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Abstract. The Lipschitz regularity is perhaps the most natural, and surely the most geometri-
cal among all the types of regularities. For example, the Lipschitz character of an ordinary
differential equation (vector field) is the natural classical sufficient condition for the (unique)

integrability of this equation. The goal here is to show that, in some sense, the Lipschitz regu-
larity is also necessary, if one assumes (geometric) individual conditions on the trajectories. In
other words, we show that tangential rigidity leads to a transversal regularity.
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1. Introduction

Recall that a mapping f between two metric spaces ðX; dXÞ and ðY; dYÞ is Lipschitz if

there exists a constant c such that dYð f ðxÞ; f ð yÞÞ4 cdXðx; yÞ, for any x; y 2 X. It is

called locally Lipschitz, if every point of X admits a neighborhood where the restric-

tion of f is Lipschitz. Being defined in this broad context, this gives Lipschitz regu-

larity an advantage in flexibility over the other classical Ck-differentiability. On the

other hand, Lipschtiz regularity is omnipresent; this is seen, for instance, in piecewise

linear objects in nature. We are going here to bring out and analyze, in an elementary

way, a Lipschitz regularity phenomenon whose starting point is the following:

STARTING FACT 1.1 (Lipschitz regularity of planar partition by line segments).

Let U be an open subset of the Euclidean plane R2. Let F be a family of disjoint

ðstraightÞ line segments which are complete in U i.e. any element of F equals the open

straight line segment joining two points of the boundary of U. ðEquivalently, an element

of F is the connected component of an intersection l \U, where l is a lineÞ.

Then, F is locally Lipschitz, that is, the map u:S! S1, defined in the support S � U

of F , which associates to a line segment its unit tangent vector, is locally Lipschitz. Fur-

thermore, the Lipschitz constant ðwhich is a function on U Þ depends only on U ðnot on

F Þ.
Proof. We will focus on the case where the family F consists of exactly two line

segments. One might say, there is nothing to prove here: obviously, any partition

with two elements, which are closed submanifolds of any manifold, is locally
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Lipschitz. The point here is to show this is uniform, that is the involved (local)

Lipschitz constants do not depend on the partition, but, as stated above, only on the

geometry of U. Then, the proof in the two elements case yields a one for partitions

with three elements, and so and so, in fact, for partitions with any cardinality.

Therefore, we will restrict ourselves to the case of two elements.

Because the problem is local, we will assume that U is convex. Our family consists

of two line segments l1 \U and l2 \U, where l1 and l2 are lines in the Euclidean

plane R2, which by hypothesis intersect outside U. In order to evaluate the Lipschitz

distortion of the family, one just evaluate the same for the holonomy mappings

obtained from any smooth curves T and T 0 transversal to the family. They are map-

pings defined on sets of two points by: T \ li ! T 0 \ li. In fact, there is no loss to

generality in assuming that T and T 0 are parallel line segments. In notation, let T1

and T2 be two parallel (compact) line segments contained in U, such that T1 (resp.

T2) cuts l1 and l2 on a1 and a2 (resp. b1 and b2) respectively.

Let c be the intersection point of l1 and l2 (the following discussion is trivial if

l1 \ l2 ¼ ;). The triangles ca1a2 and cb1b2 are similar and hence

dðb1; b2Þ

dða1; a2Þ
¼

dðc; b1Þ

dðc; a1Þ

(Thales Theorem). Therefore, we have the following estimate:

dðb1; b2Þ

dða1; a2Þ
¼

dðc; b1Þ

dðc; a1Þ
4

dðc; a1Þ þ dða1; b1Þ

dðc; a1Þ
4 1þ

dða1; b1Þ

dðc; a1Þ

4 1þ
dHausðT1;T2Þ

dðl1 \ l2;T1Þ
4 1þ

dHausðT1;T2Þ

dð@U;T1Þ

In this last line, d denotes the distance between subsets (the inf of distances of their

points), and dHaus denotes the Hausdorff distance between subsets.

This shows that F is uniformly locally Lipschitz when composed with two

elements, and hence for any F as explained above. &

Figure 1.
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The Fact applies in particular to partitions of U by closed (in U) line segments, i.e.

when F has a total support. It says that such a partition is a Lipschitz foliation.

Observe that we don’t assume a priori that a foliation is continuous.

In the opposite case where the support of F is a proper subset S of U, the Fact tells

that F extends to a Lipschitz lamination on the closure of S.

In this text, we will generally focus on foliations instead of partitions with a proper

support.

A foliation F of U may be parameterized by a vector field X (our interests

here are local in nature, and so we don’t mind on global nonorientability

problems). For us here, the foliation F is Lipschitz, if one can choose such a X to

be Lipschitz (this is equivalent to the fact that the unit tangent vector field is

Lipschitz). The flow of such a vector field is Lipschitz, i.e. a one parameter family

of (local) Lipschitz homeomorphisms. In fact, more generally, any holonomy map,

partially defined between two transversals t and t0, is Lipschitz. The transversals

are required to be C1 submanifolds (or merely Lipschitz submanifolds, suitably

defined). In general, having a Lipschitz holonomy is weaker than being oriented

by a Lipschitz vector field, but the two notions are equivalent in the case of the

foliations considered here.

Let’s mention one corollary of Fact 1.1 which shows how non-Lipschitz family of

lines are ‘confluent’.

COROLLARY 1.2. Let D be the space of lines of R2, and C � D a topological curve.

Suppose that C is purely unrectifiable, that is no sub-curve of it is rectifiable ði.e. has

finite lengthÞ. Then C foliates nowhere in the plane. More exactly, let C0 be the

corresponding set in the unit tangent bundle T1R2, then, the projection C0 ! R2 is

injective on no open set of C0.

1.1. A GENERALIZATION TO ‘NON-CONNECTED LEAVES’

Consider a partition as in the starting fact above. In general, the (complete) lines

determined by the line segments of the partition to intersect, outside of U. It may

happen that these extended lines determine an analogous partition in some other

open subset U0. In some sense, by following the extended lines, the partition in U

regenerates somewhere else in the plane. Our proof above applies and yields that

the holonomy maps from U to U0 are locally bi-Lipschitz.

PROPOSITION 1.3. Let U be an open subset of the Euclidean plane, and F a

partition of a subset N of U, with classes of the form l \U, where l is a line ðdo not take

the connected component of l \U Þ.

Then, the ‘global holonomy’ of F is locally bi-Lipschitz. More exactly, let t1 and t2

be two 1-dimensional C1-submanifolds transverse to F , the partially defined holonomy

map x 2 t1 ! f ðxÞ ¼ F x \ t2 2 t2 is locally bi-Lipschitz. ðt1 and t2 are not necessarily

in the same connected component of U Þ.
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1.1.1. Topological Caustic ¼ Differentiable Caustic

Observe the following amazing fact (see also Section 9.2).

COROLLARY 1.4. Let t be a one-dimensional C1-submanifold of the plane. Consider

the normal exponential map

p: ðx; tÞ 2 t�R ! xþ tNðxÞ 2 R
2

where N is a unit normal field on t. If for an open subset V � t�R, pjV is injective,

then it is a locally bi-Lipschitz homeomorphism onto its image.

If t is C2 ðin which case p is C1Þ, a point ðx; tÞ is regular, i.e. it admits a neighborhood

diffeomorphically mapped to its image, iff; ðx; tÞ is topologically regular, that is, it

admits a neighborhood homeomorphically mapped to its image.

Proof. The proof follows essentially from Proposition 1.3. In the C2 case, apply the

fact that if a C1 homeomorphism is bi-Lipschitz, then it is a diffeomorphism, that is, its

derivative is nonsingular (since otherwise, the inverse cannot be Lipschitz). &

Remark 1:5: Recall that the (differential or analytic) caustic of t is the set of

singular values of p. This is well defined in the case p is C1, that is, when t is C2. In

the case when t is C1, one may define a topological caustic as the set of topologically

singular values of p (which simply means that p fails to be injective at these values).

The Corollary states the equality between topological and analytic caustics.

It follows that if t is everywhere non C1þLip (i.e. N is nowhere Lipschitz) then t is

contained in its caustic!

Remark 1:6: The property of the exponential map stated in the Corollary is remi-

niscent of properties of holomorphic functions on the complex field. There is in fact awell

developed theory of singularities of ‘optical Lagrangian submanifolds’, which confirms

analogies but also differences with the holomorphic situation (see for instance [1]).

