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Minkowski

Minkowski space Minkn:

Rn with the quadratic form q(t, x) = −t2 + x2
1 + . . . x2

n−1

Spheres: S(r) = {(t, x), q(t, x) = r 2}

e.g. the hyperbolic space Hn−1 = sphere of radius
√
−1

• Mink4 is the spacetime of special Relativity
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Isometry groups

Poincaré group Poin = Isom(Minkn):

It contains linear isometries: the Lorentz group

Lorn = O(1, n − 1)

and

Translations: Rn

Poin is a semi-direct product Lorn n Rn
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Remark, in Convex and Finsler geometry

In convex geometry...

Finsler metric on a manifold M: a norm on each tangent

space TxM

Rn endowed with a constant norm (i.e a Finsler metric

invariant by translation): a Minkowski space!
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Classical Minkowski problem

Σ ⊂ R3 a compact convex surface (topological sphere)

G : Σ→ S2 Gauß map,

K Σ : Σ→ R+

f : K Σ ◦ (G Σ)−1 is a function on S2

Question: which functions on S2 have this form?

Necessary condition
∫

S2
x

f (x) dx = 0
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Its solution

Minkowski, Lewy, Alexandrov, Pogorelov, Nirenberg, Gluck,

Yau, Cheng...:

Σ exists for any f on S2 satisfying the necessary

condition.

It is unique up to translation.

Steps:

- Polyhedral case – analytic case – generalized solution –

regularity....

– Rigidity...
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Polyhedral case

Σ polyhedra

G : Σ→ S2 multivalued Gauß map

µ the (Hausdorff) volume measure on Σ

ν = G ∗µ its image: a measure on S2

• Which measure on the sphere has the form ν = G ∗µ for

some Σ?

Necessary condition
∫

S2 xdν = 0
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In dimension 2

u1, . . . , uk unit vectors

l1, . . . , lk lengths

Construct a polygon P with edges e1, . . . , ek (non-ordered)

parallel to the directions of u1, . . . , uk and having lengths

l1, . . . , lk

This consists in choosing the right order?

Chasles relation Σliui = 0 (non-ordered)

Equivalent formulation with vi normal to ui

In higher dimension: ei → facets of dimension n − 1

li → volume of ei ...
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From the review of the paper “The Weyl and Minkowski problems

in differential geometry in the large”, by Louis Nirenberg

Because the great expansion of the mathematical literature

makes it so hard to follow the developments, an author who

treats well known problems has the duty to acquaint himself

with the literature, refer the reader to the best sources, and

state clearly in which respect his contribution transcends the

existing results. The present paper is quite irresponsible

in all these respects.

Reviewer: Busemann
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Variants

• Minkowski problem in Higher dimension:

The Gauß-Kronecker-Lipschitz-Killing curvature = product

of eigenvalues of the second fundamental form = Jacobian

of the Gauß-map

•Weyl problem: Which metric g of positive curvature on

S2 admits an isometric immersion in R3?
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• Nirenberg Problem Which function f on S2 has the form

f = ScalΣ ◦ Φ, where Φ : S2 → Σ is a conformal

diffeomorphism?

—– Higher dimensional case?

• Other curvatures

• Intrinsic variants
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Hyperbolic case
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Hyperbolic surfaces?

– Hilbert, Effimov...: R3 contains no complete surface with

negative curvature bounded away from 0.

• R3 → Mink3

Let Σ ⊂ Mink3 be spacelike

i.e. the induced metric (from Mink3) is Riemannian

— Examples: Mink3 : q = −t2 + x2 + y 2

R2 = {t = 0}, H2 = {q = −1},
— Counter-examples, timelike surfaces Mink2 = {y = 0},
de Sitter dS2 = {q = +1}
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Remark: a spacelike surface in Mink3 can not be closed

(compact without boundary)

There is a Gauß map: G (= G Σ) : Σ→ H2

Gaussian curvature is defined similarly: K Σ : Σ→ R

K Σ(x) = det(DxG Σ)

If K Σ < 0, and some “properness condition”, G is a global

diffeomorphism,

• (naive) Minkowski problem: Given f : H2 → R negative,

find Σ such that K Σ ◦ (G Σ)−1 = f
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Non-rigidity of H2

