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La quatrième géométrie

“— Parmi ces axiomes implicites, il en est un qui semble
mériter quelque attention, parce qu’en l’abandonnant, on peut
construire une quatrième géométrie aussi cohérente que celle
d’Euclide, de Lobatchevsky et de Riemann. [. . .]

Je ne citerai qu’un de ces théorèmes et je ne choisirai pas le
plus singulier : une droite réelle peut être perpendiculaire à
elle-même.”

Henri Poincaré
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Meaning

1 Euclidean space
2 Hyperbolic space
3 Elliptic space (sphere)
4 Minkowski space :

R1+n : q = −x2
0 + x2

1 + . . . x2
n

(Later, the mathematical framework of the special
Relativity, a Poincaré-Einstein invention ?)
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Principal Result

Theorem
(Complete classification, in particular Uniformization)

Let M be : a compact locally homogeneous Lorentz
3-manifold
(and of non-Riemannian type...).

Then, M admits a Lorentz metric of constant sectional
non-positive curvature (say 0 or −1).



The talk

- Explanations of involved notions,

- Why this is not obvious ?

- Give more comments around fundamental concepts of
geometry

- Ask various questions,....
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First explanations

Isometry

(Most explanations in the simpler Riemannian case)

• Metric spaces : (M,dM), (N,dN) two metric spaces :
f : N → N isometry, if f is bijective and
dN(f (x), f (y)) = dM(x , y), ∀ x , y ∈ M

• Local isometry : U, V open sets of M and N, and f defined
f : U → V , and f isometry between (U,dU) and (V ,dV )

• Riemannian manifolds, Isometry, a diffeomorphism
f : (M,g)→ (N,h) ⇐⇒ f∗g = h
• Local isometry, U, V open subsets of M and N....
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Riemannian vs pseudo-Riemannian

- The tensorial definition of isometry extends to the
pseudo-Riemannian case.

- There is no notion of associated distance to a
pseudo-Riemannian manifold !

- All the covariant calculus extends to the pseudo-Riemannian
case : connection, geodesics, Laplacian (D’Alembertien)...

- The group of isometries is a Lie group...
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Homogeneous spaces

(M,g) homogeneous ⇐⇒ ∀x , y ∈ M, ∃ f isometry of M, and
f (x) = y
Isom(M,g) the group of isometries of M,
M homogeneous ⇐⇒ Isom(M) acts transitiveley on M.

In particular M has the form G/I !

(M,g) locally homogeneous : ∀x , y ∈ M, there is f a local
isometry of M, such that f (x) = y :

f : Ux → Vy , f (x) = y

isometry, where Ux and Vy neighborhoods of x and y
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First explanations

Examples

• Easy example : Subsets : An open set in a homogeneous
space is locally homogeneous, but need not be homogeneous.

If U ⊂ M an open set, then the vector field generating the
G-action (on M) are defined (by restriction) on U, but are not
necessarily complete ! (Exercise : in which case U is
homogeneous ?)
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First explanations

• Subtile example : Quotients : A quotient (by isometries) of a
homogeneous space is locally homogeneous (but not
necessarily homogeneous) : example : if the universal cover
(M̃, g̃) is homogeneous, then (M,g) is locally homogeneous.
((Reason : small open subsets of M are identified to small open
subsets of M̃)).



First explanations

Quick naive plan of proof (of classification)

Let (M,g) be a compact locally homogeneous Lorentz
3-manifold,

1 The universal cover (X = M̃, g̃) is homogeneous, say
X = G/I
- (this is a completeness problem !)

2 Find all the pairs (G, I) (with dim G/I = 3, and the G-action
is lorentzian) ..., is a linear algebra problem !
- (Rather a quadratic algebra problem !)

3 M is abtained as : M = Γ \ X
- (this is an arithmetico-dynamical problem...)
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First explanations

Some recalls on Curvature, constant curvature

• Curvatures can be defined for pseudo-Riemannian metrics

• Hierarchy :
- sectional curvature,
- Ricci curvature,
- scalar curvature (and others...)