The corollary above seems to be generalizable to other situations (see Section 9.2).

1.2. SHARPNESS

The following shows that the Lipschitz condition in the previous facts is optimal.

FACT 1.7. Let t be a compact one-dimensional C1-submanifold in the plane, and

~nn: t! S1 a unit transversal vector field along t ð~nnðxÞ is transverse to Txt for any

x 2 tÞ. For a positive real T, consider,

DTðxÞ ¼ fxþ t~nnðxÞ=jtj4T g

In order that there exists T > 0 such that the family fDTðxÞ; x 2 tg foliates, i.e.

x 6¼ x0¼)DTðxÞ \DTðx
0Þ ¼ ;, it is necessary and sufficient that ~nn is Lipschitz.

The necessity part is essentially the content of the Starting Fact. The proof of

sufficiency is similar.
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1.3. INTERPOLATION OF HOMEOMORPHISMS

Let B denotes the closed strip in the plane delimited by the lines (parallel to the

y-axis) f0g �R and f1g �R. Any increasing homeomorphism f:R ! R determines

a foliation I f by line segments on B. Leaves are obtained by interpolating pairs

ð0; xÞ and ð1; f ðxÞÞ (by line segments). The increasing condition on f is equivalent

to the non-intersection in B of these line segments. So, we have a foliation for which

f is a holonomy map.

This construction seems to contradict our previous statements because an

increasing homeomorphism f is not necessarily Lipschitz! The point is that, our

results apply to foliations of open sets, that is, the unit tangent vector field of

I f is locally Lipschitz on the interior of B, but fails to be locally Lipschitz on

the whole of B.

FACT 1.8 (Characterization of locally bi-Lipschitz homeomorphisms). I f extends

to a foliation by line segments to a neighborhood of B iff f is locally bi-Lipschitz.

Remark 1:9. Denote by @�B (resp. @þB) the component f0g �R (resp. f1g �R) of

the boundary of B. Then, I f can be extended to an open set containing @�B (resp.

@þB), iff, f (resp. f �1) is locally Lipschitz. A (local) Lipschitz defect (that is a kind of

function measuring the modulus of Lipschitz continuity) of f can be expressed as a

rate of confluence of elements of I f near @�B (outside of B).

We also have the following more general fact where f is not assumed to be increa-

sing, or even homeomorphic. Here, the disjointness condition concerns only a neigh-

borhood of the source.

FACT 1.10. Let t1 and t2 be two disjoint one-dimensional C1-submanifolds in the

plane, and f: t1 ! t2 a map ðnot necessarily homeomorphicÞ. Consider the family of

lines fx; f ðxÞg ðthis denotes the line joining x and f ðxÞÞ, for x 2 t1. There exists a

neighborhood U of t1 on which the family of subsets fx; f ðxÞg \U; x 2 t1, are disjoint,

iff, f is locally Lipschitz.

Figure 2. The foliation I f on B.
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1.3.1. Realization of a Homeomorphism as a Holonomy of a Foliation by Rigid

Curves.

It is very suggestive to ask whether the facts above extend to foliations by ‘rigid’

curves.

In particular, one may ask if, in the construction of I f, changing straight line

segments by graphs of polynomials (each graph interpolates two points ð0; xÞ and

ð1; f ðxÞÞ), one may get a foliation defined in a neighborhood of B (for f non-

Lipschitz)?

One may try the following naive construction. Consider the polynomial of degree

3 (Lagrange-)interpolating ð�1; xÞ; ð0; xÞ; ð1; f ðxÞÞ and ð2; f ðxÞÞ. One expects that

the family of cubics obtained for x 2 R gives rise to a foliation of the strip delimited

by f�1g �R and f2g �R having obviously f as a holonomy map.

However, the non-intersection of cubics (over the interval [�1, 2]) is not auto-

matic. The Lagrange interpolation is not monotonic! In fact, it seems that none of

the interpolation methods can be (monotonic). So, we formulate the question of

realization of f as follows:

QUESTION 1.11. What is the required regularity for a homeomorphism of R to be

a holonomy map of a foliation of an open set of the plane by graphs of polynomials

with bounded degree (or more weakly by graphs of polynomials with unbounded

degree, or even by real analytic leaves)?

1.4. CODIMENSION ONE FOLIATIONS

All the statements here generalize to codimension 1 foliations. For example, Fact 1.1

is valid for foliations of open sets of the Euclidean space Rn by pieces of hyperplanes.

1.5. CONTENT OF THE ARTICLE

The objective of this article is to try to understand Fact 1.1 and to see to what extent

it generalizes to codimension 1 foliations by ‘rigid’ leaves. In particular to answer

Question 1.11 (Theorem 5.1).

Our result is that there is a mild regularity for all codimension 1 foliations by rigid

leaves (Corollary 4.2), that we will call graph-Lipschitz regularity (Section 4.1.1).

Our approach to the graph Lipschitz regularity is based on the following construc-

tion. Locally, the leaves of a codimension 1 foliation may be seen as graphs of

functions on an open set U of a Euclidean space. The foliation (locally) corresponds

to a curve in the functional space CðU;RÞ. The nonintersection of leaves implies that

this curve is causal, i.e. it is directed by the cone of positive functions on U. The

graph-Lipschitz regularity follows from this description, in the case of leafwise rigid

foliations, that is essentially when this causal curve lies in a finite-dimensional space.

The article also contains comments on related topics, in particular some special

generalizations of Lipschitz regularity to the higher codimension case.
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2. Counter-Examples in Higher Codimension

The automatic Lipschitz regularity is a codimension 1 phenomenon. For example, in

R3 there is place for (global) nonmeasurable partition by line segments. Indeed,

endow R3 with coordinates ðx; y; zÞ and consider the unit vector field

Xðx; y; zÞ ¼ ðcos yðzÞ; sin yðzÞ; 0Þ;

where y:R ! R is any function.

For z fixed, X determines a (global) foliation of R2
� fzg by parallel lines with

slope yðzÞ. Therefore, X determines a partition of R3 by lines, which has the same

regularity as y. In particular, X may be non-Lipschitz, even nonmeasurable, etc.

Observe that when X is measurable, its flow

ft: ðx; y; zÞ ! ðx; y; zÞ þ tXðx; y; zÞ

preserves the volume. In the case where y is regular, say C1, this follows from the

unipotent form of Dft. For a nonregular y one uses approximation by C1 ones.

In particular, such an X is a special solution of the Euler equations of hydro-

dynamics, which are:

@X=@t ¼ ð�X:HÞX� Hp;

divX ¼ 0:

Here, X ¼ Xðt; x; y; zÞ is a nonautonomous vector field, p is called the pressure,

ð�X:HÞX ¼ DX:X is the (geodesic) curvature of the trajectories (of particles).

Our example above is stationary ð@X=@t ¼ 0Þ and special in the sense that Hp ¼ 0,

i.e. the pressure is constant.

Although, our example may be nonregular, it has a simple geometry. One dares

ask if this is a general fact (or may be not):

QUESTION 2.1. Find all the (global) foliations (with a fixed regularity, for example

Co) of R3 by lines. For example, assuming further that they are volume preserving

(and hence special solutions of Euler equations).

3. Another Approach. Lipschitz Curves and Directing Cones

Here we start by considering another (qualitative) approach to the Lipschitz regu-

larity. To simplify notations, we restrict ourselves to foliations of the unit (open) disc

Figure 3.
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of the plane. We identify a foliation by line segments, to its quotient space, viewed as

a subset, in fact a curve, in the space of line segments of the disc.

The nonintersection condition translates to that the quotient space is ‘totally ordered’,

or equivalently that it is a ‘causal’ curve in the sense of the canonical conformal Lorentz

structure on the space of line segments of the disc. Here follow the details.

3.0.1. The Space of Line Segments of the Disc

When a disc is seen (as a convex subset) in the (real) projective plane, there is a polar

correspondence between the space of line segments of this disc and the interior of its

complementary set, which is homeomorphic to a Möbius strip.

Here, to avoid global topological complications, we will describe a partial corre-

spondence between the space of line segments of the usual disc H2 (i.e. the unit disc

in the Euclidean plane) and its exterior dS2 (see below for justification of the notation).