Hano-Nomizu:

There is (exactly) 1 one-parameter family of revolution

surfaces (around the x-axis)

- which contains the hyperbolic space H2,

- all of them have constant curvature −1 but are not

congruent to H2 (up to Iso(Mink3))

Remark

Hn is rigid in Minkn+1 for n ≥ 3
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Equivariant immersions

Giving a surface (S , g) ⇐⇒ giving (S̃ , g̃) equipped with

the isometric π1(S)-action

Equivariant isometric immersion of S : (f , ρ) with

f : S̃ → Mink3 isometric immersion

ρ : π1(S)→ Iso(Mink3)

f ◦ γ = ρ(γ) ◦ f , for any γ ∈ π1(S)

Example: any metric of curvature −1 has a canonical

equivariant isometric immersion with image H2

References: Gromov, Labourie, Schlenker, Fillastre, ...
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The images Σ = f (S̃); Γ = ρ(π1)

Setting:

The interesting case is when Γ acts properly on Σ, i.e. Σ/Γ

is a Hausdorff space

Better: f : S̃ → Σ diffeomorphism, that induces a

diffeomorphism

S = S̃/π1 → Σ/Γ

In particular, as an abstract group Γ ∼= π1
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Example: a hyperbolic structure determines an isometry

S̃/π1 → H2/Γ

{ Hyperbolic structures } ∼=
{ Fuschian representations of π1 in O(1, 2)}

• Generalization: Here we deal with representations

π1 → Poi3 = O(1, 2) n R3, with image Γ acting properly on

some Σ...
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Results

G : Σ→ H2 the Gauß map

Γ acts on Σ and its linear part ΓL acts on H2

The “Linear part” projection: affine → linear,

lin : Affin(R3)→ GL(R3)

(lin : Poi3 → Lor3)

ΓL = lin(Γ)

G is lin-equivariant: G ◦ γ = lin(γ) ◦ G

Direct problem:

(Σ, Γ,K Σ)−−− → (H2, ΓL, f = K Σ ◦ (G Σ)−1)
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Inverse problem

• Data:

ΓL subgroup of O(1, 2)

f : H2 → R negative and ΓL-invariant

• Hypotheses: ΓL fuschian co-compact (i.e. ΓL discrete and

H2/ΓL compact)

•• Problem: find all the pairs (Σ, Γ) such that:

– Γ has a linear part projection ΓL

– Σ is a spacelike Γ-invariant surface

and such that:

K Σ ◦ (G Σ)−1 = f
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Theorem

Let ΓL be a co-compact fuschian group in O(1, 2), and

f : H2 → R a negative ΓL-invariant function.

For any subgroup Γ in the Poincaré group Poi3, with linear

part ΓL, there is exactly one Γ-invariant solution of the

Minkowski problem.
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Introduction 2:
Foliations and time

functions
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Γ vs ΓL

ΓL ⊂ Lor3 given, what are the Γ ⊂ Poi3 having ΓL as a linear

projection

Γ is an affine deformation of ΓL

General setting: ΓL ⊂ GL(R3) given, consider its affine

representations

ρ : γ ∈ ΓL → (γ, t(γ)) ∈ Aff (R3)

t(γ) translational part of ρ(γ)
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• ρ is a homomorphism ⇐⇒ t : ΓL → R3 is a cocycle:

t(γ1γ2) = γ1(t(γ2)) + t(γ2)

ρ ∼ ρ′ ⇐⇒ they are conjugate via a translation

The quotient space: H1(ΓL) (or H1(ΓL,R3))
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Identification of the cohomology

R3 is identified to the Lie algebra o(1, 2) ∼= sl2(R)

The representation of ΓL ⊂ O(1, 2) ∼= PSL2(R) is identified

to its adjoint representation

H1 is the tangent space to the space of representation of ΓL

in O(1, 2) up to conjugacy
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Equivalently,

if ΓL ∼= π1(S), then,

– ΓL ∈ Teic(S)

– and H1 = TΓLTeic(S)

dim H1 = 6g − 6, g = genus (S)
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Geometric counterpart

• The geometric counterpart of ΓL Fuschian is a hyperbolic

structure on S

• Now the geometric counterpart of Γ a subgroup of Poi3

acting properly co-compactly on some Σ is a Lorentz

3-manifold MΓ such that:

– MΓ is flat, i.e. locally isometric to Mink3

– MΓ is diffeomorphic to R× S

– MΓ contains “any” Σ/Γ as previously...

