇒. (2): Let Z be a vector field collinear to V . Item (2) means that for 
any vector field X tangent to F and invariant by the flow of Z, g(X,X). is constant
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along the orbits of Z, that is, ∇Z g(X,X) = 0.. Let  X be such a vector field. We
have

. Z(g(X,X)) = 2g(∇ZX,X) = 2g(∇XZ,X) = −2g(Z,∇XX),

where we used the facts that [Z,X] = 0. and g(Z,X) = 0. in the intermediate steps. 
Now, F is geodesic if and only if ∇XX . is tangent to F for any X ∈ Γ (T F).. This  
is equivalent to the condition g(Z,∇XX) = 0. for all such X. From the previous 
equalities, we see that this is equivalent to Z(g(X,X)) = 0. and thus to the fact that 
the flow of Z preserv es the restriction of g to T F .

(1) . (3): Let F be a leaf of F .. By assumption, the distribution T  F  is 
parallel along any curve contained in F . Consequently, when we parallel transport 
a line tangent to V along a curve in F , we obtain a lightlike line tangent to F . This
line must be equal to RV ., since RV . is the unique lightlike line tangent to F .

(3) . (4): Let X be a vector field tangent to V ⊥
.. When we parallel transport 

V along an integral curve of X, we obtain a vector field collinear to V , i.e., of the
form f V , where f is a function along the curve. This implies that ∇XV . is also 
collinear to V . Consequently, we can write ∇XV = α(X)V ., where α . is a 1-form 
given by α := g(∇V,U)., with U being a globally defined vector field such that
g(V,U) = 1.. 

(4) . (1): Let X and Y be two vector fields tangent to the distribution V ⊥
.. 

We have g(∇XY, V ) = −g(Y,∇XV ) = −α(X)g(Y, V ) = 0.. This implies that V ⊥
. 

is integrable and tangent to a totally geodesic foliation.

In particular, Kundt spaces include Lorentzian manifolds that admit a parallel 
lightlike line field or ha ve a lightlike Killing field with an integrable orthogonal
distribution.

Convention From now on, we assume that the manifold, the foliation, and the
subfoliation are orientable.

From Lemma 1, we also obtain a criterion for a codimension 1 foliation to be 
lightlike, totally geodesic for some Lorentzian metric. We recall that a Ck

. foliation 
is one for which the transition maps of the defining atlas are of class Ck

.. 

Corollary 1 A given Ck+1
. foliation F . on a manifold M is lightlik e geodesic for

some Ck
. Lorentzian metric on M , if there is a one-dimensional subfoliation V .,  o  f

class Ck+1
., which is leafwise transversally Riemannian for some Ck

. degenerate 
Riemannian metric on TF .. 

Proof Let h be the Ck
. degenerate Riemannian metric on TF .. Define a codimension 

2 distribution E on M such that E is tangent to F . and transversal to V .. Let  V be 
a non-singular vector field tangent to V ., and let Z be a v ector field transversal to
F .. Such objects exist by our orientability assumption and can be defined using an 
auxiliary Riemannian metric on M . Next, define a Lorentzian metric g on M by
setting g = h. on TF ., and g(X,Z) = 0., g(V,Z) = 1., g(Z,Z) = 0., for an y
X ∈ Γ (E).. Then, by Lemma 1, V ⊥

. defines a lightlike totally geodesic foliation.
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In dimension 3, this yields

Corollary 2 (A Simple Criterion in Dimension 3) Let M be a three-dimensional
manifold and F . a foliation by surfaces. If F . is lightlike geodesic for some Lo-
rentzian metric on M , then any unit vector field tangent to F . preserves the one-
dimensional subfoliation V . tangent to TF⊥

.. Conversely, assume that F . contains 
a one-dimensional subfoliation V . of class Ck+1

.. If there exists a Ck
. vector field 

tangent to F ., transversal to V ., and preserving V ., then F . is a lightlike geodesic 
foliation for some Lorentzian metric on M of class Ck

.. 

Proof Let F be a surface with a one-dimensional foliation V .. Let  h be a degenerate 
Riemannian metric on F with radical T V ., and let X be a unit vector field tangent to
F . We claim that V . preserves h (i.e., the local flow of any vector field tangent to V . 

preserves h) if and only if X preserves V .. To see this, denote by φt
X . the flow of X ,

and by dh . the semi-distance associated to h. The metric h is V .-invariant if and only
if dh . is V .-invariant, which in turn is equivalent to the following property (P).: “for  
an y V .-leaf l0 ., and any two pairs of points (p, q). and (p , q ). such that p, p ∈ l0 ., the  
distances dh(p, q). and dh(p , q ). are equal if and only if q and q . are on the same
V .-leaf.” Let p ∈ F . and q := φs

X(p).. Since X is a unit vector field, the distance
dh(p, q) = s . is equal to the time of the flow between the tw o points. Consequently,
for any two points p, p . on the same V .-leaf l0 ., dh(p, φ

s0
X (p)) = dh(p , φ

s1
X (p )). if 

and only if s0 = s1 .. Assume now that h is V .-invariant. Then, for the distances above 
to be equal, we must have φ

s0
X (p). and φ

s0
X (p ). on the same V .-leaf, and this holds 

for any initial V .-leaf l0 . and p, p ∈ l0 .. This means that the flow of X maps any
V .-leaf to a V .-leaf, i.e., that X preserves V .. Conversely, if X preserves V ., then any 
other unit vector field also preserves V ., since it is necessarily of the form X + f V . 

for some function f and some vector field V tangent to V .. Thus, the property (P). 

above is satisfied, which means that the semi-distance dh . is V .-invariant. This proves 
our claim. From this claim, it follows that V . is leafwise transversally Riemannian if 
and only if there exists a vector field tangent to F ., transversal to V ., and preserving
V .. With this in hand, the corollary is simply a reformulation in dimension 3 of
Proposition 1 and Corollary 1. 

2.2 Examples 

Explicit examples of (locally) Kundt spaces are given here. More examples can be
found in Sect. 4. 

Example 1 (Minkowski Space) The Minkowski space is a Kundt space: any 
foliation by lightlike hyperplanes is a lightlike totally geodesic foliation.

Example 2 (Anti-de Sitter Space) Denote by R
2,n+1

., n ≥ 1., the real v ector space
R

3+n
. equipped with the quadratic form:

.q := 2du1dv1 + 2du2dv2 + dx2
1 + . . . + dx2

n−1



Introduction to Kundt Spaces 263

of signature (2, n + 1).. Then we define

. AdS2+n := {x ∈ R
2,n+1| q(x) = −1}.

It is immediate to check that AdS2+n
. is a smooth connected submanifold of R2,n+1

. 

of dimension n + 2.. The tangent space TxAdS
2+n

. regarded as a subspace of R3+n
. 

coincides with the orthogonal space x⊥ = {y ∈ R
n+3| q(x, y) = 0}.. The restriction 

of the quadratic form q to TAdS2+n
. has Lorentzian signature, making AdS2+n

. a 
Lorentzian manifold. This defines the so-called quadric model of anti-de Sitter space
of dimension n + 2.. 