To a line segment s � H2, associate pðsÞ 2 dS2, the intersection point of the two

lines (in dS2) which are tangent to the unit circle (the boundary of the disc) at the

endpoints of the given line segment s. This is not defined for segments passing

through the origin 0 (that is why one needs to consider the projective plane).

The inverse map will be denoted p 2 dS2 ! sðpÞ � H2.

3.0.2. Cones

The notation H2 refers to the hyperbolic structure of the disc, which is a Riemannian

metric compatible with its projective structure. The notation dS reads de Sitter and

refers to a canonical Lorentz metric on dS2. The associated Lorentz conformal struc-

ture, i.e. its isotropic cone field, is easy to describe.

In dimension 2, a Lorentz conformal structure consists in giving two transverse

direction fields. For p 2 dS2, let L1
p and L2

p be the line segments emanating from p

and tangent to the boundary @H2. One may choose L1
p and L2

p to be continuous on

p, by imposing that their tangent (half)-directions (at p) l1p and l 2p determine the

canonical orientation of the Euclidean plane.

The isotropic cone at p is the union of the direction of l1p and l 2p .

The positive infinitesimal causality cone at p is: Cþp ¼ Rþl1p þRþl2p. In other

words, it is the union of all the half directions determining (half) line segments which

meet @H2.

Figure 4.
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The geometric causality cone Cþp is the part of the plane delimited by L1
p, L

2
p and

@H2, i.e. the union of half segments joining p to points of @H2.

One defines analogously the negative cones C�p and C�p , and nonoriented cones

Cp ¼ Cþp [ C�p and Cp ¼ Cþp [ C�p

3.0.3. Orders

In dS2, we have a partial order p4 q() Cþp � Cþq() p 2 Cþq() C�q � C�p()
q 2 C�p .

Observe that the set of points comparable with p, i.e. those points q satisfying one

of the relations p4 q, or q4 p, is Cp.
To interpret this for line segments of H2, let us restrict our considerations to the

set S of line segments contained in the (open) lower half disc (delimited by the

x-axis).

There is an order 4 on S; s4 s0 () s0 is above s, i.e. s0 separates s from the upper

half disc.

The subset of dS2 corresponding to S is the lower half strip P delimited by the

lines tangent to @H2 and parallel to the y-axis.

For p; q 2 P (equivalently sð pÞ, sðqÞ 2 S), we have p4 q() sð pÞ4 sðqÞ.

3.0.4 Foliations

Observe that for nearby segments s; s0 2 S; if s \ s0 ¼ ;, then, s and s0 are

comparable. Equivalently:

FACT 3.1. A point p 2 P admits a neighborhood Vp such that, if p0 2 Vp, and the

corresponding segments sð pÞ and sð p0Þ are disjoint, then: p0 2 Cp ðequivalently p 2 Cp0 Þ.

Consider now a foliation F of the lower half disc by segments, and let t be a trans-

versal. This defines a map Q: x 2 t! pðF xÞ 2 P. Its image is the quotient space of

F . Identify t with R via I:R ! t.
The curve c ¼ QoI:R ! dS2 is causal, in the sense that, 8t; t0; cðt0Þ 2 CcðtÞ. In fact,

up to a switch of orientation (of R) we may assume that c is order preserving:

t05 t¼) cðt0Þ5 cðtÞ, that is, t05 t¼) cðt0Þ 2 CþcðtÞ

3.0.5. Causal Versus Lipschitz

We are now in position to prove a variant of Fact 1.1 by showing that the curve c is

‘geometrically Lipschitz’, that is it can be parametrized to become Lipschitz.

This fact is well known in Lorentz geometry (and other fields). Its proof is very

natural, being causal is essentially the geometric counterpart of being geometrically

Lipschitz. We summarize the situation in the following statement.

FACT 3.2. Let P0 be the sub-strip in P of points with y-coordinates 4�2 ðthat is,

P0 ¼ fðx; yÞ 2 R2; jxj4 1; y4�2gÞ.
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Let p ¼ ðxp; ypÞ; q ¼ ðxq; yqÞ 2 P0 two comparable points, say, p4 q. Then:

dð yp; yqÞ4 dð p; qÞ4
1

cosðp=4Þ
dð yp; yqÞ

Here d denotes the Euclidean distance.

In particular, if A is a totally ordered subset in P0, then the ðEuclideanÞ projection

pr: A! y-axis, is injective, and bi-Lipschitz, with a bi-Lipschitz constant 4 1
cosðp=4Þ.

In particular, a causal curve lying in P0 can be re-parameterized, by projecting it onto

the y-axis ðwhich is also a causal curveÞ, to be ðuniformlyÞ bi-Lipschitz.

Any causal curve in dS2 ðnot necessarily in P0Þ can be parametrized by projecting

onto a causal line segment, to become locally bi-Lipschitz.

Proof. The proof of the first point follows by observing that the maximal angle

between the line joining p and q and the y-axis, is p=4. &

3.1. CURVES DIRECTED BY CONE FIELDS. LINEAR VERSION

Here, we generalize the previous fact to cone structures not necessarily derived from

conformal Lorentz structures. However, to simplify, we will only consider a linear

situation.

3.1.1. Data

Let E be a finite-dimensional vector space and C a cone (usually convex but

nonclosed), such that the closure of its convex envelope ½C � is a convex proper cone,

i.e. it doesn’t contain a half vector space: if u 2 ½C � and �u 2 ½C �, then u ¼ 0.

This determines an order on E; p5 q() p 2 qþ C() p� q 2 C.

A (vector) line D is called causal, if D ¼ Ru0, where u0 2 C.

Let F be a support hyperplane for ½C � such that F \ ½C � ¼ f0g, then, we have a

decomposition E ¼ D� F, and a projection pr: E! F.

DEFINITION 3.3. We say that a totally ordered subset B is causally parameterized

with respect to a decomposition E ¼ D� F, if A is the graph fðs; dðsÞÞ; s 2 Ag, of a

map d:A! F, where A is a subset of D.

We say that B is causally parameterized, if this happens for some decomposition.

LEMMA 3.4. Given a decomposition E ¼ D� F, then, any totally ordered subset B

can be causally parameterized with respect to it, in a uniform Lipschitz manner. More

exactly, the projection pr:B! D is injective and bi-Lipschitz onto its image. The

bi-Lipschitz constant depends only on C, D and F.

In particular, identifying D with R, any totally ordered subset B, is the image of an

order preserving Lipschitz map c:A � R ! E.

Proof. The proof is the same as that of the fact above. We assume that E is

endowed with a Euclidean metric for which D and F are orthogonal.
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The bi-Lipschitz constant is 1=cos a, where a is the maximal angle formed by D

and half lines contained in C. The angle a is < p=2 by the hypothesis that the closed

convex envelope of C is a proper convex cone. &

3.1.2. Causal Curves

We say that a map c: I � R ! E, where I is an interval, is a causal curve if it is

continuous injective and its image is totally ordered (or equivalently, c is continuous

and order preserving). In a standard way, one proves.

FACT 3.5. A totally ordered set corresponds to a causal curve, iff, its projection on D

is connected ðan interval Þ.

In particular, a causal curve is a ðuniformÞ Lipschitz graph over D.

Conversely, an absolutely continuous curve, that is cðsÞ ¼
R s

0 c
0ðxÞ dx, and

c0 2 L1
LocðR;EÞ, is a causal curve, iff, almost everywhere, c0ðsÞ 2 C.

Remark 3:6: We are not stating here that a continuous order-preserving map

R ! E is Lipschitz, but rather than that it can be (causally) reparameterized (over

some decomposition) to become Lipschitz (canonically and uniformly). In fact, one

naturally meets causal but not causally parameterized curves. The notion of causal

curves is geometric and not parametric.

3.1.3. Infinite Dimensional Case

All the previous discussion generalizes to the case where E is an infinite-dimensional

Banach space, if the closed envelope ½C � has a compact section, i.e. its intersection

with the unit sphere is compact (of course, always assuming that it is proper)

(actually, the point is to suppose there exist E > 0, such that if v ¼ vF þ vD 2 C, then

kvD k5E k v k).

4. Analytic Formulation. Codimension One Foliations by Graphs

Here, we show that a foliation structure is essentially equivalent to giving a causal

curve in a suitable functional space. This allows us to derive Lipschitz properties

for such a foliation, when its associated functional space is finite-dimensional, and

conversely, to construct examples of such foliations.

