Actions of discrete groups on stationary Lorentz manifolds

Abdelghani Zeghib

UMPA, ENS-Lyon
http://www.umpa.ens-lyon.fr/~zeghib/
(joint work with Paolo Piccione)
Introduction
Motivations and questions
Examples

Results
Results
Previous results

Linear Dynamics
General considerations
Furstenberg Lemma

Lorentz Dynamics
Introduction
Global invariants of Lorentz metrics

M a differentiable manifold (today everywhere compact)

$\text{Diff}^k(M)$ acts on

$\text{Rie}^{k-1}(M)$ (resp. $\text{Lor}^{k-1}(M)$) = space of C^{k-1} Riemannian (resp. Lorentz) metrics on M.

Endow them with the Banach topology (or Frechet for $k = \infty$)

It is known that $\text{Diff}(M)$ acts properly on $\text{Rie}(M)$

i.e. The quotient $X = \text{Riem}(M)/\text{Diff}(M)$ is Hausdorff = modular space of M.

• A function on $F: g \in X \rightarrow F(g) \in \mathbb{R}$ is a Riemannian invariant: diameter, volume, integral curvature, injectivity radius...
Global invariants of Lorentz metrics

M a differentiable manifold (today everywhere compact)
$\text{Diff}_k^k(M)$ acts on $\text{Rie}^{k-1}(M)$ (resp. $\text{Lor}^{k-1}(M)$) = space of C^{k-1} Riemannian (resp. Lorentz) metrics on M.
Endow them with the Banach topology (or Frechet for $k = \infty$)

It is known that $\text{Diff}(M)$ acts properly on $\text{Rie}(M)$
i.e. The quotient $X = \text{Riem}(M)/\text{Diff}(M)$ is Hausdorff = modular space of M.

- A function on $F : g \in X \to F(g) \in \mathbb{R}$ is a Riemannian invariant: diameter, volume, integral curvature, injectivity radius...
Global invariants of Lorentz metrics

M a differentiable manifold (today everywhere compact)

$\text{Diff}^k(M)$ acts on

$\text{Riem}^{k-1}(M)$ (resp. $\text{Lor}^{k-1}(M)$) = space of C^{k-1} Riemannian (resp. Lorentz) metrics on M.

Endow them with the Banach topology (or Frechet for $k = \infty$)

It is known that $\text{Diff}(M)$ acts properly on $\text{Riem}(M)$

i.e. The quotient $X = \text{Riem}(M)/\text{Diff}(M)$ is Hausdorff = modular space of M.

• A function on $F : g \in X \rightarrow F(g) \in \mathbb{R}$ is a Riemannian invariant: diameter, volume, integral curvature, injectivity radius...
(SUPER-) QUESTION: **When is the** $\text{Diff}(M)$-action on $\text{Lor}(M)$ **proper?**

Recall G acts properly on X if: $\forall K \subset X$ compact, the set (of return times)

$$G_K = \{g \in G, gK \cap K \neq \emptyset\}$$

is compact

– Gromov: the difficulty in the global studying of Lorentz manifolds lies in the fact that $\text{Lor}(M)/\text{Diff}(M)$ does not exist (as a Hausdorff space).
(SUPER-) QUESTION: **When is the $\text{Diff}(M)$-action on $\text{Lor}(M)$ proper?**

Recall G acts properly on X if: $\forall K \subset X$ compact, the set (of return times)

$$G_K = \{ g \in G, gK \cap K \neq \emptyset \}$$

is compact

– Gromov: the difficulty in the global studying of Lorentz manifolds lies in the fact that $\text{Lor}(M)/\text{Diff}(M)$ does not exist (as a Hausdorff space).
(SUPER-) QUESTION: **When is the** $\text{Diff}(M)$-**action on** $\text{Lor}(M)$ **proper?**

Recall G acts properly on X if: $\forall \, K \subset X$ compact, the set (of return times)

$$G_K = \{g \in G, gK \cap K \neq \emptyset\}$$

is compact

– Gromov: the difficulty in the global studying of Lorentz manifolds lies in the fact that $\text{Lor}(M)/\text{Diff}(M)$ does not exist (as a Hausdorff space).
The Question

The $\text{Diff}(M)$-action on $\text{Lor}(M)$ proper $\implies \forall \ g \in \text{Lor}(M)$, Stabilizer($g$) is compact,
But Stabilizer(g) $=$ Isom(g)

Question

When is the isometry group of a compact Lorentz manifold non-compact?