The lightlike vector field V := u2∂v1 −u1∂v2 . acts on R
2,n+1

.by the one parameter 
group of diffeomorphisms ft (u1, v1, u2, v2, x) = (u1, v1 + tu2, u2, v2 − tu1, x)., 
where x := (x1, . . . , xn−1).. It is easy to see that these diffeomorphisms preserve 
q, so  V is a lightlike Killing field for q. Moreover, V is tangent to AdS2+n

.. So, V 
is also a (lightlike) Killing vector field of AdS2+n

.. The distribution V ⊥
. of R3+n

. 

is integrable, since it is generated by the vector fields ∂v1 ., ∂v2 ., ∂x1 , . . . , ∂xn−1 ., and 
u1∂u1+u2∂u2 .. Thus, the distribution E := V ⊥∩TAdS2+n

.on the anti-de Sitter space 
is integrable, tangent to a foliation F .. This foliation is lightlike, totally geodesic, and
has codimension one in AdS2+n

.. 
We now express the metric of AdS2+n

. in a system of adapted coordinates. This 
will allow us to define the so-called Siklos spaces in the next s ection, and see them as
locally Kundt spaces that generalize the anti-de Sitter space. Consider the half-space
H 2+n− := AdS2+n ∩{u1 < 0}. and define the diffeomorphism ϕ− : R

2+n
yn>0 → H 2+n− . 

that sends (u, v, y, yn) ∈ R
2+n
yn>0 . to (u1, v1, u2, v2, x) ∈ H 2+n− ., with 

. (u1, v1, u2, v2, x) = y−1
n −1, (y2

n y 2 +uv), u, v, y ,

where y := (y1, . . . , yn−1)., and y 2:= n−1
i=1 y2

i .. Under this map, the pullback
of the AdS2+n

. metric takes the form

.gAdS = (yn)
−2(2dudv + dy2

1 + . . . + dy2
n). (1) 

Similarly, we can define ϕ+ : R
2+n
yn<0 → H 2+n+ := AdS2+n ∩ {u1 > 0}.. 

These coordinates (1) are known as the Poincaré coordinates on the (half) anti-
de Sitter space. The lightlike hyperplanes u =.constant form a lightlike totally 
geodesic foliation, denoted by F.. Indeed, as it appears from (1), its normal foliation, 
defined by the lightlike vector field ∂v ., is transversally Riemannian on each leaf. 
In particular, the transversal metric induced on each leaf is the hyperbolic metric.
Moreover, since ∂v . is mapped by the diffeomorphisms ϕ±

. on V , the image of F. 

by ϕ−
. (resp. ϕ+

.) coincides with the restriction of the lightlike, totally geodesic
foliation F . to the open subset H 2+n− . (resp. H 2+n+ .) of AdS2+n

.. 
A final observation in this example is that the foliation on H 2+n− . extends to 

a foliation on the manifold with boundary H 2+n− = H 2+n− ∪ ∂H 2+n− ., where the
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boundary ∂H 2+n− . is a leaf of the extended foliation. This phenomenon is not specific 
to this case but holds more generally, at least locally. Indeed, an important property,
shown in [20], is that codimension 1 geodesic foliations of manifolds with a C1

. 

affine connection are locally Lipschitz. As observed there, given s uch a manifold Y ,
and a foliation F . defined on a subset X ⊂ Y ., this property allows to extend F . as a 
foliation of the closure X ∩ Up ., for some (convex) neighborhood Up . of any point
p ∈ ∂X .. In this extended foliation, the boundary ∂X∩Up . becomes a boundary leaf.

Example 3 (Suspensions) Let (N,S). be a Riemannian manifold with a codimen-
sion 1 foliation S .. Let  f be a diffeomorphism of N that preserves both S . and the 
induced Riemannian metric on S .. The maps (x, t) (f n(x), t + n)., n ∈ Z., define 
a proper and free action of Z. on the product N × R.. Let  M denote the quotient
manifold of N ×R. by this action, i.e., M := N ×R/(x, t) ∼ (f (x), t + 1).. This is  
called the suspension manifold of f . The vector field ∂t . on N ×R. is invariant under 
this action, so it determines a nowhere vanishing vector field V on M . The flow of 
V is called the suspension flow of f and defines a foliation which we denote by V .. 
Now, define F . as the saturation of S . by V .. By Corollary 1, F . is lightlike geodesic 
for some Lorentzian metric on M , with V . as a normal foliation. Note in particular 
that this metric is not a product of metrics on N and R.. 

Example 4 (A Torus Bundle over the Circle) Let q be a Lorentzian quadratic
form on R

2
., and consider the flat Lorentzian torus (T2 = R

2/Z2, q).. Let  h ∈
OZ(q) := O(q) ∩ GL(2,Z). be a hyperbolic matrix, i.e., h is real diagonalizable 
with eigenvalues different from ± 1.. The matrix h naturally defines an action on
T

2
.. Consider the suspension manifold of h, defined as M := T

2 × R/(x, t) ∼
(h(x), t +1).. Endow M with the Lorentzian (flat) metric g induced from the product
metric q + dt2

. on T
2 ×R.. Let  e1 . be an eigenvector of h. It determines a foliation V . 

on T2
., and h acts as a diffeomorphism of T2

. that preserves this foliation. Define F . 

as the saturation of V . by the suspension flow of h. The foliation F . is lightlike and 
totally geodesic with respect to the metric g, with V . as a normal foliation.

Example 5 (Compact Quotients of AdS3
.) Consider the one-parameter subgroups

of SL(2,R). given by 

. dt = et 0
0 e−t , ht = 1 0

t 1
.

We will give, for n = 1., another description of the Kundt structure on AdS2+n
. 

described in Example 2 and obtain such a structure also on (compact) quotients
of AdS3

.. There is a special model of anti-de Sitter space in dimension 3 which 
naturally endows it with a Lie group structure. To construct this model, consider the
vector space M(2,R). of 2 × 2. real matrices. Then, q := −det. is a quadratic form 
of signature (2, 2)., so there is an isomorphic identification of (M(2,R),−det). with 
R

2,2 := (R2+2, 2du1dv1 + 2du2dv2). (unique up to composition by an element in
O(2, 2).). Under this isomorphism, the anti-de Sitter space AdS3

. is identified with 
the Lie group SL(2,R)..
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We now determine the Lorentzian metric induced by this identification. The
tangent space at the identity element I2 . of SL(2,R). is identified with the Lie algebra

of SL(2,R)., given by sl(2,R) := A = a b

c −a
; a, b, c ∈ R .. The quadratic 

form q induces a quadratic form q̄ .on sl(2,R).given by q̄(A) = −det(A) = a2−bc.. 
This form has Lorentzian signature. The group SL(2,R) × SL(2,R). acts linearly 
on M(2,R). by left and right multiplication:

. (A,B) · X := AXB−1.