4.0.4. Order on CðM;RÞ

Let M be a topological space. Consider CðM; RÞ its space of continuous numerical

functions. At this stage, we don’t mind on the choice of a topology on it. This

functional space has a canonical cone CðM;R�
þÞ, that of (strictly) positive functions.

This is a convex cone, and its closure for any reasonable topology is CðM;RþÞ, the

cone of non-negative functions. It is proper.
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The vector space D of constant functions is a canonical causal line.

A support hyperplane for C will be a supplementary F of D, such that no f 2 F has

a definite sign (i.e. f is positive or negative). There is no canonical choice of such a

support hyperplane.

4.1. FROM PARTITIONS TO CAUSAL CURVES

PROPOSITION 4.1. Let M be a connected metric space, and F a partition of a subset

N of M�R such that every class ðwe will also call it leaf Þ is the graph of an element of

CðM;RÞ. Let BðF Þ be the set of involved functions, i.e. the functions whose graphs are

the leaves of F .

Suppose that the vector subspace E of CðM;RÞ generated by BðF Þ, together with the

constant functions, is finite-dimensional. Also, suppose that the elements of BðF Þ ðand
hence E Þ are locally Lipschitz ðas functions on M Þ.

Then, BðF Þ is totally ordered and therefore, can be ðcasually re-Þ parameterized ðover

the constantsÞ by a Lipschitz map: c:A! BðF Þ � E, where A is a subset of R.

The mapping Fc: ðx; sÞ 2M� A! ðx; cðsÞxÞ 2 N is a locally Lipschitz ðglobalÞ

parameterization of F , i.e. it sends bijectively the partition M� f�g ðon M� AÞ to F .

BðF Þ corresponds to a causal curve, iff, N ðthe support of F Þ intersects the fibers

fxg �R; x 2M, in connected sets. In this case, if furthermore M is a manifold, then,

Fc is a homeomorphism onto its image.

Proof. The connectedness of M is exactly required to ensure that if two functions

u1 and u2, have nonintersecting graphs, then, one of the possibilities u1 < u2, or

u2 < u1 holds. Therefore BðF Þ is totally ordered. Lemma 3.4 gives a Lipschitz

parametrization of BðF Þ as claimed.

The true meaning of c being Lipschitz is that, for any basis f0; . . . ; fk of E, we have

cðsÞ ¼ Saifi, with ai:A! R Lipschitz. It then follows, that, if the fi are locally

Lipschitz, then Fc: ðx; sÞ ! ðx;SaiðsÞfiðxÞÞ is locally Lipschitz.

It is clear that Fc is injective and that its image is the support of F .

For any fixed x; s 2 A! cðsÞx is an injective continuous mapping from A onto the

fiber N \ ðfxg �RÞ. If this fiber is connected, then A is a countable disjoint union of

intervals. One then shows that A is actually an interval, if all the fibers are connected.

If A is an interval, and M is a manifold, then M� A is also a manifold, which

ensures that Fc is a homeomorphism onto its image. &

4.1.1. Graph-Lipschitz Regularity of Partitions by Rigid Graphs

See the Remark below for a justification of the word ‘graph-Lipschitz’.

COROLLARY 4.2. Let M be a manifold. A partition of M�R by graphs of elements

of LipLocðM;RÞ, all belonging to the same finite-dimensional space E, can be para-

metrized by a locally Lipschitz homeomorphism.
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Let’s specialize to the simplest situation where M is an interval of R, and M�R is

foliated by C1-graphs.

FACT 4.3 (A variant of Fact 1.1 for leafwise rigid planar vector fields). Let M

be an interval of R, Vðx; yÞ ¼ ð1;Yðx; yÞÞ a vector field on M�R for which there

exist f0; . . . ; fk 2 C1ðM;RÞ, such that, any trajectory of V is the graph of a linear

combination of the fi.

Then, there is a homeomorphism F:M�R !M�R sending the horizontal

M� f�g to the foliation determined by V, and

ðiÞ F is locally Lipschitz, and

ðiiÞ V � F is locally Lipschitz

Proof. Take F ¼ Fc, where c is as above. Write cðsÞ ¼ Saifi, with ai:R ! R

Lipschitz. Then, Fðx; sÞ ¼ ðx;SaiðsÞfiðxÞÞ and V � F ¼ @f=@x ¼
�
1;Sai@f=@x

�
which

is therefore locally Lipschitz. &

Remark 4:4 [Graph-Lipschitz regularity]. One may refer to the property V � F
locally Lipschitz, as that V is graph-Lipschitz. By this we mean that, when V is seen

as a section of the tangent bundle, its image (or graph) is a ‘Lipschitz submanifold’

(see Section 9.1.1 for various definitions of each objects). We think, the notion of

graph regularity, e.g. graph-C1, graph-Co . . . ; is natural, and may be useful. As

example, in the one-dimensional case, a mapping f : ½a; b� ! R is graph-Lipschitz,

iff, it has a bounded variation. Indeed, the curve Graph( f ) can be parameterized in a

Lipschitz way, iff, it is rectifiable, i.e. it has a finite length. Writing this length as a

limit of sums over subdivisions of ½a; b�, shows that it is finite, iff, the analogous sums

corresponding to the total variation of f are finite.

4.2. FROM CAUSAL CURVES TO FOLIATIONS

So far, we have proved Lipschitz regularities by showing that a partition structure

leads to causality, and then to Lipschitz, properties. The goal now is to construct

foliations by means of causal curves. To begin with, observe that, if

c:R ! CðM;RÞ is a causal curve, then the map F ¼ Fc: ðx; sÞ ! ðx; cðsÞxÞ is injec-

tive. Therefore, Fc would parameterize a foliation, whenever it is surjective and

bi-continous.

More exactly, we have the following Proposition and Fact, whose proofs follow

from a standard manipulation as in Section 3.1 and Proposition 4.1.

PROPOSITION 4.5. Let M be an open subset of a Euclidean space and

c: s 2 R ! ðs; dðsÞÞ 2 D� F ¼ CðM;RÞ a continuous curve, causally parameterized

over the constants, and with a finite-dimensional range E. Analytically, suppose that:

. There exist f1; . . . ; fk 2 LipLocðM;RÞ, generating a support hyperplane F for the

positive cone of E, that is, no element of F has a definite sign.
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. cðsÞ ¼ sþ a1ðsÞf1 þ � � � þ akðsÞfk, with ai R ! R continuous.

. c is causal, i.e. s0 > s¼)8x 2M; cðs0Þx� cðsÞx > 0.

Then, Fc: ðx; sÞ ! ðx; cðsÞxÞ ¼ ðx; sþ a1ðsÞf1ðxÞ þ � � � þ akðsÞfkðxÞÞ is a homeo-

morphism form M�R to an open subset of it, which is locally Lipschitz. In particular

on the image of Fc, there is a foliation F ðwith leaves the graphs of the cðsÞÞ

parameterized by Fc.

FACT 4.6. A curve c as in the previous proposition is obtained by causally repara-

meterizing over the constants, any causal curve c0. The infinitesimal ingredients for

such a curve ði.e. c0Þ are:

. f0; . . . ; fk a basis of E ðthe finite-dimensional space generated by the cðsÞ, or

equivalently the c0ðsÞÞ.

. a0; . . . ; ak 2 L1
LocðR;RÞ, such that, for almost all s, SaiðsÞfi is a ðstrictlyÞ positive

function on M, i.e. SaiðsÞfiðxÞ > 0; 8x 2M.

. c0ðsÞ ¼ S
R s

0 aiðxÞdx
� �

fi.

4.3. EXAMPLE. CONE STRUCTURES ON POLYNOMIAL SPACES

Let M be an open subset of R
n and denote by PkðMÞ the space of polynomial func-

tions, with degree 4k on Rn restricted to M. The positive polynomials give a cone

structure on PkðMÞ. Let us describe some examples.

. M ¼� � a1 þ a½, and k ¼ 1. A polynomial function of degree 1 has a

representation f: x! axþ b. Such a function has a constant sign on

M, iff, f ð�aÞ and f ðþaÞ have the same sign, that is, ð�aaþ bÞ

ðaaþ bÞ ¼ �a2a2 þ b2 > 0. Therefore, the cone structure is equivalent to

the conformal structure defined by the Lorentz metric �a2a2 þ b2 on the

ða; bÞ–plane.