– MΓ is maximal with respect to these properties
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The conformally static case

In the case Γ = ΓL ⇐⇒ Γ contained in O(1, 2) up to a

conjugacy, ⇐⇒ Γ has a global fixed point,

then MΓ = Co3/Γ

Co3 the 3-dimensional (solid) light-cone =

{x , y , t)/x2 + y 2 − t2 < 0}

S = H2/Γ

MΓ = R+ × S with the warped product metric −dr 2 + r 2ds2

where ds2 is the hyperbolic metric on S
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Conformally static: homotheties act conformally

REM: Big-bang models: warped products −dr 2 + w(r)ds2

where ds2 is a metric of constant sectional curvature on a

3-manifold.
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Compare with hyperbolic ends:

Fuschian case ∼= conformally static
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Domains of dependence

If Γ is not linear, then the light-cone is replaced by D the

domain of dependence of Σ

A little bit Causality theory:
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Timelike curves (in Minkowski), figure

e
e’

f

C

D

f−ce’
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Global hyperbolicity

M is globally hyperbolic if it contains a Cauchy

hypersurface Σ:

– Σ spacelike

– A timelike curve meet Σ at most on 1 point

- Any timelike curve can be extended to meet Σ
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Domains of dependence

Σ ⊂ Mink3 (or any M)

D = D(Σ)= domain of dependence of Σ = the maximal

open set in which Σ is a Cauchy surface

x ∈ D+ = any futur oriented timelike curve from x meets Σ

x ∈ D− ...

Examples:

H2 −−−− → the light-cone Co3

The spacelike R2 −−− → the full Mink3
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Flat MGHC

Abstract approach: Witten question, initialized by Mess:

Classify MGHC flat spacetimes M of dimension 3:

F: M is a (locally) flat Lorentz 3-manifold (i.e. locally

isometric to Mink3)

GH: M is globally hyperbolic

C: M is spatially compact, i.e. it has a compact Cauchy

surface, say homeomorphic to a surface S of genus ≥ 2 (so

M is homeomorphic to R× S)

M: M is maximal with respect to these properties (i.e. if M

isometrically embeds in a similar M ′, then M ∼= M ′)
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The theory

Mess,... Bennedeti, Guadagnini, Bonsante....

M = D/Γ as previously

D is the domain of dependence of some Σ spacelike in

Mink3,

– but not necessarily with negative curvature (smooth and

convex)

– Σ is not “privileged”
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Canonical times

Time function T : M → R: the levels of T are Cauchy

surfaces

There is a canonical time: the cosmological time

T C : D → R+ (or M → R+)

T C (x) = sup of lengths of timelike curves having x as a

terminal extremity

Example: H2: T C (x) =
√
−q(x) q is the Lorentz form

(T C is intrinsic, so the quadratic form q can be recovered

from the solid light-cone, without reference to the ambient

Minkowski)
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Remarks:

— For Mink3, T C =∞
— By definition, T C <∞ for big-bang models

— Relativity and abolition of time?
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Geometrically, T C : D → R+ is the time distance to ∂D
T C (x) = d(x , ∂D)

As in the Euclidean case, the gradient ∇T is Lipschitz and

has straight lines trajectories

The levels of T are equidistant, and are C 1,1-submanifolds

Fact (smooth rigidity)

T C is C 2 (and hence C∞) ⇐⇒ D is the light-cone Co3
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Question: existence of geometric smooth times?

In the light-cone case, and more generally warped products

−dt2 + w(t)ds2, the time T (t, x) = t has “rigid”

geometrical levels:

They are umbilical,

Question:Does M have a geometrical time, i.e. with levels

satisfying some extrinsic condition?
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This is motivated by the fact that MΓ is a deformation of

MΓL = Co3/ΓL

– what remains from the warped product structure after

deformation?