This action preserves both the quadratic form q = −det. and the s ubspace
SL(2,R).. Thus, it induces an isometric action on SL(2,R). endowed with the 
Lorentzian metric induced by q, and this action corresponds to left and right
multiplications. Therefore, with this model, one has a natural identification of
AdS3

. with (SL(2,R), gAdS)., where gAdS . is the Lorentzian metric obtained by left-
translating the quadratic form q̄ . on sl(2,R).. This metric is also right-invariant. In 
particular, the right action of ht

. on SL(2,R). generates a lightlike Killing field on 
it, which, up to applying an element of O(2, 2). on R

2,2
., coincides with the one 

described in Example 2. 
Now, for any uniform lattice Γ . in SL(2,R)., we have an induced Lorentzian 

metric on the quotient manifold X := Γ \SL(2,R)., on which SL(2,R). acts 
isometrically on the right. The right action of ht

. generates a lightlike Killing field 
on X, and its orthogonal distribution defines a lightlike, totally geodesic foliation F .. 
This foliation is given by the right action of D H . on X = Γ \SL(2,R)., where D 
and H are the one-parameter subgroups of SL(2,R). defined by D := {dt , t ∈ R}., 
H := {ht , t ∈ R}.. 

2.3 Actions of Lie Groups

Certain cohomogeneity 1 actions of Lie groups induce codimension 1 foliations that 
can be made lightlike and totally geodesic for some Lorentzian metric. Some of the
examples discussed in the previous paragraph are of this type:

– In Example 3, let  N be a two-dimensional torus, and let V denote the vector 
field that generates the suspension flow. Consider X, a unit vector field tangent
to S .. Since f preserves both S . and the Riemannian metric induced on it, X is 
preserved by f . Define a vector field X̂ . on N × R. by setting X̂(x, t) = X(x).. 
This vector field commutes with the horizontal translation vector field ∂t .. Since 
X is preserved by f , X̂ . descends to the quotient M , defining a non-vanishing 
vector field on M that is tangent to F ., transversal to V ., and commutes with V .
Hence, the foliation F . is induced by an (locally free) action of R2

.. 
– In contrast to the previous example, the gluing diffeomorphism h in Exam-

ple 4 preserves a one-dimensional foliation of T
2
. but it does not preserve a
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parametrization of its leaves. In this example, the foliation F . is defined by a 
locally free action of the affine group. To see this, let ht

. be a one-parameter group 
of hyperbolic matrices in O(q). such that h1 = h.. Let  e1 . and e2 . be two distinct 
eigenvectors of h. We have h(e1) = λe1 ., h(e2) = λ−1e2 ., for some λ ∈ R

∗
., 

λ = ±1.. Then, for all t ∈ R., the matrices ht
. have the same eigenvectors, and 

we have ht (e1) = λte1 ., ht (e2) = λ−t e2 .. As seen in Example 4, the choice 
of an eigenvector determines a two-dimensional foliation F . on M , which is 
tangent to the direction field generated by the chosen eigenvector on T

2
. and to 

the suspension flow of h. Fix an eigenvector, say e1 ., and define two v ector fields
on T

2 × R. by 

. X(x, t) = λte1, Y (x, t) = 1

ln λ
∂t .

Both descend to the quotient M , and they are tangent to F .. Moreover, they satisfy 
the Lie bracket relation [Y,X] = X .. Therefore, these vector fields generate the 
Lie algebra of the affine group. Since they are complete, they induce a locally
free action of the affine group, defining the foliation F .. 

– In Example 5, the right action of D H . on X = Γ \PSL(2,R). is locally free 
and defines the foliation F .. This group is isomorphic to the affine group.

These examples are particular cases of the following general situation. Let G be a 
Lie group acting locally freely on a manifold M with codimension 1 orbits. Assume
that G has a normal, connected, 1-dimensional subgroup H . Denote by F . the orbit 
foliation of G and by V . the subfoliation corresponding to H . Then

Proposition 2 There exists a Lorentzian metric on M such that F . is lightlike and 
totally geodesic, with V . as normal foliation.

Proof Let X0, . . . , Xd . be a basis of the Lie algebra of G, with X0 . corresponding to 
H . They determine fundamental vector fields X0, . . . , Xd . on M , which span TF .. 
On TF ., consider the degenerate Riemannian metric defined by: X0, Xi 0. for 
all i, and Xi,Xj δij . for i, j 0.. Since H is normal, any bracket [X0, Xi]. is 
a multiple of X0 .. Consequently, the flow of X0 ., corresponding to the action of H ,
maps Xi . to a vector field of the form Xi + f X0 ., for some function f . This shows
that V . preserves the degenerate Riemannian metric. The proposition then follows
directly from Corollary 1. 

Example 6 In addition to Examples 3 (with N = T
2
.), 4, and 5, Proposition 2 

implies that any foliation of a three-dimensional manifold defined by a locally free
action of R2

. or Aff(R). can be made lightlike and totally geodesic with respect to
some Lorentzian metric.

Example 7 (Oscillator Group) Let Heis3 . denote the three-dimensional Heisen-
berg group, whose Lie algebra heis3 = C ⊕ R. is generated by X, Y,Z ., with the 
only non-trivial Lie bracket [X, Y ] = Z .. Denote by C the center of Heis3 ., whose 
Lie algebra is generated by Z. Consider a semi-direct product Gρ := S

1
ρ Heis3 .,
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where S1
. acts on Heis3 . via a morphism ρ : S1 → Aut(Heis3).. Define a Lorentzian 

scalar product on the Lie algebra gρ . as follo ws:

– , . the usual Euclidean scalar product on C = R
2
., 

– T ,  T Z, Z 0, T ,  Z 1., 
– RT ⊕ RZ ⊥ R2

.. 

Consider the left-invariant Lorentzian metric on Gρ . induced by this scalar product. 
The right action of Heis3 . on Gρ . defines a left-invariant codimension 1 foliation F . 

of Gρ .. In particular, the one-dimensional foliation V ., generated by the right action 
of C (the center of Heis3 .), is also left-invariant and therefore lightlike. On the other 
hand, since C is a normal subgroup of Gρ ., the foliation V . coincides with the one 
defined by the left action of C. Indeed, for any x ∈ Gρ ., we have xCx−1 = C ., hence 
xC = Cx .. So the left action of C generates a vector field tangent to V .. This vector 
field preserves the degenerate Riemannian metric induced on any leaf of F .. 

Therefore, the foliation V . is transversally Riemannian on each leaf of F .. 
Consequently , F . is lightlike, totally geodesic, with normal foliation given by V .. In  
the special case where the ρ .-action of S1

. on Heis3 . is trivial on the center of Heis3 . 

and acts by rotation on the C.-factor, the resulting Lorentzian group Gρ . has a bi-
invariant symmetric Lorentzian metric and is known as the oscillator group. It is a  
special example of a Cahen-Wallach space (see section “Cahen-Wallach Spaces”).
These spaces are important in the study of symmetric Lorentzian manifolds.

3 Anosov Flows and Kundt Spaces of Low Regularity

3.1 From Anosov Flows to Locally Kundt Structures

The last two examples in the previous paragraph belong to a more general family 
of foliations, arising as the weak stable foliation of an Anosov flow. Recall that a
non-singular flow φt

. of class C∞
. on a compact three-manifold M is called Anosov 

if there exists a decomposition of the tangent bundle T M into a direct sum of three
rank-1 subbundles, denoted by Es

., Eu
., and E, such that the following properties

are satisfied:

1. E is the line bundle of the flow.
2. Es

. and Eu
. are invariant under φt

.. 
3. The stable distribution Es

. is uniformly contracted by φt
., and the unstable 

distribution Eu
. is uniformly expanded by φt

.. 