• Constant sectional curvature, up to constant : 0, +1 or −1
- Flat (parabolic)
- Elliptic (spherical)
- Hyperbolic

(classical terminology, Euclidean, Spherical (or Riemman ?),
Non-Eucildean or Labatchosky)



First explanations

• Terminology in the Lorentz case :

- Minkowski,
- de Sitter,
- Anti de Sitter

Non-positive curvature = Minkowski and Anti de Sitter



First explanations

Counter-example to the principal theorem in the
Riemannian case

M = S2 × S1 is homogeneous under the action of
SO(3)× SO(2) (not only locally !)

M admits no Riemannian metric of constant sectional
curvature.

Proof. For Topological reasons. The universal cover of M is
S2 × R,
- A flat manifold is covered by R3

- A hyperbolic manifold is covered by H3, homeomorphic to R3

- An elliptic manifold is covered by S3
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Notion of Geometry : synthetic vs analytic approach

Thom’s catastrophe Theory viewpoint :
Self-centerdness of homogeneous (non-random)
objects

• Even, if a real function is defined as a general mapping..., one
deals ONLY with few classes of them, e.g. polynomials... (say
those with a geometric flavor)

• Similarly are (locally) homogeneous spaces within
Riemannian spaces....

• Approximation (à la Taylor) of Riemannian metrics by (locally)
homogeneous ones :
- At order 1 : Euclidean (tangent) spaces
- Higher order : ? ? ?
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Notion of Geometry : synthetic vs analytic approach

In the vein of F. Klein (Erlangen Program)

(following Klein) a Geometry
((• (G,X )-structure in modern terminology))
consists in :
Giving (G,X ), where :
G a Lie group acting transitively continuously on X ,
so X = G/I : a homogeneous space

• A Riemannian geometry (or a geometry of Riemannian type) :
If the G-action on X preserves some Riemannian metric.

In other words, a Riemannian geometry ⇐⇒ A homogeneous
Riemannian manifold.

• A Lorentz geometry :.....
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Notion of Geometry : synthetic vs analytic approach

First examples

EUCLIDEAN PLANAR GEOMETRY

X = R2

G = The group of planar Euclidean displacements =
rotation-translation = the semi-direct product :

O(2) n R2

Scholar geometry :
Figure = subset of X
Equality : Equivalence relation on the space of figures :
F1
∼= F2 ⇐⇒ ∃A ∈ G, A(F1) = F2 ....

Goal : Numerical invariants of ∼= on some subspaces of
figures (e.g. space of triangles...) (Invariant Theory for kids)
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Examples

TRANSLATION GEOMETRY (the most rigid)
(R2,R2)

AFFINE GEOMETRY (less rigid)
X = R2

G = GL(2) n R2

CONFORMAL PLANAR GEOMETRY (angle geometry)
X = S2

G = PSL(2,C) = SO0(1,3)

PROJECTIVE GEOMETRY

X = RPn

G = GL(n,R)
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Notion of Geometry : synthetic vs analytic approach

Geometric structures

Notion of geometric structure (definition by means of
examples) :

- Riemannian metric
- pseudo-Riemannian metric,
- Connection,
- Conformal pseudo-Riemannian structure,
- projective structure,
- Symplectic form,
- Contact structure,
- CR structure
- Cartan connection...



Notion of Geometry : synthetic vs analytic approach

Geometric structures

A (modelization) Problem

• Find a definition “geometric structure” unifying all the
examples (tensors, tensors up to scalar function, kind of
Christoffel symbols, ....),
– and sub-definitions making hierarchy of them...

• There is a notion of rigidity of a geometric structure, e.g. a
Riemannian metric is rigid
but not is a symplectic structure.



Notion of Geometry : synthetic vs analytic approach

Geometric structures

Preserved Geometric structure associated to a
geometry

Geometry = (G,X )-structure 6= Geometric structure

(Klein 6= Riemann)

However, there is a “functor”

(G,X ), a geometry→ g, a geometric structure =
the best (the most natural, the most rigid) geometric structure

on X which is G-invariant,

• A drawback : this is "multi-valued ” !