. M ¼� �1;þ1½, and k ¼ 1. When, a!1, the Lorentz structures degenerate

to a direction field, that of constant functions.

. M ¼ R, and k ¼ 2. A polynomial of degree 2 is written ax2 þ bxþ c. It is

positive on R() a > 0 and b2 � 4ac < 0. Therefore, we obtain the conformal

structure of the time oriented Minkowski space fða; b; cÞg endowed with the

Lorentz form b2 � 4ac.

5. Anti-Lipschitz Facts

Despite all the already proved Lipschitz properties, we have the following answer to

Question 1.11.

THEOREM 5.1. Any increasing homeomorphism of R can be realized as a holonomy

map of a foliation of R2 by parabolas.
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More precisely, let f be a increasing homeomorphism of R. There are functions aðsÞ

and bðsÞ such that

ðiÞ the family of graphs of the parabolas faðsÞx2 þ bðsÞxþ sgs2R foliates R2, and

ðiiÞ f ðsÞ ¼ sþ aðsÞ þ bðsÞ, i.e. ð1; f ðsÞÞ ¼ H1ð0; sÞ where H1 is the holonomy map

f0g �R ! f1g �R ðAlternatively, H1 is the time 1 of the flow of the vector

field V such that V � F: ðx; yÞ ! ð1; 2að yÞxþ bð yÞÞ, where Fðx; yÞ ¼ ðx; að yÞ
x2þ bð yÞxþ yÞ:Þ

Proof. For the reader convenience, we will give here a proof essentially

independent of the previous developments.

We firstly treat the case where f is absolutely continuous, that is, f has a locally

integrable derivative f 0 2 L1
LocðRÞ, and f ðsÞ ¼

R s

0 f
0ðxÞ dx.

In this case the family faðsÞx2 þ bðsÞxþ sgs2R of parabolas, will satisfy that a and b

are absolutely continuous. In fact, we will define their derivative a0 and b0, which we

verify they are in L1
LocðRÞ, and define a and b to be the integrals

R
a0 and

R
b0, respec-

tively.

Take,

a0ðsÞ ¼
f 0ðsÞ if f 0ðsÞ > 1;
f 0ðsÞ þ 1 if f 0ðsÞ4 1

�

and

b0ðsÞ ¼
�1 if f 0ðsÞ > 1;
�2 if f 0ðsÞ4 1:

�

We easily verify that a0; b0 2 L1
LocðRÞ, and ðb0Þ2 � 4a0 < 0, that is, for almost all

s; a0ðsÞx2 þ b0ðsÞxþ 1 is a positive polynomial. This means that the so- obtained curve

Figure 5. A foliation by parabolas interpolating f:
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in the (Minkowki) space of parabolas (4.3) is causal, or in other words, if ParðsÞ is the

graph of aðsÞx2 þ bxþ s, then ParðsÞ is strictly above Parðs0Þ whenever s > s0.

For any fixed x, consider the mapping

gx: s! aðsÞx2 þ bðsÞxþ s

If gxðsÞ ¼ y, then ðx; yÞ 2 ParðsÞ. Therefore, in order to prove that we get a

foliation of the whole plane, it suffices to show that gx is surjective for all x.

We have:

@gxðsÞ

@s
¼

f 0ðsÞx2 � xþ 1 if f 0ðsÞ > 1,
ð f 0ðsÞ þ 1Þx2 � 2xþ 1 ¼ f 0ðsÞx2 þ ðx� 1Þ2 if f 0ðsÞ4 1

�

and, hence,

@gxðsÞ

@s
> minðx2 � xþ 1; ðx� 1Þ2Þ

This shows that for any x 6¼ 1; gx is uniformly expanding, that is its derivative is

uniformly bounded from below by a positive constant, and therefore it is surjective

(since it is continuous).

Now, for x ¼ 1; gx is f itself, which is surjective by hypothesis.

Finally, by construction, f 0 ¼ a0 þ b0 þ 1, and thus, f ðsÞ ¼ aðsÞ þ bðsÞ þ s (by

absolute continuity), that is the foliation by parabolas interpolates f as desired.

This finishes the proof in the absolutely continuous case.

If f is not absolutely continuous, approximate it by a sequence ð fnÞ of absolutely

continuous (or even if we want Lipschitz) homeomorphisms, in the sense of uniform

convergence on compact sets.

For each n, consider functions an and bn, foliations fParnðsÞ; s 2 Rg, and mappings

gxn .

We have the following estimates: fnðsÞ4 anðsÞ4 fnðsÞ þ jsj, and jbnðsÞj4 2jsj.

These lead to estimates of gxn by means of fn. The same is true for hxn ¼ ðg
x
nÞ
�1.

In particular for any fixed x and any s0 ¼ 0, hxnð0Þ is bounded. Therefore, because

of the uniform expanding estimate for gxn , the sequence hxn satisfies Ascoli Theorem,

and hence has a convergent subsequence, say hxn itself converges to some mappings

hx.

Let us show that hx is injective. If not, there would exist a > b, such that

hxðaÞ ¼ hxðbÞ ¼ s.

It then follows that there exist a decreasing sequence sn, an increasing sequence s0n
such that s ¼ lim sn ¼ lim s0n, and a ¼ lim gxnðsnÞ > b ¼ lim gnðs

0
nÞ.

In words, let P ¼ limParnðsnÞ, and P0 ¼ lim Parnðs
0
nÞ, then P is strictly above P0

(limits exist after passing to subsequences). But these parabolas have at least two

common points ð0; sÞ and ð1; f ðsÞÞ. This is a contradiction: the difference of the

defining function of P and P0 is positive, and has two different zeros.

Therefore, hx is injective, and by the above estimates relating hxn and fn, h
x is also

surjective.
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This implies that gxn converges to ðhxÞ�1. One easily sees how this determines a

foliation by parabolas as desired. &

Remark 5:2: Although, it seems somehow canonical, the construction above is by

no means unique. There is a large space of foliations answering the problem. It is

amazing to see how these foliations degenerate.

Remark 5:3: As we discussed in the introduction, the construction of Theorem 5.1

may be interpreted as an interpolation of a homeomorphism by parabolas. One may

generalize this to an interpolation of finite systems H1;H2; . . . ;Hn of increasing

homeomorphisms of R. The statement is that there is a foliation of R2 by graphs of

polynomials of degree 4 nþ 2, such that, for any s 2 R, the nþ 1 points

ð0; sÞ; ð1;H1ðsÞÞ; ð2;H2H1ðsÞÞ; . . . ; ðn1Hn; . . . ;H1ðsÞÞ are in the same leaf.

6. Explanation

So far, we have obtained three seemingly conflicting results: a (plain) Lipschitz

regularity for foliations by line segments (Fact 1.1), a graph-Lipschitz regularity

(i.e. a Lipschitz parameterization) for foliations by rigid curves (Corollary 4.2),

and finally, a construction of non-Lipschitz foliations by parabolad (Theorem 5.1).

The reason of the non-Lipschitz regularity is simply that the Lipschitz

parameterizations are not necessarily bi-Lipschitz.

We are interested here in understanding the difference between the cases of line

segments and the other rigid curves (say, parabolas). In particular, this will give a

new approach to Fact 1.1, by showing that the Lipschitz parameterizations are

actually bi-Lipschitz in this case.

To simplify notation, we restrict ourselves to the case where M is a bounded open

interval of R. Let c be a causally parameterized curve with a finite-dimensional linear

range E � CðM;RÞ. Again to simplify notation, we suppose that E is generated by

f0; . . . ; fk;C
1 functions defined on the whole of R.

The causally parameterized curve c is bi-Lipschitz, say it satisfies an inequality

0 < a < kc0ðsÞk < b. It is convenient here to take the sup norm on E; kuk ¼

supx2M juðxÞj. (This is well defined since the elements of E are defined on R and M

is bounded.)

To begin with, let us suppose that c is C1, that is essentially, c is everywhere

differentiable. The general case, will be treated (at the end) by approximation.