The plane fields E ⊕ Es
. and E ⊕ Eu

. define, respectively, what is called the 
weak stable and weak unstable foliations of the Anosov flow. So the weak stable
foliation contains a one-dimensional subfoliation N s

., which is tangent to the stable
distribution Es

.. Similarly, the weak unstable foliation contains a subfoliation N u
. 

tangent to Eu
., and the Anosov flow, which is tangent to the weak stable and the
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weak unstable foliations, preserves both N s
. and N u

.. This structure suggests that 
one could apply Corollary 2 to conclude that the weak stable and weak unstable 
foliations of an Anosov flow are lightlike geodesic for some Lorentzian metric on 
M . However, this argument faces a critical issue of regularity: for general (C∞). 

Anosov flows, the distributions Es
. and Eu

. are only C0
. (see [8]). In fact, it is shown

in [19, Theorem 7] that if the weak stable foliation of an Anosov flow on a compact
three-manifold is lightlike geodesic for some C∞

. metric, then, up to finite co ver,
it is C∞

. diffeomorphic to the weak stable foliation of an algebraic Anosov flow, 
i.e., up to finite cover, the flow is either the geodesic flow of a compact hyperbolic
surface Σ ., acting on its unitary tangent bundle T 1Σ ., or it is the suspension of a 
hyperbolic linear diffeomorphism of the 2-torus. The last two examples mentioned
in Par. 2.2 are precisely of this algebraic type:

– In Example 4, the flow of translations φt (x, s) = (x, s + t). acts on M =
T

2 × R/(x, s) ∼ (h(x), s + 1). as an Anosov flow. It is the suspension flow of 
a hyperbolic linear diffeomorphism h of T2

.. This diffeomorphism preserves two 
one-dimensional foliations on T

2
.. And the weak stable and unstable foliations 

on M are defined by saturating these foliations with the suspension flow.
– In Example 5, the foliation F . is given by the right action of D H . on 

X = Γ \SL(2,R)., where D and H are the one-parameter subgroups of SL(2,R). 

defined by D := {dt , t ∈ R}., H := {ht , t ∈ R}.. An easy computation gives

. dthsd−t = hexp(−2t)s and dt (hs) d−t = (hexp(2t)s) .

This shows that dt
. acts as an Anosov flow on X. The weak stable foliation is

given by F ., and the weak unstable foliation is defined by the right action of
D H . on X, where H := {(ht ) , t ∈ R}.. Algebraically, the unit tangent 
bundle of the 2-h yperbolic space is identified with the group SL(2,R)/{±I2} =
PSL(2,R).. One can assume that Γ . is torsion-free, up to passing to a finite index 
subgroup. This ensures that the (left) action of Γ . on the homogeneous space
SL(2,R)/SO(2). is proper and free. Since this homogeneous space is identified
with the two-hyperbolic space H

2
., the quotient Γ \SL(2,R)/SO(2). defines a 

hyperbolic surface Γ \H2
.. Algebraically, the unit tangent bundle of the two-

hyperbolic space is identified with the group SL(2,R)/{±I2} = PSL(2,R)., 
so the unit tangent bundle of the hyperbolic surface Γ \H2

. is identified with
Γ \SL(2,R).. The flow dt

. introduced above corresponds precisely to the geodesic 
flow on the unit tangent bundle of the hyperbolic surface Γ \H2

. (for a proof, see, 
for instance, [6, Chap. 9, Par . 9.2]).

As mentioned above, in both examples, the stable and unstable distributions are
C∞

.. In particular, the existence of a Kundt structure on them also follows from
Corollary 2. Observe that the Lorentzian metric yielding a Kundt structure is not
unique.
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3.2 Kundt Spaces of Low Regularity

The definition of a Kundt space involves a Lorentzian metric and a codimension 1
lightlike foliation F . that is totally geodesic. To consider totally geodesic foliations,
a C1

. metric is required. However, the property that there exists a one-dimensional
subfoliation V ., whose restriction to each leaf is transversally Riemannian, only
requires a C0

. metric. This property can be formulated as follows: for any points
p1, p2, q1, q2 . on a leaf of F ., and for any two curves γ1 . and γ2 . joining p1 . to p2 . 

and q1 . to q2 ., respectively, if p1 . and q1 . lie on the same V .-leaf, then γ1 . and γ2 . have 
the same length if and only if p2 . and q2 . lie on the same V .-leaf. This allows us to 
define a low-regularity locally Kundt structure as a manifold with a low-regularity
Lorentzian metric (which may be C0

.), admitting a codimension 1 lightlike foliation
F . with the aforementioned property.

Remark 1 (Hyperbolic 3-manifolds) In [7], the authors construct many examples 
of hyperbolic 3-manifolds admitting Anosov flows with low regularity for their
stable and unstable foliations (see [7, Theorem 6.2]), giving rise to lo w regularity
Kundt structures.

4 Local vs. Global

4.1 Adapted Coordinates

Given a Lorentzian manifold (M,F). with a codimension 1 lightlike foliation F ., we  
denote by V . the one-dimensional subfoliation tangent to TF⊥

.. 

Proposition 3 A Lorentzian (n+2).-dimensional manifold (M,F).with a codimen-
sion 1, lightlike totally geodesic foliation F . admits local coordinates adapted to the 
foliation, in whic h the metric has the following form:

. g = 2dudv + H(u, v, x)du2 +
n

i=1

Wi(u, v, x)dudxi +
i,j

hij (u, x)dxidxj .

(2) 

Proof Consider a local (n + 1).-submanifold Σ . in M that is transversal to V . (and 
therefore also to F .). The foliation F . induces an n-dimensional foliation on Σ .. Let  
(u, x1, . . . , xn). be coordinates on Σ . such that the leaves of F|Σ . are given by the 
levels of u. Define (locally) the vector field V along Σ . such that it is tangent to V . 

and satisfies g(∂u, V ) = 1.. For each point x ∈ Σ ., consider the lightlike geodesic 
with initial velocity Vx .. These geodesics, parametrized by v, define a local flow on 
M . Denote again by V the infinitesimal generator of this flow. Using the flow of V ,
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extend the coordinate vector fields on Σ . to the saturation of the latter by the flo w of
V . We obtain n + 2. commuting vector fields

. U := ∂u, V := ∂v,Xi := ∂xi
,

satisfying g(V, V ) = 0. and ∇V V = 0.. Now, observe that g(U, V ). is constant 
along the integral curves of V . Indeed, V (g(U, V )) = g(∇V U, V )+g(U,∇V V ) =
g(∇UV, V ) + 0 = 0.. Since g(U, V ). is constant along Σ ., it follows that g(U, V ). 

is constant everywhere. Finally, the fact that F . is totally geodesic is equi valent to
V . being transversally Riemannian on every leaf of F ., which in turn is equivalent to 
the fact that the functions hij . do not depend on v.

4.2 Hierarc hy

Kundt spaces with special form of coordinates give rise to well-known classes of 
Lorentzian spaces, having some special geometry on the leaves:

Brinkmann Spaces Brinkmann spaces are Kundt spaces for which the foliation F . 

is tangent to a distribution V ⊥
., where V is a (global) lightlik e parallel vector field.