In the non-compact case:

Question: Classify Lorentz manifolds (M, g) for which $G = \text{Isom}(M, g)$ acts non-properly
The **Question**

The $\text{Diff}(M)$-action on $\text{Lor}(M)$ proper $\implies \forall \ g \in \text{Lor}(M)$, Stabilizer($g$) is compact,
But Stabilizer(g) = Isom(g)

Question

*When is the isometry group of a **compact** Lorentz manifold non-compact?*

In the non-compact case:

Question: Classify Lorentz manifolds (M, g) for which $G = \text{Isom}(M, g)$ acts non-properly
The Question

The $\text{Diff}(M)$-action on $\text{Lor}(M)$ proper $\iff \forall \ g \in \text{Lor}(M)$, Stabilizer($g$) is compact, But Stabilizer(g) = Isom(g)

Question

*When is the isometry group of a **compact** Lorentz manifold **non-compact**?*

In the non-compact case:

Question: **Classify Lorentz manifolds** (M, g) for which $G = \text{Isom}(M, g)$ acts non-properly
The Question

The $\text{Diff}(M)$-action on $\text{Lor}(M)$ proper $\Rightarrow \forall g \in \text{Lor}(M)$, Stabilizer$(g)$ is compact,
But Stabilizer$(g) = \text{Isom}(g)$

Question

When is the isometry group of a compact Lorentz manifold non-compact?

In the non-compact case:
Question: Classify Lorentz manifolds (M, g) for which $G = \text{Isom}(M, g)$ acts non-properly
\[G = \text{Isom}(M, g) \]

\(G^0 \) its identity component (i.e the connected component of 1)

Cases:

- \(G^0 \) non-compact (strongest hypothesis)
- \(G^0 \) compact and non-trivial
- \(G^0 \) trivial

\[\Gamma = G/G^0 \] the “discrete part of \(G \)”

\(\Gamma \) acts by conjugacy: \(\Gamma \to \text{Aut}(G^0) \to \text{Out}(G^0) \)

(Conditions on this action)
Cases

\[G = \text{Isom}(M, g) \]
\[G^0 \] its identity component (i.e. the connected component of 1)

Cases:

- \(G^0 \) non-compact (strongest hypothesis)
- \(G^0 \) compact and non-trivial
- \(G^0 \) trivial

\[\Gamma = G/G^0 \] the \textbf{“discrete part of } G\textbf{”}

\(\Gamma \) acts by conjugacy: \(\Gamma \rightarrow \text{Aut}(G^0) \rightarrow \text{Out}(G^0) \)

(Conditions on this action)
Paradigmatic example: Flat Lorentz tori

q a Lorentz form on \mathbb{R}^n
\rightarrow a Lorentz flat torus $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$.

The linear isometry group of (\mathbb{T}^n, q):

$$O(q, \mathbb{Z}) = GL(n, \mathbb{Z}) \cap O(q)$$

Full isometry group: the semi-direct product: $O(q, \mathbb{Z}) \ltimes \mathbb{T}^n$

For generic q, $O(q, \mathbb{Z})$ is trivial.
q rational $\iff q(x) = \alpha(\sum a_{ij}x_ix_j)$, and a_{ij} are rational numbers,

Harich-Chandra-Borel theorem ($n \geq 3$)

$O(q, \mathbb{Z})$ is big in $O(q)$;

It is a lattice in $O(q)$.