Notion of Geometry : synthetic vs analytic approach

Geometric structures

One general problem on geometries

Problem : Find all geometric structures on X which are
preserved by the G-action and specify a canonical one ?

Fact : Any geometry has an associated rigid geometric
structure.

• Case of the previous examples :
- Euclidean planar geometry→ Riemannian (flat) metric,
- Translation geometry→ Parrallelism,
- Affine planar→ (flat) Connection,
- Conformal planar geometry→ Conformal Riemannian
structure,
- Projective geometry→ Cartan (projective) connection...
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Geometric structures

More examples, exercises

• (G,G)-structure→ parallelism
• (Sym(n),Rn)→ symplectic structure + connection...



Notion of Geometry : synthetic vs analytic approach

Geometric structures

The dynamically trivial Riemannian case

Topological criterion : (G,X = G/I) has an associated
Riemannian structure ⇐⇒ the isotropy group is compact.

• No criterion for other geometric structures...
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Another general problem, Examples

Problem

The Lie group G is given,
Describe all the geometries (G,X ),
and their associated geometric structures,
i.e. all G-homogeneous spaces X = G/I...
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Another general problem, Examples

Example : Geometries associated to SL(2, R) (How
Lorentz geometry appears naturally)

G = SL(2,R), I a closed subgroup, X = G/I

• dim X = 1, X = S1, a projective structure
I is the affine group : (

exp s t
0 exp−s

)
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Another general problem, Examples

dim X = 2, Case 1

X = H2, hyperbolic plane (Riemannian structure),
I an elliptic one parameter group(

cos t − sin t
sin t cos t

)
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Another general problem, Examples

dim X = 2, Case 2

X = dS2 , de Sitter plane (Lorentz structure),
X = the space of geodesics of H2, I a one parameter
hyperbolic (semi-simple) group,(

et 0
0 e−t

)
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Another general problem, Examples

dim X = 2, Case 3

X = R2 − {0} (unimodular) affine (punctured) plane (endowed
with the linear action of SL(2,R)),

I a one parameter parabolic (unipotent) group :
(

1 t
0 1

)



Notion of Geometry : synthetic vs analytic approach

Another general problem, Examples

dim X = 3

X = G/I, I = Γ discrete,
X is a G-homogeneous space

Here : The (unique !) preserved geometric structure is a Lorentz
metric (which turns out to be of constant negative curvature)



Notion of Geometry : synthetic vs analytic approach

Another general problem, Examples

General construction : left invariant metrics on Lie
groups (a Huge class of homogeneous
pseudo-Riemannian spaces)

G a Lie group,

• G acts on itself by the left (g, x) ∈ G×G→ g.x = gx (there is
another different action on the right) ?

• T1G = G the Lie algebra,

•• There is a bijection :

{ scalar (pseudo-)Euclidean products on G }
↔

{ pseudo-Riemannian metrics on G, invariant under the left
G-action }
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Another general problem, Examples

Explanation

g ∈ G
Lg : x ∈ G 7→ gx ∈ G
(and Rg : x → xg)

• Let : 〈, 〉 = m1 = m, a given scalar product on T1G

Define : mg = (D1Lg)∗(m1), scalar product on TgG

• x → mx is a pseudo-Riemannian metric m̄ on G

By construction : m̄ is left-invariant : (Lg)∗(m̄) = m̄
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Another general problem, Examples

Bi-invariance

In general the right action is not isometric : (Rg)∗(m̄) 6= m̄

Precisely : m̄ is bi-invariant ⇐⇒ m = 〈, 〉 is Ad(G)-invariant.
(reminiscent of unimodularity)

Examples :
• G = SO(3) (essentially S2) :
bi-invariant metric ⇐⇒ Killing form on the Lie algebra ⇐⇒
constant sectional curvature
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Another general problem, Examples

• G = SL(2,R)
κ = the Killing form on
sl(2,R) = {A, tr(A) = 0, A 2× 2matrix}
κ(A) = −det A = a2 + bc

It is bi-invariant : κ(gAg−1) = κ(A), with signature −+ +
(maybe +−− ?)
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Another general problem, Examples

Metrics on the quotients

• Γ ⊂ G a discrete group
- A left invariant metric on G descends to a well defined metric
on X = Γ \G

• If m̄ is bi-invariant, then the right G-action on X = Γ \G is
isometric.