For the metric (2), one can see that V := ∂v . is parallel if and only if the functions
H and Wi . do not depend on v, hence the following equivalent definition:

Fact 1 A Brinkmann space M is a Lorentzian manifold admitting a global vector 
field V , such that any point of M admits a coordinate chart (u, v, x1, . . . , xn).where 
the metric tak es the form

.g = 2dudv + H(u, x)du2 +
n

i=1

Wi(u, x)dudxi +
i,j

hij (u, x)dxidxj , (3) 

with V = ∂v .. 

These coordinates are known as Brinkmann coordinates.

Example 8 Let G := Heis3 . denote a semi-direct product, where R. acts on 
Heis3 . by a one parameter group of automorphisms ρ(t) = etA

., for some deri vation
A ∈ Der(heis3).. Let (X, Y,Z). be a basis of heis3 ., such that [X, Y ] = Z .. Extend it 
to a basis (T ,X, Y,Z). of the Lie algebra g.. Define a Lorentzian scalar product on g. 

as follo ws:

– , . the usual Euclidean scalar product on R
2 = SpanR(X, Y ).. 

– T ,  T Z, Z 0, T ,  Z 1.. 
– RT ⊕ RZ ⊥ R2

.. 

This scalar product induces a left-invariant Lorentzian metric g on G. We consider
the Lorentzian space (G, g).. Denote by V the right-invariant vector field on G gen-
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erated by Z. Since V is right-invariant, its flow corresponds to left multiplications 
by a one parameter subgroup of G. This action is isometric, since the metric is left-
invariant, and thus, V is a Killing field. The Koszul formula for three Killing fields
U,V,W . is given by

. 2g(∇UV,W) = g([U,V ],W) + g([V,W ], U) − g([W,U ], V ).

Applying this to V , one shows that ∇V = 0., meaning that V is a parallel vector 
field. In particular, it is also lightlike. Hence, the space (G, g). is a homogeneous 
Brinkmann space.

Compact Brinkmann spaces exhibit interesting geometric properties: their 
geodesic completeness and the dynamics of the lightlike parallel flow are studied in
[14]. 

Weakly Brinkmann These are Lorentzian manifolds admitting a lightlike parallel 
line bundle. In other w ords, they are locally Kundt spaces in which the line field
TF⊥

. is parallel on M . These spaces are sometimes referred to as Walker manifolds, 
which more broadly refer to pseudo-Riemannian manifolds with a parallel lightlike
distribution [9]. 

Fact 2 The metric of a weakly Brinkmann manifold has the form (2), where the 
functions Wi . do not depend on v. The parallel lightlik e line field is then given by
R∂v .. 

Proof We use the same notations as in the proof of Proposition 3 for the coordinate 
vector fields. Assume that the line field TF⊥

. is parallel on M , then TF . is also 
parallel. Consequently, ∇UXi ∈ Γ (TF)., so g(∇UXi, V ) = 0.. On the other hand, 
applying the Koszul formula yields 2g(∇UXi, V ) = −V (g(U,Xi)) = −∂vWi ., 
which yields ∂vWi = 0., hence the first implication. Conversely , suppose that the
Wi .’s do not depend on v (equivalently, that ∇UXi ∈ Γ (TF). for all i ). Since
g(Xi, V ) = 0., we have g(∇UXi, V ) = −g(Xi,∇UV )., which implies, by our
assumption, that g(Xi,∇UV ) = 0. for all i. On t he other hand, 2g(V,∇UV ) =
U(g(V, V )) = 0.. So  ∇UV . is orthogonal to F ., hence collinear to V . Combined with
the fact that RV . is parallel along the leaves of F . (see Lemma 1), this prov es that
RV . is a parallel lightlik e line field.

We wish to highlight a subtle phenomenon that occurs here, and that does
not occur in Riemannian signature. Let (M, l). be a weakly Brinkmann space, 
with l a lightlike parallel line field on M . Locally, it is always possible to define 
parallel lightlike vector fields spanning l. If l were timelike or spacelike, then, by 
passing to a time-orientable cover of M , one would obtain a global parallel vector 
field spanning l by taking a constant-length section that is compatible with the
orientation. However, when l is lightlike, there is no natural way to select a global
parallel section. In this case, time orientation does not help to patch together the
existing local parallel sections. Let us give a concrete example.
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Example 9 Consider again the Lorentzian space defined in Example 8. Keeping the 
same notations, we have [T , ω] = A(ω). for all ω ∈ heis3 .. Assume that A(Z) = Z ., 
so that [T ,Z] = Z .. For  ω ∈ g., let  ω . denote the right-invariant vector field generated
by ω.. We claim that the line field RZ . is left-invariant, but the vector field V := Z . 

is not left-invariant. Let us prove this. Since [ω,Z]. is collinear to Z for all ω ∈ g., 
the (right-invariant) vector field [ω, V ]. is collinear to V for all ω ∈ g.. This implies 
that the line field RV . is left-invariant, since the flow of a right-invariant vector field 
corresponds to left multiplication by a one parameter subgroup of G. On the other
hand, the bracket [T ,Z] = Z . yields [T , V ] = V .. Thus, the vector field V is not 
invariant by the left action of the R.-factor in G. This proves the claim. No w, consider
the quotient space X := Γ \G., where Γ . is a discrete torsion-free subgroup of G.
Assume that Γ .has a non-trivial projection to the R.-factor. Then it contains elements 
that act on V by scaling, sending V to λV ., with λ 1.. Consequently, only the 
lightlike parallel line field RV . descends to the quotient. Such a quotient is therefore
a weakly Brinkmann space.

A subclass of Brinkmann Spaces: pp-waves In a Brinkmann space, the codimen-
sion one foliation F . is totally geodesic. Thus, for any vector fields X, Y tangent
to F ., ∇XY . is also tangent to F ., inducing a connection on TF .. A pp-wave is a 
Brinkmann space for which the leaves of F . are flat with respect to this induced
connection.

Fact 3 A pp-wave is a Lorentzian manifold with a global vector field V , suc h that
each point admits local coordinates of the form (3), where Wi = 0. and h =

n
i=1(dxi)2

. is the Euclidean metric of Rn
.. In these coordinates, V is represented

locally by ∂v .. Thus, the metric of a pp-wave is locally given by

.gMink
H = 2dudv + H(u, x)du2 +

n

i=1

(dxi)2. (4) 

Proof Consider a geodesic γ (t). that is transversal to F . and satisfies g(γ (t), V ) =
1.. Let (X1, . . . , Xn). be a frame field along γ ., where each Xi . is tangent to F ., 
transversal to V ., and satisfies g(γ (t0),Xi) = 0. at some point t0 .. Since the 
distribution TF . is parallel on M , the parallel transport of Xi(γ (t0)). along γ . defines 
a vector field along γ . which is tangent to F . and transversal to V .. Therefore, we 
may assume that the frame field (X1, . . . , Xn). is parallel along γ .. In particular ,
g(γ (t),Xi) = 0. for all t . We assume further that the frame is orthonormal with 
respect to the (de generate) Riemannian metric on each leaf.