$O(q, \mathbb{Z})$ is a "standard" arithmetic (real) hyperbolic group

For $q_0 = -x_1^2 + x_2^2 + \ldots + x_n^2$: $O(q, \mathbb{Z})$ has finite covolume

$O(q, \mathbb{Z})$ may be co-compact for other q, say in dimension $n = 3$

When q is not rational, many intermediate situations are possible.
For $q_0 = -x_1^2 + x_2^2 + \ldots + x_n^2$: $O(q, \mathbb{Z})$ has finite covolume

$O(q, \mathbb{Z})$ may be co-compact for other q, say in dimension $n = 3$

When q is not rational, many intermediate situations are possible.
Recall: \(\text{PSL}(2, \mathbb{R}) \rightarrow SO(1, 2) \)
(Acton of \(\text{SL}(2, \mathbb{R}) \) on polynomials of degree 2)
\(\text{SL}(2, \mathbb{Z}) \rightarrow O_{\mathbb{Z}}(1, 2) \)

Some elements of \(O_{\mathbb{Z}}(1, 2) \)
Hyperbolic:

\[
\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \rightarrow \ldots
\]

Parabolic (unipotent):

\[
\begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \rightarrow \ldots
\]
Dimension 2

\[q_0 = x^2 - y^2 \]

\[\text{SO}(1, 1) = \left\{ \begin{pmatrix} \cosh t & \sinh t \\ \sinh t & \cosh t \end{pmatrix} \right\} \]

\[\text{SO}_\mathbb{Z}(1, 1) = \{1\} ? \]
(Avez: observed that Anosov diffeomorphisms on the 2-torus preserve Lorentz metrics ?)

\[A \in SL(2, \mathbb{Z}) \] hyperbolic, e.g.

\[
\begin{pmatrix}
2 & 1 \\
1 & 1
\end{pmatrix}
\]

\(x^u \) and \(x^s \) coordinates along eigen-directions

\(q = x^u x^s \).

\(A \) preserves \(q \)

\(\text{Isom}(\mathbb{T}^2, q) = (\text{essentially}) \mathbb{Z} \ltimes \mathbb{T}^2, \mathbb{Z} \) generated by \(A \).

\(A \) preserves some rational \(q = ax^2 + cxy + by^2 \) (with all coefficients \(\neq 0 \))
An arithmetico-dynamical Remark

\(A \in O(q, \mathbb{Z}) \)

A hyperbolic means it has an eigenvalue of norm \(\neq 1 \)

Thus Spectrum \((A) = \{\lambda, \lambda^{-1}, \sigma_1, \ldots \sigma_k\}\), algebraic integers, \(\lambda\) real and \(> 1\)

\(\sigma_i \in S^1\)

The corresponding diffeomorphism on \(\mathbb{T}^n\) is partially hyperbolic with one dimensionnal stable and unstable foliation.

These foliations may be minimal (all leaves dense)

In this case, \(\lambda\) is a Salem number,

Conversely, any Salem number occur as a leading eignevalue for some \(A \in O(q, \mathbb{Z})\) for some \(q\).
Connected examples

Suspension \mathbb{T}^3_A

The suspension of A gives a flat Lorentz manifold endowed with an isometric flow which is Anosov (chaotic)

$\mathbb{T}^3_A = SO\ell/\Gamma$,

$SO\ell$: the 3-dimensional unimodular solvable non-nilpotent group.

(Compare with Bianchi)
Non-suspension examples

Instead of \textit{SOL}

take $G = SL(2, \mathbb{R})$,

$M = SL(2, \mathbb{R})/\Gamma$, Γ a co-compact lattice

The G action on G/Γ preserves a Lorentz metric,

This metric has constant negative curvature (locally AdS)

Explanation: at the origin $1 \in G/\Gamma$, take the Killing form

$\kappa : G \times G \to \mathbb{R}$ (it has a Lorentz signature).
Another examples: Oscillator (or Warped Heisenberg) groups

There is a (family of) groups G, solvable but looking like $SL(2, \mathbb{R})$:

- they are solvable, so their Killing form is degenerate
- they have a bi-invariant Lorentz form on their Lie algebra
- they have lattices
Results
Hypotheses

\(M \) compact Lorentz
\(G \) acts isometrically
\(G^0 \) compact
\(G \) non-compact
\(\Gamma = G/G^0 \) acts on Aut(\(G^0 \)).