An Ad(G)-invariant scalar pseudo-product on G
↔

(G, Γ \G) a geometry of pseudo-Riemannian type
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Another general problem, Examples

G = SL(2,R), (G, Γ \G) is a Lorentz geometry

Question (exercise) : are the above all the
SL(2,R)-homogeneous spaces ?
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Another general problem, Examples

A first list of examples of Lorentz geometries in
dimension 3

(Recall the goal is to get the complete list...)

• Minkowski : X = R1,2 : −t2 + x2 + y2

G = SO(1,2) n R3 Poincaré-Lorentz group (in dimension 3)

• Anti de Sitter :

X = ˜SL(2,R), with the Killing form.
G = ˜SL(2,R)× ˜SL(2,R) (up to a quotient).

• de Sitter
X = SO(1,3)/SO(1,2), the space of geodesic hyperplanes of
H3

G = SO(1,3) ∼= PSL(2,C)
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Beyond Klein : localization, modeling spaces on a given geometry

(G, X )-structures on manifolds

Spaces locally modeled on (G,X ) :

M is sewn up pieces (patches) of X using G-rules

• If M is simply connected, a (G,X )-structure on M :
- a developing map (a “global-local” chart :
d : M → X , i.e. a local diffeomorphism (allowing one to
pull-back the geometry of X ).
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Beyond Klein : localization, modeling spaces on a given geometry

• In general (M not simply connected) :

d : M̃ → X

such that the action of π1M transforms to an action of G, i.e.
There is a holonomy representation :

ρ : π1(M)→ G, and d ◦ γ = ρ(γ) ◦ d

• Equivalently : an atlas of charts with target open subsets of
X , and as transition, restrictions of transformations ∈ G.
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d : M̃ → X

such that the action of π1M transforms to an action of G, i.e.
There is a holonomy representation :

ρ : π1(M)→ G, and d ◦ γ = ρ(γ) ◦ d

• Equivalently : an atlas of charts with target open subsets of
X , and as transition, restrictions of transformations ∈ G.
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Beyond Klein : localization, modeling spaces on a given geometry

Example : Pairs of pants can not be sewn up Euclidean flat
patches, but hyperbolic ones...

Hyperbolic rules allow one to create very complicated objects...
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Beyond Klein : localization, modeling spaces on a given geometry

Example and nuisance

Double quotient : X = G/I, Γ discrete subgroup of G
M = Γ \ X = Γ \G/I has a (G,X )-structure
(since Γ is discrete, M is locally ∼= G/I)

However : Problematic of quotients of locally homogenous
non-Riemannian spaces

- Find condition so that Γ \ X exists, i.e. it is a standard
manifold... ⇐⇒ the Γ-action is proper, so Γ is thin !

- Get M = Γ \ X , so Γ is thick !

- Equilibrium in the game G vs I vs Γ
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Beyond Klein : localization, modeling spaces on a given geometry

Challenges, the “simplest case”, Markus and
Auslander conjectures

(G,X ) = (SL(n,R) n Rn,Rn) = affine flat (unimodular)
geometry,
Markus conjecture : any compact manifold with a (G,X )-
structure is a quotient Rn/Γ (where Γ is a discrete group of
unimodular affine transformations acting properly uniformly on
Rn)
Auslander conjecture : if Γ exists, then it is solvable (variant of
Biebarbach theorem on crystallographic groups)