Now, extend the frame field (X1, . . . , Xn)γ (t) . to a parallel frame field along the
leaf of F . containing γ (t).. Since F . is totally geodesic, this extension defines a frame
field in a neighborhood of γ ., which we denote again by (X1, . . . , Xn)., tangent to F . 

and parallel along each leaf. Finally, extend the vector field γ (t)., defined along γ ., 
by means of the flows of V and Xi . for i = 1, . . . , n.. We obtain a coordinate frame
field (U, V,X1, . . . , Xn). in a neighborhood of γ . that satisfies the aforementioned
properties.
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(1) We claim that g(U, V ) = 1.. To see this, first note that the flow of V is isometric 
and preserves both V and U . Consequently, we have V (g(U, V )) = 0.. Next,  
using the Koszul formula, we write

.2g(∇Xi
V ,U) = Xi(g(V,U)) + V (g(Xi, U)). (5) 

Since Xi . is also preserved by V , we have V (g(Xi, U)) = 0.. Moreover, V is 
parallel, so ∇Xi

V = 0.. Then (5) yields Xi(g(V,U)) = 0.. Thus, g(V,U). is 
constant along the leaves of F .. Since it is also constant along the geodesic γ ., it  
must be globally constant and hence equal to 1.

(2) Next, we will show that g(U,Xi) = 0. for any i = 1, . . . , n.. To begin, we will 
show that

.∇UXi ∈ RV. (6) 

Using successively the facts that [U,Xi] = 0., g(U, V ) = 1., and that V 
is parallel, we write g(∇UXi, V ) = g(∇Xi

U, V ) = −g(U,∇Xi
V ) = 0.. It  

follows that ∇UXi . is orthogonal to V and hence can be written as ∇UXi =
k fjXj + φV ., where fj . and φ . are smooth functions, and fj . is zero along

γ . by construction. We will prove that fj . is constant on the leaves of F .. We  
proceed in two steps, using the flatness of the leaves:

(a) By construction, ∇Xk
Xj = 0. for all j, k = 1, . . . , n.. Using this, com-

pute Xk(g(∇UXi,Xj )) = g(∇Xk
∇UXi,Xj ) = g(R(Xk,U)Xi,Xj ).. On  

the other hand, g(R(Xk,U)Xi,Xj ) = g(R(Xi,Xj )Xk,U) = 0.. Thus, 
Xk(g(∇UXi,Xj )) = 0.; hence, fj = g(∇UXi,Xj ). is constant along the 
integral curves of Xk . for any k .

(b) Similarly, V (g(∇UXi,Xj )) = g(∇V ∇UXi,Xj )., s ince ∇V Xj = ∇Xj
V =

0.. But g(∇V ∇UXi,Xj ) = g(R(V,U)Xi,Xj ) = g(R(Xi,Xj )V,U) = 0.. 
It follows that V (g(∇UXi,Xj )) = 0., proving that fj . is constant along the 
integral curv es of V .

Therefore, fj . is constant on each leaf of F ., and since fj . vanishes on the 
curve γ ., which is transversal to F ., it follows that fj = 0. everywhere, which 
confirms (6). 

Now, using (6), we write Xj(g(U,Xi)) = g(∇UXj ,Xi) = 0.. Moreover, it 
follows from (5) that g(U,Xi). is constant on a leaf of V . So finally, g(U,Xi). is 
constant on a leaf of F .. Since it is zero on γ ., which is transversal to F ., it must  
be zero e verywhere.

Remark 2 A pp-wave generalizes the Minkowski space. When H = 0., gMink
0 . is 

the Minko wski metric.

Foliations with a Tangential Structure It is well known that a flat af fine connec-
tion on a smooth (n+1).-manifold is equivalent to a (Aff(Rn+1),Rn+1).-structure on 
it. So when (M,F). is a pp-wave, the leaves of F . inherit a tangential affine structure. 
Moreover, the leaves of F . admit a tangent parallel lightlike vector field V and an
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induced parallel degenerate Riemannian metric with radical RV .. This endows the 
leaves with a special affine geometry, referred to in [11] as the “affine unimodular 
lightlike geometry” and denoted by (Lu(n),Rn+1).. This is a subgeometry of the 
affine geometry, where Lu(n) = O(n) Heis2n+1 . is the subgroup of Aff(Rn+1). 

preserving the degenerate Riemannian scalar product q := dx2
2 +dx2

3 +. . .+dx2
n+1 ., 

and the lightlike vector field ∂x1 .. This group Lu(n). is thus called the “affine 
unimodular lightlike group.”

Plane Waves A plane wave is a specific class of pp-w aves, in which the function H

in (4) is quadratic in the variables (xi)., with coefficients that depend on u. Explicitly,
H(u, x) = x S(u)x ., where S(u). is a symmetric matrix depending on u. Thus, the 
metric of a plane wave can be written locally as

.g = 2dudv + x S(u)x du2 +
n

i=1

(dxi)2. (7) 

The Algebra of Killing Fields Plane waves among Brinkmann spaces can also be
characterized through their local isometry algebra of Killing fields. Let g0 .denote the 
subalgebra of the isometry algebra that fixes a leaf of the F .-foliation and preserves 
the vector field V . From the definition of a pp-wa ve, it follows that there exists a
(faithful) representation

. π : g0 → o(n) heis2n+1,

where o(n) heis2n+1 . is the Lie algebra of the affine unimodular lightlike group. 
It is a known result (see, for instance, [1]) that the Lie algebra of Killing fields of a 
plane wave contains the Heisenberg algebra heis2n+1 .. We also have the converse:

Fact 4 ( [11]) A plane wave is a pp-wave for which π(g0). contains heis2n+1 .. 

Cahen-Wallach Spaces A Cahen-Wallach space is a plane wave with adapted local
coordinates of the form (7), where the matrix S(u). is constant (does not depend on u) 
and non-degenerate. These spaces are characterized as indecomposable (reducible)
symmetric plane waves.

Siklos Spaces: A Hyperbolization of pp-waves Siklos spaces are another special 
class of Kundt spaces, defined similarly to pp-wav es, but with a different geometry
on the leaves: the induced Riemannian metric on V ⊥/RV . is the hyperbolic metric 
instead of the Euclidean one. More precisely, a Siklos space has a local coordinate
system given by

.gAdS
H = 2dudv + H(u, x)du2 + eucn

(xn)2 ,
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where eucn . is the Euclidean metric on the variable x = (x1, . . . , xn).. For  H = 0., 
the metric becomes gAdS

0 = gMink
0

(xn)2 ., which is the AdS.-metric, a hyperbolization of 
the Minkowski metric. A Siklos space is, on the other hand, a “hyperbolization” of
pp-waves, as

. gAdS
H = gMink

H

(xn)2 ,

and gMink
H . is the metric of a pp-wave.

Remark 3 A metric of the form g1 = eσ g ., where g is Kundt and σ . is a function 
that does not depend on v, is also Kundt. So Siklos spaces are obtained by a special
conformal change of pp-waves, within the broader class of Kundt spaces.

The following diagram sketches the hierarchy mentioned abo ve (the arrows
indicate inclusions):

. 

Totally geodesic
lightlike foliations

Kundt spaces

Kundt spaces with flat leaves Brinkmann spaces .

pp-waves Siklos spaces

Plane waves .

Cahen-Wallach spaces .

Minkowski space Anti-de Sitter space

5 Global Topology of Kundt Spaces

We assume here that the manifold M is compact. Thurston [18] has shown using 
sophisticated topological tools that a manifold admits a codimension 1 foliation if
and only if its Euler characteristic is zero. Apart from this topological obstruction,
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codimension 1 foliations are extremely flexible. However, requiring the additional 
condition that the foliation is lightlike and totally geodesic for some Lorentzian 
metric is considerably more restrictive regarding the topology of the manifolds on
which such foliations can be defined.