A geometric hypothesis: The \(G^0 \) action is not everywhere non-timelike: there is \(x_0 \) such that \(G^0 x_0 \) is timelike (the induced metric is Lorentz).

Example, strong situation: \(M \) is [stationary]: there is an everywhere timelike Killing field.
Essentially: the conjugacy action of Γ on G^0 is not equicontinuous.

Fact (non-trivial): The algebraic and geometric hypotheses are equivalent.
First formulation of results, corollaries

Up to finite cover for M and finite index subgroup for G (everywhere),

G^0 has a toral Γ-invariant factor T (of some dimension d)

- The action of Γ on T preserves some Lorentz form q and $\Gamma = O(q, \mathbb{Z})$.
- The action of T on M is everywhere free
- The orbits are all timelike: the identification of any orbit $T \times \mathbb{T}$ with T gives a Γ-invariant Lorentz form q_x (on T)
Corollary

If a Lorentz manifold has a non compact isometry group and a somewhere timelike Killing field, then M is stationary.
Corollary

A compact simply connected STATIONARY Lorentz manifold has compact isometry group.

(this will become from the next precise theorem)

D’Ambra Theorem: A compact simply connected ANALYTIC Lorentz manifold has compact isometry group.

Here the metric is C^2
Corollary

A compact simply connected STATIONARY Lorentz manifold has compact isometry group.

(this will become from the next precise theorem)
D’Ambra Theorem: A compact simply connected ANALYTIC Lorentz manifold has compact isometry group.

Here the metric is C^2
Challenge: Generalize D’Ambra Theorem to the smooth case

- Why it is important to deal with the non-analytic case?
- reminiscent to the case of codimension 1 foliations: they may exist on the smooth case but not the analytic one (Heafliger).

Why simply connected manifolds?
- Because it is generally thought that dynamics, at least in a rigid geometric background, is encoded in the fundamental group.
Challenge: Generalize D’Ambra Theorem to the smooth case

- Why it is important to deal with the non-analytic case?
- reminiscent to the case of codimension 1 foliations: they may exist on the smooth case but not the analytic one (Heafliger).

Why simply connected manifolds?
- Because it is generally thought that dynamics, at least in a rigid geometric background, is encoded in the fundamental group.
Challenge: Generalize D’Ambra Theorem to the smooth case

- Why it is important to deal with the non-analytic case?
- reminiscent to the case of codimension 1 foliations: they may exist on the smooth case but not the analytic one (Heafliger).

Why simply connected manifolds?
- Because it is generally thought that dynamics, at least in a rigid geometric background, is encoded in the fundamental group.
Precise statements

Theorem

\(\text{Iso}_0(M, g) \) contains a torus \(\mathbb{T} = \mathbb{T}^d \), endowed with a Lorentz form \(q \), such that \(\Gamma \) is a subgroup of \(\text{O}(q, \mathbb{Z}) \).

There is a new Lorentz metric \(g_{\text{new}} \) on \(M \) having a larger isometry group than the original \(g \), such that \(\Gamma = \text{O}(q, \mathbb{Z}) \).

Geometrically:
- \(M \) is metric direct product \(\mathbb{T} \times N \), where \(N \) is a compact Riemannian manifold,
- or \(M \) is an amalgamated metric product \(\mathbb{T} \times S^1 L \), where \(L \) is a lightlike manifold with an isometric \(S^1 \)-action.

The last possibility holds when \(\Gamma \) is a parabolic subgroup of \(\text{O}(q) \).
Remarks

- Having this description of g^{new}, one can understand g: the metric on the \mathbb{T} orbits varies in the modular space of Γ-invariant Lorentz metrics on \mathbb{T}.

- The difference between the direct product and amalgamated case lies in the fact that the orthogonal distribution of \mathbb{T} is integrable and has closed leaves.

- The statement is optimal: giving data: $\Gamma, N..., one constructs M.

- Consideration of finite covers is necessary...
Amalgamated products
The connected case

Theorem

(Zimmer, Gromov, Adams-Stuck, Zeghib) Let G be a connected non-compact Lie group acting isometrically on a compact Lorentz manifold.