• Some names : Margulis, Goldman, Hirsch, Fried, Abels,
Soifer, Benoist, Dumitrescu, Klingler, Schlenker, Barbot,
Labourie,...
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Beyond Klein : localization, modeling spaces on a given geometry

The Lorentz flat case

Instead of SL(3,R) n R3, restrict to
G = Poincaré group in dimension 3 = O(1,2) n R3 −→
Minkowski geometry

Examples of compact manifolds supporting such a geometry :
Nilmanifolds and Solmanifolds,
They are “flat”,
They cannot be Euclidean flat (since not covered by a torus),
but are Lorentzian flat

Lorentz geometry is not only beautiful, but also useful !
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Beyond Klein : localization, modeling spaces on a given geometry

Nil-manifolds

•• The Heisenberg group :
- q = xy + t2 on R3

- Three one-parameter groups of O(q) :
1 Translation along x and y

(x , y , z)→ (x + a, y + b, z), a ∈ R
2 Transvection-Translation one parameter group :

(x , y , z)→

 1 t −t2/2
0 1 −t
0 0 1

 x
y
z

+ (0,0, t)

• This gives a representation Heis → O(q) n R3

– Heis acts freely transitively on R3.
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Beyond Klein : localization, modeling spaces on a given geometry

Sol-manifolds

Add a Boost-Translation (instead of the transvection-translation)
(t ,a,b) ∈ SOL

(x , y , z)→

 exp t 0 0
0 exp−t 0
0 0 1

 x
y
z

+ (a,b, t)

– Γ a lattice : t ∈ Z, x , y ∈ A, A ⊂ R2 a lattice, preserved by the
digonal action...

– Metric distorsion : the t-translation flow is an Anosov
dynamical system on Γ \ SOL !
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The Lorentz Problem

Position of the problem

Classify (i.e. find G and I), such that : - X = G/I, dim X = 3,
– G acts by preserving a Lorentz metric on X . And :

1) The geometry is essential, i.e. non-Riemannian ⇐⇒
the action of G is not proper ⇐⇒
the action does not preserve an auxiliary Riemannian metric
⇐⇒
The istropy group I is not compact ⇐⇒
the adjoint action of I on G/I is not equicontinous.



The Lorentz Problem

2) Maximality : An order on Lorentz geometries : (G,X ) is
bigger than (= most beautiful) (G′,X ) if G′ ⊂ G.
Maximal : there is no other Lorentz metric with more
symmetries...(in particular G is the full group of isometries).

3) Existence of a compact model : ∃ M compact supporting a
(G,X )-structure.



The Lorentz Problem

Riemannian case : the 8 geometries of Thurston

Riemannian geometries in dimension 3 : maximal and having
a compact model.

1 R3, S3, H3

2 S2 × R, H2 × R

(The most symmetric) Left invariant metrics of 3-Lie
groups :

3 X = ˜SL(2,R), G = ˜SL(2,R)× S1

4 X = Heis, G = Heis × S1

5 X = SOL, G = SOL

A COMPACT MANIFOLD CAN NOT HAVE MORE THAN ONE

GEOMETRY (contrast with the Lorentz case) : WHY (Exercise) ?



The Lorentz Problem

Uniformization

Theorem
There are 4 (= 8

2 ) Lorentz geometries in dimension 3 (maximal,
non-Riemannian and having a compact model).
If a compact M possesses an anti de Sitter geometry, then, it
has no other one.
In all the other cases, M has a Minkowski geometry (and
sometimes one other geometry).



The Lorentz Problem

Remarks, On maximality, example of the Solid

X = the configuration space of a solid with a fixed rotating point

• (by definition of a solid), G = SO(3) acts simply transitively on
X (preserving the physical structure)

• The (symmetry group) G = SO(3)
∼= X (the geometric substratum)

• The Physics of the solid is encoded in a G-invariant
Riemannian metric on X ⇐⇒ left invariant metric on
G = SO(3)

Topology
- X ∼= SO(3) ( = S3 up to Z/2Z)

Left invariant metrics ⇐⇒ scalar products on the Lie algebra
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The Lorentz Problem

Diagonalization→ 3 parameters= inertia moments,

The full group H = Isom(X ) contains SO(3)
– Case of 3 different inertia moments : H = SO(3)
– Equality of two moments : H = SO(3)× S1

– Maximal case H = SO(4) (up to finite objects), X has
constant (positive) curvature, i.e. its universal cover is the round
sphere.