Consider Fc: ðx; sÞ ! ðx; cðsÞxÞ, the parameterization of the foliation determined

by c. We have:

DFc ¼
1 0
� c0ðsÞx

� �
:

If c has the form cðsÞx ¼ SaiðsÞfiðxÞ, then, the � term is SaiðsÞf 0i ðxÞ.
It then follows in particular that det DFc ¼ c0ðsÞx. Therefore, Fc is singular at

ðx; sÞ, iff, c0ðsÞx ¼ 0.
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6.0.1. Maximum Principle

Recall that, for almost all s, c0ðsÞ is a positive function on M, but it may happen for

some s that c0 is (only) nonnegative, that is, c0ðsÞx vanishes somewhere in M.

We will say that E satisfies the maximum principle (more exactly here a minimum

principle) if for u 2 E� f0g, u nonnegative ()u is positive. In other words, the

positive cone on E has 0 alone as an accumulation point.

In the situation above, c0ðsÞ 6¼ 0 (since a < kc0ðsÞk) and, hence,

FACT 6.1. If E satisfies the maximum principle, then Fc is nonsingular.

The following obvious statement expresses one difference between line segments and

parabolas:

FACT 6.2. For E ¼ PkðMÞ the space of polynomial functions on M of degree 4k, the

maximum principle is satisfied, iff, k4 1, that is when E consists of affine functions.

6.0.2. Harnack Principle

Observe that ðkDFcðx; sÞkÞ
�1 would be estimated from above, iff, one can do so far

the term c0ðsÞx. One needs to estimate this last term a qualitative maximum principle.

We will say that E satisfies a Harnack principle, if for any compact K �M, there

exists a constant dK such that, for any u 2 E positive, kukK ¼ supy2K juð yÞj4
dKjuðxÞj, for any x 2 K.

As above, we have:

PROPOSITION 6.3. If E satisfies a Harnack principle, then Fc is locally bi-Lipschitz.

Proof. The proof is already given in the case where c is C1. But the estimates for

ðkDFckÞ
�1 are uniform on c, and locally uniform on ðx; sÞ, and therefore, these

estimates extend to the general Lipschitz case, almost everywhere (on x; s)). It

is classical that almost everywhere boundness of derivatives implies Lipschitz.

Therefore Fc is bi-Lipschitz. &

Remark 6:4: Since E is finite-dimensional, there is an equivalence between the

maximum and the Harnack principle.

6.0.3. A New Proof of Fact 1:1

This reduces to the claim that P1ðMÞ satisfies a Harnack principle.

Of course, none of the PkðMÞ; k > 1 satisfies a Harnack principle, one may

however show that the foliations constructed in the proof of Theorem 5.1 are ‘almost

everywhere’ Lipschitz. More exactly:

THEOREM 6.5. The foliations by parabolas constructed in the proof of Theorem 5:1

are Lipschitz ði.e. their tangent direction is LipschitzÞ away from f0g �R and f1g �R.
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In other words there are foliations of the plane by parabolas, which are Lipschitz away

from two parallel lines, and the holonomy between these lines may be any given

homeomorphism.

7. Nonlinear and Infinite-Dimensional Situations

In the previous sections, we have considered foliations on M�R by graphs of

functions, which generate a linear subspace of finite dimension in CðM;RÞ. We will

in the present section relax both the conditions ‘linear’ and ‘finite’.

7.0.4. Final Notion of Leafwise Rigid Foliations

Recall the notation of Proposition 4.1. We have a partition F of a subset

N �M�R, by the graphs of a set BðF Þ of functions on M.

Previously, we assumed that the linear subspace of CðM;RÞ generated by BðF Þ has

finite dimension. Now, we will say that F is a partition by rigid leaves (or a leafwise

rigid partition) if BðF Þ is contained in a finite dimensional C1 manifold E.

The theory works in the same way as in the linear case. On E, there is a positive

cone field. It is true that this cone field is not necessarily continuous but rather

semi-continuous, but this doesn’t matter.

One may extend this notion to general foliations, whose leaves are not globally

graphs. (One can also generalize the notion of leafwise rigidity to higher codimension

foliations, but only the codimension one case interests us here).

As in the linear case, one may define a maximum principle, which will be

equivalent to a Harnack principle, due to the finiteness of the dimension.

THEOREM 7.1. A codimension one leafwise rigid foliation can be locally para-

meterized by Lipschitz homeomorphisms. The foliation is Lipschitz if its leaves satisfy a

maximum principle.

COROLLARY 7.2 [14]. A codimension one geodesic foliation on a manifold endowed

with a C1 connection, is locally Lipschitz.

Remark 7:3: From this, one deduces that the foliations by parabolas con-

structed in Theorem 5.1 cannot become geodesic for any C2 metric on the plane.

Nevertheless, there exist C 0 metrics for which such a foliation is geodesic. This is

the case of any foliation by graphs. Take any metric for which the projection on

the x-axis is a Riemannian submersion with the tangent space of the foliation as

a horizontal space.

Remark 7:4: Another case where rigidity and maximum principle are fulfilled, is

that of codimension one umbilical foliations on Riemannian manifolds.
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7.0.5. Infinite-Dimensional Linear Case

As was said in Remark 3.6, all the theory extends to the infinite dimensional case,

with the condition that the nonnegative cone on E is ‘projectively’ compact, that

is its intersection with the unit sphere is compact.

This applies to the situation of foliations on M�R by graphs of harmonic func-

tions, with respect to a Riemannian metric on M. It is classic that the restriction to a

compact subset of M, of positive harmonic functions on M, is a cone with a compact

section. Also, maximum principle and Harnack inequalities are valid, they actually

originated in this situation.

COROLLARY 7.5. A foliation on M�R by graphs of harmonic functions, is locally

Lipschitz.

7.0.6. Minimal Foliations

Minimal hypersurfaces in a Riemannian manifold can be written locally as graphs of

functions satisfying a ‘special’ second-order elliptic semi-linear equation. There is a

well developed theory of such equations, leading to that their solutions enjoy most of

the properties of the linear case ðregularity, compactness of positive cones, maxi-

mum principle . . . Þ½9�. Here, one may mix the nonlinear and the infinite-dimensional

discussions above to show:

THEOREM 7.6 (B. Solomon [12]). A codimension 1 foliation on a Riemannian

manifold by minimal leaves, is locally Lipschitz.

7.0.7. Other Situations

J. Moser [9] and V. Bangert (see, for instance, [2]) studied foliations (more exactly

laminations) by graphs of functions, which are solutions of a variational problem.

They assumed that the associated Euler equation is elliptic of second order, and

satisfies some estimates. Solomon’s Lipschitz regularity result is generalized to this

situation in [9].

Surely, there are some technical difficulties in adapting our approach to this

nonlinear infinite-dimensional situation, but we think that it yields at least an

explanation of this Lipschitz regularity phenomenon.

8. The Complex Case

8.0.8. Geodesic Foliations

By multiplying the examples of Section 2 by R, one gets (global) codimension 2 folia-

tions of R
4 by 2-planes, which are not Lipschitz (even nonmeasurable). However, if

R4 is identified with C
2, then any foliation of an open set, with leaves contained in

complex lines, is Lipschitz. More exactly, Fact 1.1 extends straightforwardly to the
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complex case. Indeed, its proof is essentially algebraic. It can be rewritten to cover

the case of all plane geometries (over general fields), endowed with ‘compatible’

metrics. In particular, Fact 1.1 extends also to the p-adic case.

The extension to the complex codimension 1 case is also straightforward.

8.0.9. Holomorphic Motions

Let M be a complex manifold with a base point m0. A holomorphic motion of X � C

with parameter space M, is a partition of a subset N �M�C, by graphs of

holomorphic functions on M, such that the fiber N \ ðfm0g �CÞ equals X.

Any x 2 X determines a motion fx:M! C;fx
ðmÞ ¼ uxðmÞ, where ux is the func-

tion whose graph is the leaf of ðm0; xÞ. The nonintersection condition of graphs

means that motions of different points of X don’t meet, at any (time) m 2M.

Our investigation in this article may be seen as a study of (real) rigid motions. Let

us however say that our original motivation was not the study of real versions of

holomorphic motions, but rather, to understand Fact 1.1 and related results.

There is no (natural) order on C, and thus we can’t speak easily about causal

structures. For example, the nonintersection of graphs induces of the space of com-

plex polynomials a ‘weakly complex causal cone’ structure. This structure is some-

what complicated, and we don’t see how to exploit it, for example to find a

graph-Lipschitz regularity for foliations by graphs of such polynomials. We think

however, it is worth investigating this structure, at least to give a new approach to

the following quasi-conformal regularity of holomorphic motions which, in fact,

does not require rigidity!