Then the Lie algebra \mathcal{G} is isomorphic to a direct sum

$$\mathcal{K} + \mathbb{R}^k + S,$$

where \mathcal{K} is the Lie algebra of a compact semi-simple Lie group, $k \geq 0$ is an integer and S is trivial or isomorphic to:

- a Heisenberg algebra (of some dimension),
- a warped Heisenberg algebra, or
- $sl(2, \mathbb{R})$.

Conversely, any such algebra is isomorphic to the Lie algebra of the isometry group of some compact Lorentz manifold.
In particular if the G-orbits are somewhere timelike, the the factor S is non-trivial, and we have a (local) warped product...
Dynamics on Lorentz manifolds

Abdelghani Zeghib

Introduction
Motivations and questions
Examples

Results
Results
Previous results

Linear Dynamics
General considerations
Furstenberg Lemma

Lorentz Dynamics
Recurrence vs homogeneity: A Gauß map

G acts on (M, g), g a pseudo-Riemannian metric

Each orbit $G.x$ is a G-homogeneous pseudo-Riemannian space: G/H.
- So the metric is left invariant by G
- and also right invariant by H.

In particular if G/H is compact, the metric is bi-invariant by a big subgroup, essentially bi-invariant,

Zimmer-Gromov ... Philosophy: Since M is compact, $G.x$ looks like a compact space:... the metric is essentially bi-invariant
A Gauß map $Ga : M \rightarrow \text{Sym}(\mathcal{G})$,

$Ga(x)$ is the quadratic form on \mathcal{G} obtained via $\mathcal{G} \rightarrow T_x(Gx)$, the derivative at 1 of the map $G \rightarrow Gx$

$Ga(U, V) = g_x(\bar{U}(x), \bar{V}(x))$

$= g_x(\frac{\partial}{\partial t} (\exp tU)(x), \frac{\partial}{\partial t} (\exp tV)(x))$

\bar{U} the vector field on M associated to U

$(\bar{U}(x) = \frac{\partial}{\partial t} (\exp tU)(x))$
Equivariance

\[Ga(g.x) = g.Ga(x)\]

The system \(X = Ga(M) \subset Sym(G)\) is a factor of \(M\).

Opposition:

\((G, M)\) a conservative (general) \(G\)-dynamical system

\((G, X)\) a dissipative (linear) dynamical system

Goal: The action on \(X\) is trivial!

Interpretation: the metric on orbits is bi-invariant.
What is special for linear systems

“Furstenberg lemma”, Illustration (in a radically simple situation)
Let
\[H = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix} \]
act on \(\mathbb{R}^2 \).
Let \(z = (x, y) \).
If \(z \) is \(H \)-recurrent, then \(z = 0 \)
If \(z \) is non-escaping, then \(x = 0 \), or \(y = 0 \).
Recall:
- \(z \) recurrent, if there is \(n_i \to \infty \), and \(H^{n_i}z \to Z \)
- \(z \) is non-escaping if there is \(K \) a compact set and \(H^{n_i}z \in K \)
\[\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \]

Any \(U \)-recurrent point is fixed.

\[\begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix} \]

All points are recurrent...
Furstenberg: A **recurrent** linear dynamical system is made up to elliptic elements only.

- If $X \subset \mathbb{R}^N$ admits a finite G-invariant measure, then G acts on its support via a homomorphism in a compact group in $GL(N)$.

Warning: One also needs linear actions on projective spaces, and “meromorphic” Gauß maps...
Case of semi-simple groups

G a simple Lie group,
$X \subset \text{Sym}(G)$ a compact G-invariant subset $\implies G$ acts trivially on X.

(Typical case: $SL(2, \mathbb{R})$)

Embedding theorems (Zimmer...): If G acts on M preserving a pseudo-Riemannian metric of type (p, q), then G embeds in $O(p, q)$.
In fact, the embedding is made via the adjoint representation $Ad : G \to GL(G)$.