Choosing the maximal case ⇐⇒ among all geometries on the
sphere, we choose the most symmetric one.

Remark, the intermediate case, 2 equal eigenvalues ⇐⇒
Berger spheres.
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fibration_Hopf.mov
Media File (video/quicktime)



The Lorentz Problem

Uniformization, Perelman

In very few words :



The Lorentz Problem

Ricci flow in a locally homogeneous framework

Suggestion : a Ricci flow technique (which converges in the
Lorentz but not the Riemannian case).
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The Lorentz Problem

The reminder of the list (of 3-Lorentz geometries)

Lorentz-Heisenberg Geometry (Quantification ?)

heis = {X ,Y ,Z}, [X ,Y ] = Z
Lorentz-Heisenberg : any Lorentz metric : 〈Z ,Z 〉 > 0 (say = 1)

Fact
1 Up to an automophism (of Heis) and a multiplicative

constant, there is a unique such a metric.
2 Its isometry group is R n Heis. This geometry is maximal,

non-Riemannian.
3 The isotropy I ∼= R. If {X ,Y} is orthogonal to Z , and X ,Y

are isotopic, then I acts by semi-simple automorphism :
X → etX, Y → e−tY.
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The reminder of the list (of 3-Lorentz geometries)

Theorem
(Unique rigidity) The holonomy group of a compact
Lorentz-Heisenberg manifold is a lattice Γ ⊂ Heis.

Assuming completeness of the (G,X )-structure, the Theorem
reduces to :
If Γ ⊂ R n Heis acts properly co-compactly on Heis, then
Γ ⊂ Heis
(Left as an exercise)
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The reminder of the list (of 3-Lorentz geometries)

Lorentz-SOL Geometry, ...

sol = {T ,Y ,Z},
[T ,Y ] = Y , [T ,Z ] = −Z
[sol , sol] = {Y ,Z} ∼= R2

Metric :
- Z is isotropic
- {Y ,Z} degenerate (=⇒ 〈Y ,Z 〉 = 0, 〈Y ,Y 〉 > 0)

Say :
0 = 〈T ,T 〉 = 〈T ,Y 〉, and 〈Z ,T 〉 = 1
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Metric :
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The reminder of the list (of 3-Lorentz geometries)

Fact
- Such a metric is unique up to ...
- Unique rigidity...
- The isotropy is unipotent, but not automorphic !
- The Killing algebra G = {X , sol} = {X ; Y ,Z ,T},

adX =

 0 1 0
0 0 −1
0 0 0


in the basis {Z ,Y ,T}
- In fact G = R n Heis : R→ T and Heis → {X ,Y ,Z} (the
direct computation of G is not abvious !)
•• Z → a2Z, Y → aY , T → T is a homothetic automorphism
with dilation a.
- However, X is not conformally flat !
- X is a plane-wave spacetime...
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Lorentz Caprices

- Origin of pathologies : (metric) distortion of the model ?

– A typical lack : Compactness 9 completeness !
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Lorentz Caprices

Non-completeness

The Lorentz case

• Goedesic completeness of compact Lorentz manifolds ?
- No :
– Bohl Torus :
(R2 − {0}, dxdy

x2+y2 ). Homotheties act isometrically,
f : (x , y)→ 2(x , y) generates an isometry group ∼= Z
- T 2 = R2 − {0}/Z

Explanation : Why and where T 2 is incomplete ?

