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ON LORENTZ DYNAMICS: FROM GROUP ACTIONS
TO WARPED PRODUCTS VIA HOMOGENEOUS SPACES

A. AROUCHE, M. DEFFAF, AND A. ZEGHIB

Abstract. We show a geometric rigidity of isometric actions of non-compact
(semisimple) Lie groups on Lorentz manifolds. Namely, we show that the
manifold has a warped product structure of a Lorentz manifold with constant
curvature by a Riemannian manifold.

1. Introduction

Recall the following result of [10], which shows how homogeneous spaces are rare
in Lorentz geometry (in comparison with the Riemannian case, say).

Theorem 1.1 ([10]). If (M, g) is a homogeneous Lorentz space of dimension ≥ 3,
with irreducible isotropy group, then it has constant sectional curvature.

Observe that the statement in [10] seems weaker than that above, since the
isotropy group is assumed to satisfy the supplementary condition of non-precom-
pactness. However, this follows from irreducibility. Indeed, in the same vein as [10],
the principal result of [3] says how irreducibility is strong in the Lorentz setting.

Theorem 1.2 ([3]). A Lie subgroup H (not assumed a priori to be closed) of
O(1, n), which does not preserve any one-dimensional isotropic subspace of R

1+n,
is up to conjugacy, a union of some components of some O(1, p) ⊂ O(1, n). In
particular, if H acts irreducibly on R

1+n, then H contains SO0(1, n).

Our goal in the present article is to relax homogeneity by considering (non-
transitive) isometric group actions. This work is actually motivated by the study
of isometric Lie group actions on non-compact Lorentz manifolds, for instance in
the same vein as [1, 7, 6], ....

To simplify, we will always assume that all the given group actions are faithful.

1.1. Warped product structure versus partial homogeneity. We first ask
whether there is an adaptation of Theorem 1.1 to non-transitive isometric actions.
In this situation, we consider a group G acting isometrically on a Lorentz mani-
fold (M, g). Each orbit is a homogeneous space. However, the causal type of the
orbit may be timelike, spacelike, or lightlike, that is, the induced metric may be
Lorentzian, Riemannian or degenerate, respectively. The following generalization of
Theorem 1.1 relies on the existence of orbits of Lorentz type satisfying irreducibility.
It says roughly that the space is partially of constant curvature.
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Theorem 1.3. Let G be a Lie group acting isometrically on a Lorentz manifold
(M, g) of dimension ≥ 3. Suppose there exists an orbit N which is a (homogeneous)
Lorentz space with irreducible isotropy (restricted to TN).

Then N is a complete space of constant (sectional) curvature, and G contains
the identity component Isom0(N) as a factor.

Furthermore, a neighborhood of N is a warped product L×w N , where L is some
Riemannian manifold and the factor N corresponds to the orbits of Isom0(N).

Definition and fundamental properties of warped products are in §2.

1.2. Non-properness versus irreducibility. Let us go a step further, and try
to get rid of the irreducibility hypothesis. In fact, irreducibility is an algebraic
condition which looks somehow inappropriate in our dynamic-geometric setting
here. We want to substitute for it a more natural dynamical condition. Our theory
is that non-properness is good enough for this role.

1.2.1. Recalls. We find it worthwhile to “make some order” around the concept of
non-properness of actions. This will be useful in the sequel (statements and proofs).

Recall that an action of a group G on a space M is called proper if, for any
sequences (xn) of M , and (gn) of G, whenever (xn) and (gnxn) converge in M , then
some subsequence of (gn) converges in G.