Question 1 Given a compact manifold M with zero Euler characteristic, does it 
admit a locally Kundt structure for some Lorentzian metric on M?

Question 2 Given a foliation F . on a manifold M , is there a smooth Lorentzian
metric g on M such that F . is lightlike and totally geodesic for g?

On the other hand, it is natural to ask whether these foliations coincide with those
that are geodesic with respect to some Riemannian metric.

5.1 Dimension 2

Up to a double cover, a Lorentzian surface is diffeomorphic to a torus. Any one-
dimensional foliation F . on the 2-torus can be made lightlike geodesic for some 
Lorentzian metric g. This can be achieved by defining a supplementary foliation F . 

and taking g such that its lightcones are tangent to F . and F .. In contrast, not every 
foliation on the torus T

2
. can be geodesic for a Riemannian metric. In f act, a one-

dimensional foliation on T
2
. is geodesic for a Riemannian metric if and only if it is 

a suspension foliation. Let us explain this in more details.
In [10, Chap. IV], a smooth classification of the foliations of the 2-torus is given. 

A smooth foliation on the 2-torus either contains a Reeb component (Fig. 1) or  
is differentiably conjugate to the suspension foliation of a diffeomorphism of the 
circle. We recall some definitions and facts from [10, Chap. IV].

(a) Suspension Foliations Let f be a diffeomorphism of the manifold N = S
1
.. 

Let M := N × R/(x, t) ∼ (f (x), t + 1). be the suspension manifold of f . The  
manifold M is diffeomorphic to the torus T2

. if f ∈ Diff+(S1). (i.e., if f preserves

Fig. 1 A Reeb component on R
2 .. The foliation induced on T

2 .by the action of Z2 .on R2 .: (x, y)

(x + n, y + m). is a Reeb component on T
2 .
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orientation), and to the Klein bottle otherwise. The foliation on M determined by R. 

is called the suspension foliation of f .

Any foliation of T
2
. that has no Reeb components is smoothly conjugate to a

suspension foliation.
The suspension foliation is geodesible for a Riemannian metric on T

2
.. Such a 

metric can be constructed as follows. Let g0 . be an arbitrary Riemannian metric 
on N . Define g1 := f ∗g0 ., the pullback of g0 . by f , and consider the family of 
Riemannian metrics on N , depending on t ∈ R., given by gt := 1

2 (1 + cos(πt))g0 +
1
2 (1 − cos(πt))g1 .. Then, the metric gt + dt2

. on N ×R. induces a metric on M . The
lines {p}×R., for p ∈ N ., are geodesics of N ×R. (while this can be checked directly, 
one possible geometric argument is that the foliation orthogonal to these lines, given
by the fibers N ×{t}., t ∈ R., is, by definition, transversally Riemannian). Therefore, 
the leaves of the suspension foliation are geodesics of M .

(b) Foliations with Reeb Components In contrast, a foliation with a Reeb 
component cannot be totally geodesic for a Riemannian metric. Indeed, it is well
known that a foliation F . is totally geodesic with respect to a Riemannian metric 
if and only if its orthogonal foliation G . is transversally Riemannian. This means 
the following property: for any two curves c1 . and c2 . of G ., and for any two points
p1 ∈ c1 . and p2 ∈ c2 . on the same leaf of F ., the points p1 . and p2 . must be equidistant 
with respect to the distance measured along the leaf of F .. However, the presence of 
a Reeb component in F . implies that G . also has a Reeb component. Hence, an y two
such curves c1 . and c2 . have a limit cycle, which contradicts the previous property.

5.2 Dimension 3

Case of a Brinkmann Space In this discussion, we consider the case where F . is 
the foliation of a three-dimensional compact Brinkmann space; that is, F . is tangent 
to V ⊥

., with V being a parallel lightlike vector field for some Lorentzian metric. This 
setting allows us to derive s ome topological consequences on the foliation. We will
make use of the following fact:

Fact 5 In dimension 3, any Brinkmann space is a pp-wave.

Proof Recall that since F . is totally geodesic, the restriction of the Levi-Civita
connection to TF . induces a connection on TF .. In dimension 3, a leaf F of F . is a 
surface with a tangent lightlike parallel vector field V . Such a surface is necessarily 
flat. To see this, let X be a (local) vector field tangent to F and transversal to V .
Since V is parallel, we have R(X, Y )V = 0., for any Y ∈ Span(X, V ).. Moreover, 
for any Y,Z . tangent to F ., R(X, V )Y,Z R(Y,Z)X, V ., and the latter vanishes
since T F⊥ ⊂ RV .. This yields R(X, V )Y = 0.. This means that the Riemann 
curvature tensor is identically zero; hence, F is flat with respect to the induced
connection.
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By Fact 5, F . inherits a tangential affine unimodular lightlike structure coming 
from the induced flat affine connection on TF .. This structure forces topological 
obstructions, which are detailed below. We assume that both the manifold and the 
foliation are orientable. 

A leaf F of the foliation can be homeomorphic to either a plane, a cylinder,
or a torus. Indeed, since compact pp-waves are geodesically complete [13], and F . 

is totally geodesic, F is complete with respect to the induced affine unimodular
lightlike structure (Lu(1),R2) = (O(1) Heis3,R

2). (this is completeness in the
sense of (G,X).-structures). Thus, the universal cover of F de velops bijectively onto
R

2
.. In particular, the image of the holonomy representation ρF : π1(F ) → Heis3 . 

(we assumed everything orientable) acts properly discontinuously and freely on R
2
., 

which implies that π1(F ). is abelian. Therefore, F must be either a plane, a cylinder, 
or a torus. 

Furthermore, the foliation has no vanishing cycles. Recall that a vanishing cycle
of a foliation F . on M is a mapping σ : S1 × I → M . such that: 

– For any s ∈ I ., the loop γs := σ|S1×{s} . lies in a certain leaf of F .. 
– For s 0., the loop γs . is homotopic to zero in the leaf.
– γ0 . is not homotopic to zero.

A typical example of a foliation with a vanishing cycle is given by the Reeb foliation
on S

3
.: a loop γ . on the compact fiber T2

. of the Reeb foliation, which represents one
of the generators in π1(T

2)., is a vanishing cycle. The holonomy along a vanishing 
cycle is trivial. So the presence of a vanishing cycle in F . contradicts the injectivity 
of the holonomy representation mentioned above.

Case of a Locally Kundt Space More generally, we ha ve the following result from
[19]. 

Theorem 6 ( [19, Theorem 11]) Let F . be a C0
. lightlike geodesic foliation in a 

compact Lorentzian 3-manifold. Then:

– A leaf of F is homeomorphic to a plane , a cylinder, or a torus.
– F . has no vanishing cycles.
– The universal cover is homeomorphic to R3

., foliated by planes.

As a consequence, S3
. does not admit a locally Kundt structure.