- It turns out the hole is at∞ : the x-axis is light geodesic in
R2 − {0} which goes to infinity in a finite time !
- (Its projection in T 2 is a closed (periodic) geometric curve !)
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Non-completeness

The geodesic flow of the Lorentz surface (R2 − {0}, dxdy
x2+y2 ) is

completely integrable, since it admits 1 symmetry :
homotheties give a Killing field...



Lorentz Caprices

Non-completeness

(Left) Invariant metrics on Lie groups

• •Worse, a generic left invariant pseudo-Rienmannian (but
not Riemannian) metric is not geodesically complete !

• Remark : left Riemannian metrics are complete (since
homogeneous).
However, their geodesic flow are generically a chaotic
dynamical system.



Lorentz Caprices

Non-completeness

Geodesics of let invariant metrics

From the dictionary {Lie algebras } ↔ {Lie groups }
and

{ scalar (pseudo-)products on G }
↔

{ left invariant metrics on G }

the geodesics of G are determined by solutions in G of the
differential equation :

ẋ = ad∗x x

adxu = [x ,u],
ad∗x its adjoint (by means of the given scalar product)



Lorentz Caprices

Non-completeness

General form :

ż i = ΣΓi
jkz jzk

- A quadratic differential equation (with constant coefficients)

- There is a huge literature about this quadratic equation....

Question : Conditions so that the equation ż i = ΣAi
jkz jzk

corresponds to a geodesic equation (for some Lie group, and
some metric on it) ?

((Recall the general equation of geodesics : ẍ i = ΣΓi
jk (x)ẋ j ẋk

In our case : Γi
jk does not depend on x → z i = ẋ i ))
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ż i = ΣΓi
jkz jzk

- A quadratic differential equation (with constant coefficients)

- There is a huge literature about this quadratic equation....

Question : Conditions so that the equation ż i = ΣAi
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Non-completeness

Explanation, curves in G, curves in G

Dictionary “development” (and its reciprocal)

“Curves in G↔ Curves in G

To t → C(t)→ G associate t → D(t) = C(t)−1 ∂C
∂t ∈ G

• Reciprocal, case of GL(n) :
Given D(t) a curve in Gl(n) = Mn×n
C(t) is solution of the differential equation

C′(t) = C(t)D(t), C(0) = 1
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Lorentz Caprices

Completeness of (G, X)-structures

• Hopf manifolds ( ⊂ affine manifolds, )

- Hopf torus : S = R2 − {0}/(x ∼ γx)
- γ(x) = 2x ,
- GL(2,R) acts affinely on S.

- The action of the radial (“contracting”) flow : x → etx , has the
all its orbits periodic, it can be made isometric !
- Remark : the SL(2,R)-action cannot preserve a volume.

- Holonomy : ρ0 : Z2 → GL(2,R), the image of ρ0 is generated
by γ
– There are very complicated other holonomies (for other affine
structures)



Lorentz Caprices

Completeness of (G, X)-structures

• Translation surfaces
(R2,R2)
S a Riemann surface, ω a (closed) holomorphic 1-form.
locally, d : U ⊂ S → d(z) =

∫ z
z0
ω ∈ C

It is defined up to a constant,
d : S̃ → C
d(γ(z)) = d(z) + C(γ)
- “Singular” translation structure
- Holonomy group Γ = group of periods
-Not discrete and acts "ergodically” on C despite d is a local
diffeomorphism (outside the singularities)...
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On the proof

Dimension of G

The maximal dimension, 6

This corresponds to the constant curvature case :
The isotropy group equals O(1,2) =⇒ all the 2-planes have the
same curvature.



On the proof

Dimension of G

The minimal dimension 3, Bianchi classification

– Here the isotropy is trivial→ the Lorentz geometry is
inessential.

Recall
• Bianchi Work : classification (+...) of Lie algebras of
dimension 3 :
- The are two simple algebras : sl(2,R) and so(3)
- If not G is solvable
- It contains and ideal of dimension 1 or 2→ ∃ one B of
dimension 2.
- G is a semi-direct product of R nAt B
– Classification, up to conjugacy of one parameter groups of
GL(2,R)....
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On the proof

Dimension of G

Dimension 5 is not possible !