For our purpose here the following variant will be useful. If M is a metric
space (this is the case for a manifold, since it can be endowed with a Riemannian
metric), a family F of mappings is said to be equicontinuous on a point x ∈ M
if for each ε > 0 there exists η > 0 such that for y ∈ M and f ∈ F we have
d(x, y) < η ⇒ d(f(x), f(y)) < ε. The family is said to be equicontinuous on
a subset U ⊆ M if it is equicontinuous on every point in U . We say that the
action of G is locally equicontinuous, if for any sequences (xn) of M , and (gn)
of G, whenever (xn) and (gnxn) converge in M , then a subsequence of (gn) is
equicontinuous on a neighborhood of the limit x of (xn). Therefore, a subsequence
of (gn) is converging in the group of homeomorphisms of that neighborhood, but
the limit is not necessarily a restriction of an element of G. Obviously, a non-
locally equicontinuous action is non-proper. The converse is not true. The standard
example of a non-proper but locally equicontinuous action is the usual linear action
of R on the torus with dense orbits. In general, the any non-closed Lie group of the
isometry group of a compact Riemannian manifold is locally equicontinuous but not
proper. Another example is the action of the universal cover G̃ on a Lie group G
(via the canonical projection). It is always locally equicontinuous, but proper only if
G has a finite fundamental group (because it is not faithful). Observe nevertheless:

Fact 1.4. Let G be a Lie group acting by preserving a pseudo-Riemannian structure
on a manifold M . If G is the full isometry group, or if G is semi-simple with finite
center, then its action is non-proper iff it is non-equicontinuous.

For the proof, recall the well-known fact that a C0-limit of pseudo-Riemannian
(smooth) isometries is a smooth isometry, and that the Lie group topology coincides
with the C0 topology. This is equivalent to saying that the isometry group is closed
in the group of homeomorphisms. (Actually, this fact is true for all rigid geometric
structures.) For G a simple Lie group with finite center, recall that its image under
a homomorphism into any Lie group is closed, and that G is a finite cover of it. An
analogous argument applies to the semi-simple case with finite center. �
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Therefore, in statements (essentially within proofs) below that involve semi-
simple Lie groups, we will not worry about distinction between compactness and
pre-compactness.

A G-homogeneous space G/H is non-proper if the left G-action on it is non-
proper. This is equivalent, for general G, to non-precompactness of H and to
non-compactness of H when G is semi-simple.

1.2.2. Semi-simple group actions with non-proper orbits. Without an a priori irre-
ducibility hypothesis, we have the following generalization of Theorem 1.3, assum-
ing the orbits are non-proper and the group G is semi-simple (a kind of intrinsic
irreducibility).

Theorem 1.5. Let G be a connected semi-simple Lie group acting isometrically
on a Lorentz manifold (M, g) of dimension ≥ 3. Suppose that no (local) factor of
G is locally isomorphic to SL(2, R) and that there exists a non-proper orbit N of
Lorentz type (that is, N has non-compact isotropy).

Then, up to a finite cover, G factors G = G2 × G1, where:
- G1 possesses an orbit N1 which is a Lorentz space of constant (non-vanishing)

curvature, and G1 equals Isom0(N1).
- There is a G-invariant neighborhood U of N which is a warped product L×wN1.
- The factor N1 corresponds to G1-orbits, and G2 acts along the L-factor.

The following fact will be useful in proofs, and also gives an exact geometric and
algebraic description of N , N1, G, G1, ....

Proposition 1.6. Let G be a connected Lie group acting isometrically and transi-
tively on a Lorentz curvature space N of constant curvature.

1) Assume the isotropy group of G is irreducible. Then, G equals Isom0(N),
and N is one of the following:

i) The Minkowski flat space.
ii) The de Sitter space SO(1, n + 1)/SO(1, n)(of positive constant curvature).
iii) A (cyclic) covering of the anti de Sitter space SO(2, n)/SO(1, n) (of negative

constant curvature).
2) Assume G is semi-simple, and the isotropy is non-compact. Then the same

conclusion holds but the Minkowki possibility is excluded.

Remarks 1.7.
1) In both theorems above, the warped product is local, i.e. not the whole space

is a warped product. To see this, one considers the O(1, n)-action on the Minkowski
space R

1,n. If the Lorentz quadratic form is q = −x2
0 + x2

1 + . . . + x2
n, then the

warped product is defined exactly on the region q > 0.
2) The result does not seem to be optimal, that is, it might be generalized to

other groups.
3) Warped product structures on universal covers of compact Lorentz manifolds

with strong dynamics are obtained, for instance, in [4, 11, 12].

1.3. From non-proper actions to non-proper homogeneous spaces. Let us
go another step, by asking how to get such non-proper orbits from a global condition
on the action. For instance, is orbital non-properness inherited from non-properness
of the (ambient) action?