Remark 4 In dimension ≥ 4., the universal cover of a compact Kundt space is not 
necessarily contractible. For instance, consider the product manifold M := S

1 × S
3
. 

in dimension 4. Fix a base point p ∈ S
1
., and consider a codimension 1 foliation F . 

on {p} × S
3
.. Choose a vector field V tangent to S

1
., which induces an S

1
.-action on 

M . Using the action of V , we extend the foliation F . to a codimension 2 foliation 
of M . We keep the same notation for the extended foliation. Next, let h be any
Riemannian metric on TF|{p}×S3 ., which we pull back using the S

1
.-action of V to 

define a Riemannian metric on TF .. Now, take a vector field U on M that commutes
with V and is transversal to F .. We define a Lorentzian metric g on M as follows:
g(V, V ) = g(U,U) = 0., g(U, V ) = 1., and g = h. on TF .. Thus, the foliation S

1 ×
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F . is lightlike and tangent to V . Moreover, by definition, the foliation determined
by V is transversally Riemannian on each leaf of S1 × F .. Consequently, S1 × F . is 
totally geodesic for the metric g. Here, S3

. can be replaced by S
2l+1

. for any l ≥ 1., 
providing a similar example in an y (even) dimension.

Remark 5 (Fundamental Groups of Compact Three-Dimensional Kundt 
Spaces) The fundamental group of a compact thr  ee-dimensional Brinkmann
space is (virtually) solvable. However, Example 5 shows that the fundamental 
group of a compact Kundt space can be non-solvable. In this particular example, 
the manifold is a Seifert fiber manifold with a hyperbolic base (this is shown in
[12]), i.e., it is finitely covered by a circle bundle o ver a closed orientable surface of
genus ≥ 2.. Consequently, its fundamental group is (up to finite index) an extension
of a compact surface group of genus ≥ 2. by an infinite normal cyclic subgroup 
generated by a regular fiber. On the other hand, by Remark 1, Kundt spaces of lower 
regularity allow a broader set of possible fundamental groups.

6 Dynamics Leads to a Kundt Structure

This section deals with homogeneous Lorentzian manifolds. We will see that a “big” 
isotropy group leads to a structure close to that of a locally Kundt structure.

Theorem 7 ( [21]) Let M be a homogeneous Lorentzian manifold with a non-
compact isotropy group. Then, M contains a lightlike totally geodesic hypersurface 
(and, by homogeneity, such a hypersurface passes through any point of M).

We follow the proof in [21]. Let H denote the isotropy group of a point p ∈ M .. 
Consider an isometry f ∈ H . and its graph, Graph(f ) ⊂ M × M .. According to the 
next lemma, Graph(f ). is an isotropic, totally geodesic d-dimensional submanifold
of M × M ., equipped with the metric g ⊕ (−g). (where d := dim M).. Recall that an 
isotropic submanifold is one for which the metric restricted to the tangent bundle is
identically zero.

Lemma 2 Let (M, g). be a semi-Riemannian manifold of dimension n. Let f ∈
Isom(M, g)., and S := Graph(f ) = {(x, f (x)), x ∈ M}.. Then S is an isotropic 
totally geodesic submanifold of (M × M, g ⊕ (−g)).. 

Proof We have T(p,f (p))S = {(v, dpf (v)), v ∈ TpX}.. If V = (v, dpf (v)). is 
tangent to S, then the geodesic in (M × M, g ⊕ (−g)). tangent to V is gi ven by
γ = (γ1, γ2)., with γ1 . the geodesic in M such that γ1(0) = v ., and γ2 . the geodesic 
in M such that γ2(0) = dpf (v).. Since f is an isometry, we have γ2 = f ◦ γ1 .. 
Therefore, γ . lies in S, showing that S is totally geodesic. The fact that S is isotropic
for g ⊕ (−g). is straightforward.
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In fact, the property that S is totally geodesic also follo ws from the more general
observation below:

Fact 8 Let (M, h). be a semi-Riemannian manifold of dimension n = 2d . and index 
d. An isotropic submanifold S of M of dimension d is totally geodesic.

Proof Let X ∈ Γ (T S).. We claim that for any Y ∈ Γ (T S), g(∇XX, Y ) = 0.. To  
prove this, write: h(∇XX, Y ) = ∇Xh(X, Y ) − h(X,∇XY).. Since S is isotropic,
h(X, Y ) = 0. for all X, Y ∈ Γ (T S)., so the first term of the sum vanishes. Thus,
h(∇XX, Y ) = −h(X,∇XY).. Next, since ∇XY −∇Y X ∈ Γ (T S)., we have  h(∇XY −
∇Y X,X) = 0.. This implies h(∇XY,X) = h(∇Y X,X)., which yields h(∇XX, Y ) =
−h(∇Y X,X).. But ∇Y h(X,X) = 2h(∇Y X,X) = 0.; our claim follows. This shows
that ∇XX ∈ Γ (T ⊥S).. Given that the index is 2d = n., we have T ⊥S = T S .. 
Therefore, ∇XX ∈ Γ (T S). for all X ∈ Γ (T S)., proving that S is totally geodesic.

Now, let fn ∈ H . be a diverging sequence, meaning it has no con vergent
subsequence. Consider the graphs Sn := Graph(fn).. By compactness of the 
Grassmannian of d-dimensional subspaces of TpM × TpM ., we can find a limit 
L of a subsequence of Sn .. 

To give a formal meaning to this, consider a small convex neighborhood C of
(p, p). in M × M .. This means that any two points in M can be joined by a unique
geodesic segment contained in M . Consider Sn ∩C . and let S0

n . denote the connected 
component of (p, p). in Sn ∩ C .. Now, one can give sense to the convergence of the
graphs Sn . exactly as in the situation of affine subspaces in an affine flat space. More
precisely, S0

n . converge to L if the tangent spaces T(p,p)S
0
n . converge to T(p,p)L.. 

Such a limit L is an isotropic, totally geodesic submanifold of M × M . of 
dimension equal to dim M .. However, L is no longer the graph of some map
f : M → M ., since otherwise fn . would converge to f . 

Thus, the intersection of L with {p} × M . is non-trivial, but has at most 
dimension 1, because the intersection is isotropic and M is Lorentzian. Therefore,
the projection L . of L onto M × {p}. is a totally geodesic hypersurface in M × {p}.. 

To show that L . is lightlike, consider vectors (X, Y ). and (0, Y0) ∈ T L.. Then 
(X, Y − Y0) ∈ T L. is isotropic for g ⊕ (−g)., which implies that g(Y, Y0) = 0. for 
any Y ∈ p2(T L).. Moreover, we obtain g(X,X) = g(Y, Y ) ≥ 0.. In particular, the
projection p2(T L). spans a lightlike subspace, of dimension ≥ n − 1.. Thus, L ., 
which has dimension n − 1., must contain a lightlike vector, as otherwise, p2(T L). 

would contain a subspace of dimension n−1.on which the metric is positive definite, 
contradicting the presence of a lightlike vector orthogonal to it. Hence, L . is a 
lightlike subspace. 

This completes the proof of Theorem 7. 

Comment We have shown that on a homogeneous Lorentzian manifold M with a 
non-compact isotropy group, there exists a lightlike totally geodesic hypersurface 
through every point of M . However, in order for M to admit a locally Kundt
structure, there must be a collection of hypersurfaces with a local product structure.
This occurs, for example, if the hypersurface through a point p ∈ M . (and hence,
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through any point of M) is unique. More generally, an interesting question is to 
inv estigate under which conditions this setup leads to a locally Kundt structure.
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