The standard homogeneous example is G/Γ.
(The general case is a “non-commutative” G/Γ)
Case of semi-simple groups

G a simple Lie group,
$X \subset \text{Sym}(G)$ a compact G-invariant subset $\implies G$ acts trivially on X.
(Typical case: $SL(2, \mathbb{R})$)

Embedding theorems (Zimmer...): If G acts on M preserving a pseudo-Riemannian metric of type (p, q), then G embeds in $O(p, q)$.
In fact, the embedding is made via the adjoint representation $Ad : G \to GL(G)$.
The standard homogeneous example is G/Γ.
(The general case is a “non-commutative” G/Γ)
Dynamics on Lorentz manifolds

Abdelghani Zeghib

Introduction
Motivations and questions
Examples

Results
Results
Previous results

Linear Dynamics
General considerations
Furstenberg Lemma

Lorentz Dynamics
Generalities on Toral actions

Notations: $\Gamma = G/G^0$ acts by automorphism on G^0

The action is non-equicontinuous $\implies G^0$ is not semi-simple (since for a compact semisimple G^0, $Aut(G^0) \cong G$ is compact)

\mathbb{T}_1 the toral factor

$\mathbb{T} = \mathbb{T}^k \subset \mathbb{T}_1$ a minimal Γ-invariant sub-torus

$\rho : \Gamma \to Aut(\mathbb{T}^k) = GL(k, \mathbb{Z})$

Γ acts on $Sym(\mathbb{R}^k)$
Almost Lorentz implies Lorentz

Lemma

(Case $\Gamma = \{A^n, n \in \mathbb{Z}\}$)

Let $F = \text{Sym}(\mathcal{E})$, $(\mathcal{E} = \mathbb{R}^k)$

and assume $A = EHU$ non-elliptic (i.e., either H or U is non-trivial).

Suppose there is a Lorentz form q_0 which is A-recurrent, and let $K \subset \text{GL}(\mathcal{E})$ be the torus generated by the powers of E.

Then, $\int_K B^F(q_0) \, d\mu(B)$ is an A-invariant Lorentz form, where μ is the Haar measure on K.

Remarks:

- This fact is trivial in the case of Euclidean (positive) forms...
Proposition

Let \(\rho : \Gamma \to GL(\mathcal{E}) \) be such that \(\rho(a) \) is non-elliptic for any \(a \in \Gamma \).

Let \(F = \text{Sym}(\mathcal{E}) \), and assume that the associated action \(\rho^F \) preserves a compact set of \(F \) contained in the (open) subset of Lorentz forms, and that \(\rho^F \) leaves invariant a finite measure on such compact set. Then, \(\rho(\Gamma) \) preserves some Lorentz form.
Corollary

Let Γ be a subgroup of $GL(k,\mathbb{Z})$ which acts on $\text{Sym}(\mathbb{R}^k)$ by preserving a finite measure supported in the open set of Lorentz forms. Then, up to a finite index, Γ preserves a Lorentz form.
Goal: uniformity and no-singularity
Prototypes of Lorentz isometries: hyperbolic and parabolic
which qualitative properties unify them?

Let ϕ be a diffeomorphism of a compact manifold M.

Definition

A vector $v \in T_x M$ is called approximately stable if there is a sequence $v_n \in T_x M$ such that:

- $v_n \to v$
- $D_x \phi^n v_n$ is bounded in TM.

The set of approximately stable vectors in $T_x M$ is denoted $\text{AS}(x, \phi)$

Their union over M is denoted $\text{AS}(\phi)$,

The vector v is called **strongly approximately stable** if $D_x \phi^n v_n \to 0$.

Similar notations: $\text{SAS}(x, \phi)$ and $\text{SAS}(\phi)$
Theorem (Zeghib)

Let ϕ be an isometry of a compact Lorentz manifold (M, g) such that the powers $\{\phi^n\}_{n \in \mathbb{N}}$ of ϕ form an unbounded set (i.e., non precompact in $\text{Iso}(M, g)$). Then:

- $\text{AS}(\phi)$ is a Lipschitz condimension 1 vector subbundle of TM which is tangent to a condimension 1 foliation of M by geodesic lightlike hypersurfaces;

- $\text{SAS}(\phi)$ is a Lipschitz 1-dimensional subbundle of TM contained in $\text{AS}(\phi)$ and everywhere lightlike.