Theorem 1.8. Let G be a semi-simple Lie group of finite center acting isometri-
cally and non-properly on a Lorentz manifold M . Suppose that no (local) factor
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of G is locally isomorphic to SL(2, R). Then there is a point with a non-compact
stabilizer. In particular, the restriction of the action of G to its orbit is non-
proper. More precisely, the stabilizer of some point contains a non-trivial unipotent
one-parameter group. (In other words, a non-proper Lorentz G-space contains a
non-proper G-homogeneous orbit.)

This result allows one to get from (non-transitive) actions to homogeneous (i.e.,
transitive) ones. This is a common philosophy for actions with strong dynamics
in a geometric setting. The result here is in particular reminiscent of the so-called
Zimmer Embedding Theorem (see for instance [13]). Unfortunately, the orbit is a
non-proper homogeneous space, but not necessarily Lorentz! The nuisance is that
it can be lightlike (degenerate); another story.

2. Proof of Theorem 1.3

2.1. An algebraic lemma.

Lemma 2.1. Let E (resp. F ) be a Lorentz (resp. Euclidean) vector space. Denote
by O(E) and O(F ) their respective orthogonal groups. Let H ′ be a Lie subgroup of
O(E) × O(F ), whose projection on O(E) acts irreducibly on E.

Then, H ′ contains a subgroup H ⊂ O(E) × {1}, which contains the identity
component of O(E)× {1}. In particular:

- Any linear H-invariant mapping f : E → F (f ◦ h = f , for any h ∈ H) is
trivial.

- The same is true for any H-invariant bilinear antisymmetric mapping E×E →
F .

Proof. We infer from the irreducible case of Theorem 1.2 that the projection H of
H ′ on O(E) contains the identity component of O(E) (isomorphic to O(1, n) for
1 + n = dim E), say H = O(E), to simplify notation.

Since O(F ) is compact, H is isomorphic to the non-compact semi-simple Levi
factor of H ′. Therefore, H ′ contains a subgroup isomorphic to H, that is, there
exists a homomorphism ρ : H = O(E) → O(F ), such that the graph {(h, ρ(h)), h ∈
O(E)} is contained in H ′.

Now, ρ must be trivial since a semi-simple Lie group of non-compact type has
no non-trivial homomorphism into a compact group.

For the last two conclusions of the lemma, one can assume F = R. The kernel
of the linear mapping f is O(E)-invariant; hence, it is trivial by irreducibility. A
similar argument yields triviality of invariant antisymmetric bilinear mappings. �

2.2. Group actions.

2.2.1. Proof of the first part of Proposition 1.6. From Theorem 1.1 and the irre-
ducibility hypothesis, N has constant curvature. Let us consider the case where N
is flat; the proof is the same in the other cases. Thus, N is locally isometric to the
Minkowski space R

1,n, for which the identity component of the isometry group is
the semi-direct product SO(1, n) � R

1+n. From Theorem 1.2, the stabilizer in G
must equal SO(1, n) (we assumed G connected). It follows that G intersects the
translation group R

1+n in an open subgroup, and therefore, G contains all trans-
lations, and hence equals SO(1, n) � R

1+n, and N is exactly the Minkowski space.
(Another way to conclude would be to observe that the full isometry group of the
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Minkowski space is generated by the stabilizers of its points; in fact, just stabilizers
of two different points generate.) �

Lemma 2.2. Let G be a connected Lie group acting isometrically on a Lorentz
manifold (M, g). Let N be an orbit of G, which is of Lorentz type and has an
irreducible stabilizer (when acting on the tangent space of N).

Then G splits G = K × G1, where G1 = Isom0(N), and K acts trivially on N
(K is in fact precompact in the stabilizer of any point of N).

Furthermore, in a neighborhood of N , all the orbits of G1 are isometric, and thus
determine a foliation. The orthogonal distribution to this foliation is integrable, and
all structures are invariant under the G-action.

Proof. The group G acts on N via a homomorphism G → Isom0(N). Its image
G1 has irreducible isotropy, and therefore, from the first part of Proposition 1.6, N
has constant curvature and G1 = Isom0(N).