FACT 8.1 (see, for instance, [13] and [4]). A holomorphic motion is transversally quasi-

conformal, that is, for any m 2M, the map x 2 X! fx
ðmÞ 2 C is quasi-conformal.

Conversely, any ðorientation preservingÞ quasi-conformal map of C is a holonomy of

a holomorphic motion.

Remark 8:2: It then follows that, for some real homeomorphisms f, the foliation

by parabolas constructed in Theorem 5.1, cannot be extended by complexification,

to any neighborhood of R2 in C
2, as a holomorphic motion, i.e. for any neighbor-

hood of R2, the complexified parabolas must intersect. Indeed, if this extension were

possible, then the holonomy would be quasiconformal, and therefore, its restriction

to R
2 would be quasi-symmetric. It suffices to take f nonquasi-symmetric.

9. Comments on the Higher Codimension Case

So far, all the obtained regularity results concern codimension 1 situations, which

was necessary as shown in Section 2. Here, we discuss some special higher codimen-

sion cases. We will also ask some questions concerning Lipschitz regularity.
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9.1. LIPSCHITZ FOLIATIONS. FROBENIUS THEOREM.

When working on [16], I met the following problem. We have on a Lorentz manifold

ðM; h; iÞ, a Lipschitz plane field E, which is Lorentzian (that is, the metric on it is of

Lorentzian type, i.e. with signature �þ � � � þ) for which we know that there exists a

measurable locally bounded section n of E? (the orthogonal of E), such that, for any

Lipschitz vector fields X;Y tangent to E; ðHXY Þ
E?
¼ hX;Y in, almost everywhere,

where ðÞE? means orthogonal projection on E?. We hope to deduce from this that

E is integrable, with umbilical leaves.

Observe that since, ½X;Y � ¼ HXY� HYX, the bracket of any two Lipschitz vector

fields tangent to E, is tangent to E (almost everywhere). The integrability question we

are asking is thus a Lipschitz version of Frobenius Theorem. We then found that this

was recently proved by S. Simic.

THEOREM 9.1 ([11]). Assume that a Lipschitz k-plane field E is involutive, in the

sense that for all Lipschitz vector fields X;Y tangent to E, the bracket ½X;Y � is almost

everywhere tangent to E. Then E is integrable, in the sense that through every point

passes a leaf which is a k-submanifold of class C1þLip, tangent to E.

9.1.1. An Invariance Problem

A leaf F of our E has a second fundamental form of the type IIðX;Y Þ ¼ hX;Y in,

where n is a measurable normal vector field. This is the classical definition of umbi-

lical submanifolds, but usually in a sufficiently smooth context, say C2. Here, since F

is of Lorentz type, we have the following extra-regularity:

FACT 9.2. Suppose that the Lorentz metric on M is C1, and let F be a C2 umbilical

Lorentzian submanifold of dimension 53. Then F is C1.

Proof. Observe that this is standard if F is geodesic. The general umbilical case

follows from the fact that F is isotropically geodesic, that is an isotropic geodesic

tangent to F is locally contained in it. The proof of this goes as follows. Consider a

solution of the equation HF
g0ðtÞg

0ðtÞ ¼ 0, where HF is the connection on F, and gðtÞ is a

curve contained in F, with an isotropic initial data. Solutions exist since F is C2, and

hence, the coefficients of the equation are C0. The curve gðtÞ will be everywhere iso-

tropic, and thus IIðg0ðtÞ; g0ðtÞÞ ¼ hg0ðtÞ; g0ðtÞin ¼ 0, that is gðtÞ is an isotropic geodesic of

M. Now, to see that F is C1, observe that it contains many C1 codimension 1 sub-

manifolds inside it. Indeed, for any x, let expx be the exponential map at x, andT 0
xF the

isotropic cone at x. The previous discussion says that expxðT
0
xF Þ is locally contained in

F. Observe now that expxðT
0
xFÞ � fxg is a C1 hypersurface contained in F. &

This kind of regularity seems quite surprizing, since the involved PDE problem is

of hyperbolic nature (because of the Lorentz condition). Classically, only elliptic

equations have regularizing effects, but there is here an extra rigidity phenomenon.

The goal now is to try to generalize the fact to the case where F is C1þLip.
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Let ft be the geodesic flow on TM, and G be its infinitesimal generator vector

field. Denote by T 0M (resp. T 0F ) the space of isotropic vectors tangent to M (resp.

F ). The geodesic flow preserves T 0M. The umbilicity equation II ¼ h; in, which gives

IIðu; uÞ ¼ 0 for u 2 T 0F, implies that G is tangent (almost everywhere) to T 0F. If F is

C2, then T 0F is C1, and therefore the tangency integrates to a local invariance: T 0F is

locally invariant by ft, which exactly means that F is isotropically geodesic. This

gives another proof of the previous fact. If F is merely C1þLip, then F is a ‘Lipschitz

submanifold’, and we are naturally led to ask.

QUESTION 9.3. Let G be a C1 nonsingular vector field, with a flow ft on a

manifold V and W a Lipschitz submanifold tangent to G. Is it true that W is locally

invariant by ft, that is, for any x 2W, there exist U a neighborhood of x in W, and

E > 0, such that ft
ðU Þ �W, for jtj < E?

There is some subtlety in defining Lipschitz submanifolds. The strongest notion is

that, locally, in some bi-Lipschitz chart, W corresponds to a Euclidean subspace. The

weakest notion is that, locally, W is the image of an injective Lipschitz map defined on

an open subset of a Euclidean space, with maximal rank almost everywhere.

The uniqueness of solutions of smooth vector fields yields an affirmative answer to

the question in the case dimW ¼ 1, even with a weakest possible definition, that is, W

is the image of a Lipschitz (not necessarily injective) curve (not necessarily injective,

but not reduced to a point, in order to have dimW ¼ 1).

Remark 9:4: An analogous easier question may be posed for geodesic submanifolds

of Riemannian manifolds, that is, let F be a C1þLip submanifold in a C1 Riemannian

manifold M, such that almost everywhere, the second fundamental form vanishes,

then, F is geodesic, that is, F contains, locally, the geodesics which are somewhere

tangent to it, and therefore, F is C1. In the case, where M is the three-dimensional

Euclidean space and F is a surface, one translates the infinitesimal condition to that the

Gauss map F! S2 has rank 0, and is therefore constant, that is, F is geodesic.

9.2. NORMALS OF SUBMANIFOLDS

The Lipschitz regularity extends to vector fields (more exactly direction fields) with

line segment orbits, on open sets of Euclidean spaces of dimension >2, if they satisfy

additional differential relations, which are automatic in dimension 2. One such a

condition is that the orthogonal of the direction field is integrable. This is essentially

equivalent to saying that the direction field is a gradient. More precisely, I learned

from A. Fathi, when writing a first version of the present paper, the following state-

ment (which is now published in [5]). Let H be a C1 hypersurface in the Euclidean

space Rn, then, the family of its normals foliates a neighborhood of it, iff, H is

C1þLip, i.e. a unit normal vector field along H, is Lipschitz. Another equivalent state-

ment is that, if the distance function x! dðx;HÞ is C1 near H, then it is in fact

C1þLip. With this formulation, Fathi’s result generalizes to a wide class of solutions
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of the Hamilton–Jacobi equation (the distance functions are a special case of them).

Also, the result on normals of hypersurfaces generalizes to normals of submanifolds

of any codimension, and in any (smooth) Riemannian manifold. As in Section 1.1.1,

from this one deduces the equality of analytic and topological caustics of C2

submanifolds in Riemannian manifolds.

9.3. ‘ANOSOV’ FOLIATIONS

The following Lipschitz regularity was crucial in [15] to prove nonexistence of

1-dimensional continuous geodesic foliations on compact hyperbolic 3-manifolds.

THEOREM 9.5. Let C and C0 be two continuous curves in S2, the unit sphere of the

Euclidean space R3. Suppose that for any x; x0 2 C; y; y0 2 C0 with ðx; x0Þ 6¼ ð y; y0Þ, we

have �x; y½ \ �x0; y0½¼ ;. ðIn other words, the join of C and C0 foliates a subset of the

open unit ball Þ.