- L = O(1,2) is represented in the space of jets (at any fixed
order) of the metric at x0.

-The isotropy I is exactly the stabilizer of this jet.

– The unique subgroup of L of dimension 2, is the affine group,
it is co-compact.

- If a stabilizer of u in L is co-compact, then it equals L,
Proof : the orbit of u is compact, but any semi-simple one
parameter subgroup has no non-trivial bounded orbits...
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Dimension of G

The hard dimension : 4

Hypothesis : G is solvable. (from Levi decomposition)

Classification of (solvable) Lie algebras of dimension 4 ? !

The linear (rather quadratic) problem :

Algebraic Classification Problem
Classify G, solvable of dimension 4, I a closed non-compact

subgroup of dimension one, such that Ad(I) preserves a
Lorentz scalar product on G/I

⇐⇒ The algebraic classification of homogeneous Lorentz
3-spaces ?
— Not available ! ?
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Dynamics of the isotropy group and algebraic consequences

A well defined vector-field V on X

 1 t −t2/2
0 1 −t
0 0 1

,

 exp t 0 0
0 exp−t 0
0 0 1


• V corresponds to the 1-eigenvalue
→ a vector-field on X which commutes with G (but not
necessarily a Killing field !)
→ a vector field on M

- Unipotent isotropy→ V is isotropic
- Semi-simple isotropy : V is spacelike
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Dynamics of the isotropy group and algebraic consequences

A lightlike geodesic hypersurface F

• Unipotent case : V⊥ : a field of degenerate (lightlike)
hyperplane field
• Semi-simple case : Two hyperplane-fields : V ⊕ V− and
V ⊕ V +

Fact
These hyperplane-fields are integrable. They define a
G-invariant codimension one lightlike geodesic foliation.
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Dynamics of the isotropy group and algebraic consequences

Proof : Get the leaf F through the base point x0 :
s ∈ I,
Es = Graph(s) = {(x , s(x)), x ∈ X} ⊂ X × X :
a geodesic isotropic 3-submanifold in (X × X ,g ⊕ (−g)).

E a limit of Es, s →∞
F = the projection of E
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Dynamics of the isotropy group and algebraic consequences

(Affine and lightlike) Geometry of F , a codimension 1
subgroup H

G preserves the foliation.
H ⊂ G the stabilizer of F ,
F is H- homogeneous,
H has codimension 1 in G.

F has an induced connection,
F has an induced degenerate (positive) metric :
• A 1-dimensionnal transversally Riemannian foliation (the
Kernel of the metric).
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Dynamics of the isotropy group and algebraic consequences

Classification in dimension 2 : the connection is symmetric→...
H = Heis, or
H = R× AG, AG = the affine group
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Dynamics of the isotropy group and algebraic consequences

The new enriched algebraic problem

- G is solvable of dimension 4,
- H = Heis or = R× AG has codimension 1 in G
- I ⊂ H, dim I = 1
- A normal form for the Ad(I)-action on G/I
- V a G-invariant vector field on X ...



On the proof

Ingredients

Contents

5 On the proof
Dimension of G
Dynamics of the isotropy group and algebraic
consequences
Ingredients

Dynamics of V
The holonomy group Γ



On the proof

Ingredients

Ê



On the proof

The holonomy group Γ

Contents

5 On the proof
Dimension of G
Dynamics of the isotropy group and algebraic
consequences
Ingredients

Dynamics of V
The holonomy group Γ



On the proof

The holonomy group Γ

One step : partial completeness

- In case V is isotropic→ V is the characteristic (Kernel) field of
F
- V is complete on M (by compactness)
- F̃ = R2 endowed with a (auxiliary) complete Riemannian
metric, and a transversally Riemannian 1-foliation
– The F -leaves on M have a complete (H,H/I)-structure→
The F -leaves in M are geodesically complete...
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