We now check that, in fact, G1 is contained in G, and hence G splits as claimed.
For this, consider x0 ∈ N , and denote by H ′ its isotropy group. The orthogonal
space Lx0 of Tx0N in Tx0M is spacelike (the metric on it is positive definite). We
are in a position to apply Lemma 2.1 with E = Tx0N and F = Lx0 . It then follows
that the identity component of the isotropy group of x0 in G1 is contained in H ′,
and in particular in G. However, G1 is generated by stabilizers of various points of
N , and therefore, G1 is contained in G.

Next, we investigate the G1-action on M near N . Let H be the isotropy group of
x0 in G1. Its action on Lx0 is trivial. Let expx0

denote the exponential mapping for
the Lorentz metric and consider the (local) submanifold Lx0 = expx0

(Lx0). Then
expx0

conjugates the infinitesimal action of H on Lx0 with its action on Lx0 . In
particular, H acts trivially on this latter submanifold. That is, H is contained
in the isotropy group of any point of Lx0 . An obvious semi-continuity argument
implies that isotropy groups cannot be bigger. Therefore, we have a foliation by
G1-orbits, all satisfying the same irreducibility condition for their isotropy groups.
Let us denote this foliation by N and its tangent bundle by TN . Let L be the
orthogonal distribution. The obstruction to integrability of L can be measured by
means of a tensor T : L × L → TN . It is defined by T (X, Y ), which equals the
orthogonal projection on TN of the bracket [X, Y ], where X and Y are sections of
L. Since the isotropy group acts trivially on L and irreducibly on TN , T is trivial,
that is, L is integrable. �

2.3. Warped product, end of the proof. Let (L, h) and (N, m) be two pseudo-
Riemannian manifolds and w : L → R

+ − {0} a warping function. The warped
product M = L ×w N , is the topological product L×N , endowed with the pseudo-
Riemannian metric g = h ⊕ wm.

Our goal now is to prove that an open neighborhood of N in M is a warped
product. So far, we have the orthogonal foliations N and L. One can say that
the De Rham decomposition theorem is a criterion for a pair of such foliations to
determine a (local) direct pseudo-Riemannian product. The condition is that (the
tangent bundles of) N and L are parallel, or a priori more weakly, that leaves of N
and L are geodesic. There is a similar, but more complicated, criterion for warped
products [5, 8]. We will not use this criterion, but rather give a brief proof in our
case. Our terminology here is close to that of [12], which may be consulted for
a more complete exposition. Let N and L be (local) leaves of a point x0 for the
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foliations N and L, respectively. So, locally, M has an adapted topological product
L × N . The metric can be written

g(l,n) = h(l,n) ⊕ m(l,n).

• Let us show that h(l,n) = h, that is, it does not depend on n. This is clear
since G1 acts isometrically: if k ∈ G1, then it sends L(l,n) to Lk(l,n), where k(l, n)
has the form (l, n′) (orbits of G1 correspond to N ). Therefore g = h ⊕ m(l,n) (the
geometric meaning of this fact is that N is a geodesic foliation [12]).

• In order to understand the variation of m(l,n) as a function of (l, n), write
x0 = (l0, n0), fix l1 ∈ L and consider the mapping

S : (l0, n) ∈ N = N(l0,n0) → (l1, n) ∈ N(l1,n0).

S commutes with the G1-action on the G1-orbits of (l0, n0) and (l1, n0). In particu-
lar it commutes with the isotropy actions at these two points. As shown previously
these isotropy groups are the full orthogonal groups of the Lorentz scalar prod-
ucts on their tangent spaces. In particular, they preserve, up to a multiplicative
constant, only one Lorentz scalar product. This means that S is a homothety at
(l0, n0): the image metric equals the metric at (l1, n0) (along N(l1,n0)) up to a mul-
tiplicative factor w(l0, n0). Now, since S commutes with the (full) action on orbits,
it follows that w does not depend of n. That is, if m = m(l0,n) is the metric on N ,
then m(l,n) = w(l)m. In sum, g = h ⊕ w(l)m, that is, M is a warped product.