Then, C and C0 are ðmore exactly, can be parameterized asÞ Lipschitz curves.

9.3.1. Almost example of geodesic foliations on hyperbolic manifolds

A candidate for a one-dimensional geodesic foliation on a hyperbolic manifold was

discussed in [15]. The general construction goes as follows. Let f:N! S1 be a closed

manifold fibering over the circle, with fiber type S and monodromy s:S! S, that is

N ¼ S� ½0; 1�=ðx; 1Þ ! ðsðxÞ; 0Þ.
We have a suspension flow ft, that is that generated by the vector field @=@t on

[0, 1], and a dual 1-form o, which vanishes on the factor S, and such that

oð@=@tÞ ¼ 1.

Let �NN denote the cyclic covering corresponding to o. It is nothing but S�R.

Let’s call a Riemannian metric on N basic, if @=@t has a constant length and is

orthogonal to the factor S.

One can prove that the orbits of ft are geodesic for any basic metric g0. Further-

more, when lifted to �NN, they are globally minimizing.

Suppose now that N is endowed with another metric g which has negative

curvature.

Figure 6. Nonintersection of line segments ¼)C and C0 are Lipschitz.
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The orbits of ft lifted to the universal covering �NN are quasi-geodesic (in the

sense of g). Indeed, along such an orbit, the intrinsic and extrinsic g-distances are

comparable with the same constants comparing the Riemannian metrics g and g0.

There is a continuous straightness homotopy f:N! N, whose lift to �NN associates

to a ~fft-orbit its asymptotic g-geodesic.

Suppose now that s is a pseudo-Anosov diffeomorphism on a surface S of genus

52. In this case, by a theorem of Thurston [10], N has a hyperbolic (i.e. with

constant curvature �1) metric.

It was proved in [15] that, for such a hyperbolic metric g, the image of f can

not generate a foliation by g-geodesics, that is, essentially, f:N! N cannot be

injective.

On the other hand, it was proved that the boundary map which associates to a ~fft-

orbit its endpoints at infinity, is injective. This implies in particular that the set of

corresponding g-geodesics determines a topological 3-manifold N̂N in the unit

tangent bundle T1N, which is invariant under the geodesic flow (N̂N is homeomorphic

to N and projects surjectively on it). However, N̂N is not Lipschitz. In fact, one

can prove (for instance by improving technics of [15]), that N̂N has a Hausdorff

dimension >3.

QUESTION 9.6. Calculate the Hausdorff dimension of N̂N. In particular, is it

possible to calculate it by means of the (pseudo-Anosov) monodromy s?

Remark 9:7: The geodesic flow restricted to N̂N is pseudo-Anosov. The Hausdorff

dimension of N̂N equals 1þ the sum of Hausdorff dimensions of the stable and

unstable leaves. This last sum equals the sum of Hausdorff dimensions of the stable

and unstable quotient spaces of the stable and unstable foliations. These quotient

spaces are realized as one-dimensional topological subsets of the sphere at infinity

@1H3. They are images of the stable and unstable ending maps ps; pu:H3
! @1H3,

which associate to a point of H3, the positive and negative ends of its ft-orbit.

9.4. MATHER LAMINATIONS

So far, we have been concerned with various Lipschitz regularities which are local in

nature. Here we will mention results on Lipschitz regularity due to global reasons.

(We won’t discuss the proofs here, but the phenomenon is in reality based on a local

‘crossing Lemma’ [8]). There are many contributors to this theory, we quote for our

purpose here [2] and [8]. The most synthetic approach seems to be that of Ma �nné [6]. I

learned a lot from D. Massart’s thesis [7].

Here follows a brief review of the theory. We are given a compact manifold N

endowed with a Riemannian metric g and a closed 1-form o. They induce functions

on the tangent bundle TN, by the rules v! gðv; vÞ, and v! oðvÞ.
To a compactly supported probability measure m on TN, associate its action

AðmÞ ¼
R
ðg� o Þ dm.
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Consider the critical value cðg;oÞ ¼ infm AðmÞ. Measures which minimize A, i.e.

AðmÞ ¼ cðg;oÞ are called minimizing (for ðg;oÞ) and are automatically invariant

under the geodesic flow of g.

The Mather set Mðg;oÞ is the closure of the union of the supports of minimizing

measures. It is a compact subset of TM invariant under the geodesic flow of g. It

depends only on the cohomology class of o (for fixed g). In particular, if o is a

coboundary, then Mðg;oÞ is the 0-section. Otherwise, Mðg;oÞ does not meet the 0-

section, a vector u in Mðg;oÞ has no nontrivial multiple lu which belongs to

Mðg;oÞ. Therefore Mðg;oÞ can be identified with a closed subset PMðgoÞ of the unit

tangent bundle T1N, invariant under the geodesic flow.

GRAPH THEOREM 9.8 (Mather, [8]). The projection p:TN! N maps injectively

PMðg;oÞ in N, and has a Lipschitz inverse. In particular, pðPMðg;oÞÞ is the support of a

transversally measured one-dimensional Lipschitz geodesic lamination on N, we denote

it by Lðg;oÞ and call it the Mather lamination on N associated to ðg;oÞ.

9.4.1. Geometric-dynamical Description of Mather Geodesic Laminations

The lamination Lðg;oÞ has the following geometric characterization (see [3] and [8]).

Let �NN be the cyclic covering associated to o. Consider Mðg;oÞ � T1N, the set of

vectors which determine a geodesic whose lift to �NN is minimizing (i.e. it minimizes

the distance in �NN between any two points lying on it). Then, PMðg;oÞ is contained

in Mðg;oÞ.

PMðg;oÞ is obtained from Mðg;oÞ by purifying it from ‘dissipative’ geodesics. More

exactly, PMðg;oÞ is what is sometimes called the Poincaré recurrence set of the

geodesic flow on Mðg;oÞ, that is the union of supports of invariant probability

measures on Mðg;oÞ (this union is closed since there is a single measure whose support

equals the union). Manné introduced weaker geometric purifications which give rise to

larger Lipschitz geodesic laminations [6].

9.4.2. Lipschitz Geodesic Laminations on Hyperbolic 3-manifolds

Keep the notations of Section 9.3.1: N;ft and s:S! S a pseudo-Anosov diffeo-

morphism of a surface of genus 52.

If g is a basic metric on N, then Lðg;oÞ is nothing but the orbit foliation of the

suspension flow ft.

In contrast, if g is a hyperbolic metric on N, then the support of Lðg;oÞ is a proper

subset of N, i.e. Lðg;oÞ is not a foliation [15]. In fact, one may prove that the support

of Lðg;oÞ is not a rectifiable set, unless it is a finite union of closed geodesics.

From the previous Section, the description of Lðg;oÞ reduces to understand the

‘nondissipative’ minimizing geodesics in �NN ¼ S�R. One may for instance wonder

if Lðg;oÞ is a ‘fragment’ of the suspension flow, when transformed by the straightness

homotopy (Section 9.3.1), that is, is Lðg;oÞ the image by the straightness homotopy of

a sublamination of the suspension flow?
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There are only a finite number of isotopy classes of hyperbolic metrics on N.

Therefore, we get a canonical finite collection of critical values cðg;oÞ, and a finite

collection of isotopy classes of laminations Lðg;oÞ, where g is a hyperbolic metric.

It fact, it seems that Lðg;oÞ is not a foliation of N, when g is merely a metric of nega-

tive curvature. This indicates how a basic metric is far from being of negative curva-

ture. The fibration picture is well known to be destroyed with respect to hyperbolic

metrics (in the 3-hyperbolic space, the fibres look like to the sheets of a cauliflower).

It is very suggestive to describe the lamination Lðg;oÞ as a measurement of this distor-

tion (for g hyperbolic). In particular, how are these objects related to the dynamics of

the pseudo-Anosov s, and can they be described by means of s only?

The philosophy behind these questions is to see whether some characteristics of

the hyperbolic 3-manifold are accessible by means of the pseudo-Anosov mono-

dromy, and thus what kind of invariants of pseudo-Anosov diffeomorphims are

so obtained? This possibility would give further evidences to the hyperbolicity

Theorem. I shared these thoughts with J. P. Otal, some years ago (before he wrote

his full proof of the hyperbolicity Theorem for fibering 3-manifolds [10]).
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