• The fact that N has constant curvature follows from Theorem 1.1 since N has
irreducible isotropy.

• Finally, the splitting of G is that given in Lemma 2.2, which is obviously
compatible with the warped product structure. �

3. Proof of Theorem 1.5

We will first prove Theorem 1.5 under an additional homogeneity assumption,
that is, G acts transitively on M . This will be a generalization of Theorem 1.1,
where one keeps the non-precompactness assumption and replaces the irreducibility
one by the semi-simplicity of the ambient group. We will the come back to the
proof of Theorem 1.5 by the end of the present section, after proving the following
transitive particular case.

Theorem 3.1. Let (M, g) be a G-homogeneous Lorentz space of dimension ≥ 3,
with non-precompact isotropy group, and G a connected semi-simple Lie group with
no (local) factor locally isomorphic to SL(2, R).

Then, there is a group direct product G = G2 × G1, and a metric direct product
M = L × N , where L is a Riemannian G2-homogeneous manifold, N is a Lorentz
space of constant non-vanishing curvature, and G1 = Isom0(N).

Proof. For x ∈ M , and a lightlike (i.e. isotropic) vector u ∈ TxM , consider the
orthogonal hyperplane u⊥. Let Cx be the set of those u for which u⊥ is tangent
to a totally geodesic (lightlike) hypersurface, that is, expx(u⊥) is a totally geodesic
hypersurface (near x). The crucial fact, proved in [10], is that non-precompactness
of the isotropy group Hx implies Cx is non-empty.

• Suppose Cx is finite. One can (locally) define only finitely many continuous
sections x → u(x) ∈ Cx. In particular, one can suppose that these sections are
invariant under the G-action. In fact, to simplify notation in the following argu-
ment, one is allowed to suppose that Cx has (everywhere) cardinality 1. Therefore,
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we have a G-invariant distribution of hyperplanes x → u(x)⊥. This distribution is
integrable, the leaf at x being the geodesic hypersurface

Hu = expx(u⊥).

From this we get that M possesses a codimension one G-invariant foliation. The
quotient space is a 1-manifold. But a simple Lie group acting (non-trivially) on a
1-manifold must be locally isomorphic to SL(2, R). This is impossible because of
our assumption on G.

It then follows that Cx is infinite, and hence generates a Lorentz subspace Fx of
dimension ≥ 3.

• The same argument as above allows one to check that the isotropy group
cannot preserve a space of dimension 1. Nor can it preserve a Lorentz subspace
of dimension 2, since the two isotropic directions in such a subspace would be
preserved individually. To summarize, one can select a subspace Ex of Fx which is
Lorentz, generated by its infinite subset Ex ∩Cx, and on which the isotropy group
acts irreducibly.

• From this, we define a G-invariant distribution E on which the isotropy group,
at each point, acts irreducibly. As in the proof of Theorem 1.3, one defines an
integrability obstruction tensor for E, which must vanish, by Lemma 2.1, since it is
antisymmetric and invariant under the isotropy group. Therefore E is integrable.
We denote by N its tangent foliation.

• Let N be a leaf of N , and G3 the subgroup of G leaving it invariant. This sub-
group acts transitively on N , since the foliation N is invariant under the transitive
G-action. Moreover, G3 contains the stabilizers (in G) of all the points of N , which,
by construction, act irreducibly on the tangent space of each point of N . We can
thus apply Theorem 1.3 to the G3-action. In particular, N has constant curvature,
and G3 contains G1 = Isom0(N), which induces a warped product L ×w N in a
neighborhood of N in M .

• One shows in a standard way the coincidence of the foliation N (given by the
distribution E) and that given by the factor N in the warped product. Therefore,
the warped product is G invariant, and is in particular global: M = L ×w N .

• Now, we argue by contradiction to show that N has non-vanishing curvature,
that is, N is not the Minkowski space. Indeed, N can be identified with the quotient
space M/L endowed with its similarity Lorentz structure (that is, a Lorentz metric
up to a (global) constant), which is preserved by the G-action. In other words, the
semi-simple group G acts transitively by homothety on N . However, the similarity
group of the Minkowski space R

1,n is (R+ × O(1, n)) � R
1+n. Any semi-simple

subgroup of it is conjugate into O(1, n), and cannot act transitively.
• Since G acts transitively on M = L ×w N by preserving the warped product

structure, all the leaves {l} ×N are isometric, and hence have the same curvature.
However, metrics at two levels l1 and l2 are related by a factor w(l1)

w(l2)
. Curvatures

are related by the inverse ratio. From constancy of the (non-vanishing) curvature,
we infer that w is a constant function, that is, M = L × N is a direct product.

• Since G preserves the product structure of M and contains G2, which is the
full (identity component of the) isometry group of N , G splits as claimed. This
finishes the proof of Theorem 3.1. �

3.0.1. Proof of the last part of Proposition 1.6. A direct algebraic proof is surely
available. This is also an easy corollary of Theorem 3.1. Indeed, if M has constant
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curvature, then, it cannot have a non-trivial decomposition M = L×N . Therefore,
M = N , that is, G = Isom0(M) = Isom0(N). �

3.0.2. End of the proof of Theorem 1.5. The splitting of G is that given by Theorem
3.1. We apply Theorem 1.3 to the G1-action in order to obtain a warped product
as claimed. �

Remark 3.2. A particular case of Theorem 3.1 is where G is simple. It can be
reformulated in this case as follows: if a simple group G acts by preserving a Lorentz
metric on a quotient G/H, where H is non-compact, then this quotient has constant
curvature, that is, G/H has the form O(1, n+ 1)/O(1, n) or O(2, n)/O(1, n) (up to
a cyclic cover). This was proved in [9] under the a priori assumption that G is (up
to a cover) O(1, n + 1) or O(2, n).

4. Proof of Theorem 1.8

The following method has become a standard ingredient in the study of “geomet-
ric” G-actions; see for instance [1, 2, 7, 6], .... One considers the action of the group
G on the space S2(G) of symmetric bilinear forms on its Lie algebra G. There is a
G-equivariant Gauss map Φ : M → S2(G). Non-properness of the G-action on M
translates to a non-properness of the action of G on the image Φ(M). This latter
action is “algebraic”, it has a poor dynamics, and is easy to understand. From this,
one hopes to get information about the G-action on M .

In our case here, one shows that there exists a point q ∈ M such that G admits an
isotropic subspace with respect to the symmetric bilinear form Φ(q), of dimension
≥ 2. Then the non-precompactness of the stabilizer stab(q) follows.

4.1. The Gauss map. Let G be a Lie group acting by isometries on a Lorentz
manifold (M, h). For each X ∈ G, let X be the vector field on M given by

Xx =
d

dt
(exp(tX).x)|t=0.

Let Φ : M → S2(G) be the so-called Gauss map given by

x 
→ Φx : (X, Y ) 
→ hx(Xx, Yx).

Recall the definition of the G-action on S2 (G) given by

(g.q) (X1, X2) = q
(
Adg−1X1, Adg−1X2

)

for q in S2 (G) and g in G, and X1, X2 ∈ G.
Then Φ is equivariant, that is,

g.Φx = Φg.x∀g ∈ G.

Indeed, for g ∈ G and X ∈ G, we have

AdgXgx =
d

dt
(exptAdgX.gx) |t=0=

d

dt
(g.exptX.g−1.gx) |t=0= dgx(Xx).

Hence, for X, Y ∈ G,x ∈ M and g ∈ G, we get (using the fact that G acts on M by
isometries)

g.Φx(X, Y ) = hx(Adg−1X
x
, Adg−1Y x

) = hx(dg−1
gx Xgx, dg−1

gx Y gx)

= hgx(Xgx, Y gx)
= Φgx(X, Y ).
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Observe that if G acts non-properly on M , then it does so on Φ(M).

4.2. Root decomposition. Let A be a Cartan subalgebra, that is, a maximal
abelian R-split subalgebra of G and A the associated Cartan group. Let Ψ =
Ψ (A, G) be the root system of (A, G) and

G = G0 ⊕
⊕

α∈Ψ

Gα

the root space decomposition where

Gα = {X ∈ G : adH.X = α(H).X, ∀H ∈ A},
G0 = {X ∈ G : adH.X = 0, ∀H ∈ A}.

Then A acts on G by diagonal matrices, since

Adg−1 = AdexpH = eadH = diag(eα(H))α∈Ψ∪{0},

where g−1 = exp(H), H ∈ A. It follows that A acts by diagonal matrices on S2(G),
and this latter representation admits the following decomposition:

S2(G) =
⊕

λ∈Ψ∪{0}+Ψ∪{0}
Vλ,

where Vλ is the set of symmetric bilinear forms q on G satisfying

q(exp(H).X1, exp(H).X2) = eλ(H).q(X1, X2),

for all H ∈ A and all X1, X2 ∈ G. Keeping in mind that for X1 ∈ Gα and X2 ∈ Gβ

we have

q(exp(H).X1, exp(H).X2) = e(α+β)(H).q(X1, X2).

It follows that the forms q in Vλ satisfy :

α + β �= λ ⇒ Gα⊥Gβ .

4.3. Properness of abelian actions. The following is a criterion for the non-
properness of linear actions of abelian Lie groups

Lemma 4.1. Let {λ1, · · · , λn} be a generating system in R
d. Let R

d act faithfully
on R

n by diagonal matrices as follows. For t ∈ R
d, set M(t) = diag(e〈λi,t〉)1≤i≤n,

where 〈., .〉 is the usual inner product in R
d. Assume V is an invariant (topological)

subspace of R
n on which the action is non-proper. Then there exists a non-zero

vector t0 ∈ R
d and either an element x ∈ R

n such that xi = 0 if λi(t0) < 0 or an
element y ∈ R

n such that yi = 0 if λi(t0) > 0.

Proof. Since the action on V is non-proper, there exists a sequence (tp) with tp →
+∞ in R

d and a sequence (xp) in V such that xp → x in V and yp = tp.xp → y

in V . Consider the sequence tp

‖tp‖ . Up to taking a subsequence, we may assume it
has a limit t0. Since the action is faithful, and t0 �= 0, there exists i0 ∈ {1, · · · , d}
such that λi0(t0) �= 0. Note that λi(tp) → +∞ if λi(t0) > 0 and λi(tp) → −∞ if
λi(t0) < 0. Hence xi = 0 if λi(t0) > 0 and yi = 0 if λi(t0) < 0. �
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4.4. End of the proof. As we mentioned above, G acts non-properly on Φ(M).
Let G = KAK be the Cartan decomposition of G. Since G has a finite center,
K is compact. So A acts also nonproperly on Φ(M). From this, it follows that
there exists H �= 0, q ∈ Φ(M) and λ0 ∈ Ψ ∪ {0} + Ψ ∪ {0} such that λ0(H) < 0
and qλ = 0 for all λ ∈ Ψ ∪ {0} + Ψ ∪ {0} with λ(H) < 0. Put q = Φx. Then⊕

α(H)<0 Gα is isotropic with respect to Φx. Hence the image of
⊕

α(H)<0 Gα by
the map X 
→ Xx is an isotropic subspace of TxM , so its dimension is less than or
equal to 1. However:

Fact 4.2. For any H ∈ A, the dimension of
⊕

α(H)<0 Gα is at least 2 (where G is
assumed to have no local factor locally isomorphic to SL(2, R)).

Proof. This dimension cannot be 0, since G is semi-simple. If it equals 1, then
the subalgebra

⊕
α(H)≥0 Gα has codimension 1 in G. This contradicts the non-

existence of an SL(2, R) factor (only simple groups locally isomorphic to SL(2, R)
act on 1-manifolds). �

We infer from this the existence of a non-zero element X ∈
⊕

α(H)<0 Gα such
that Xx = 0, which yields exp(tX) ∈ stab(x), ∀t ∈ R. But elements of

⊕
α(H)<0 Gα

are nilpotent, and thus generate non-compact groups. This finishes the proof of
Theorem 1.8. �
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Faculté des Mathématiques, Université des Sciences et de la Technologie Houari

Boumediene, BP 32 El’Alia, Bab Ezzouar, Alger, Algeria

E-mail address: deffaf1@yahoo.fr
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