Hope: existence of times with levels satisfying one PDE

(there are many in the umbilical case)
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Principal theorem leading to solution of
Minkowski problem

Theorem (Barbot-Béguin-Zeghib, Existence of K-time)

MΓ admits a unique time function T K : M →]−∞, 0[, such

that the level T K−1
(c) has constant Gaussian-curvature c.

Furthermore any compact spacelike surface with constant

Gaussian curvature in MΓ coincides with some level of T K
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The CMC-case

This is done, for any dimension

Andersson-Barbot-Béguin-Zeghib
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de Sitter and anti de Sitter MGHC

K-times and CMC-times exist in for MGHC spacetimes of

constant curvature, i.e. locally isometric to the de Sitter of

the anti de Sitter spaces.

Rem: more authors for the structure of MGHC spacetimes

locally modelled of de Sitter or anti de Sitter: Scannel...
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Use in the solution of Minkowski problem

The leaves of the K-time are used as barriers....
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Convex Geometry of domains of dependence,
Regular light domains

(as a complement)

Let Hyp be the set of affine hyperplanes in Mink3

Hyp+ ⊂ Hyp spacelike hyperplanes

Hyp0 ⊂ Hyp lightlike

Fact

D is Hyp0- convex: any y ∈ ∂D has support hyperplane

∈ Hyp0

– In particular, if x is regular, then the tangent plane

TxD ∈ Hyp0

REM: Define L-convex sets, fro L a (nice) subset of Hyp.
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For P ∈ Hyp0 let I +(P) its future = ∪{I +(x), x ∈ P}

D = ∩F I +(P)

F ⊂ Hyp0

Example: Misner strip: I +(P1) ∩ I +(P2)

Co3 = ∩{I +(P) such that 0 ∈ P}

Any D is a “fractured” cone...
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Eikonal equation

Fact

∂D is the graph (contained in Mink3 = R2 × R) of a global

continuous solution of the Hamilton-Jacobi equation

‖ dx f ‖= 1, f : R2 → R
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Compactness theorems



Minkowski

Introduction

Classical Minkowski
problem

Variants

Hyperbolic surfaces

Results

Introduction 2:
Foliations and
times

Algebraic level

Geometry

Flat MGHC

A priori
Compactness

Properness of Cauchy
surfaces

Uniform Convexity

Regularity of Isometric
embedding spaces

Standard Facts

Causality Theory

Lorentz geometry of
submanifolds

F-times

Plan of the proof: “method of continuity”

(of existence of K-time)

– Assume existence of time function (or foliation) on an

open set

– Study what happens at the boundary: show it can be

extended excluding degeneracy,
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There are three compactness facts

1. Compactness of spacelike surfaces?

2. Uniform convexity

3. No loos of smoothness.
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Spacelike accessibility set

M Lorentz, say time-oriented

J+(x) = causal future of x ,

J−(x) = past of x

J+(x) ∪ J−(x) is the set of points accessible from x by

timelike curves

– Spacelike-variant?

Fact: If dim M > 2: any two points can be joined by a

spacelike curve
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Example: Mink3

c : s → (x(s), y(s), t(s))

c spacelike ⇐⇒ t ′2(s) ≤ x ′2 + y ′2,

Example:

s ∈ R, x(s) = r cos(s/r), y(s) = r sin(s/r),

and t ′(s) < 1, arbitrary

One can join any (x , y , t1) to any (x , y , t2)
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Alternative notion:

K compact in M

Sp(K ) = ∪{S , S Cauchy surface with S ∩ K 6= ∅}

In particular Sp(x) is the union of Cauchy surfaces

containing x ,

Remark: One considers here also rough topological Cauchy

surfaces: topological sub-manifolds meeting exactly once any

non-extensible timelike curve
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Conformally static case

Theorem

Let M = Co3/ΓL be a conformally static MGHCF.

Let K ⊂ M compact.

Then Sp(K ) (The set of Cauchy surfaces meeting K ) is

compact (when endowed with the Hausdorff topology)

Question: for which spaces this compactness property holds?

- Yes for higher dimensional conformally static MGHCF

- Maybe, never in the non-conformally static case?
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Conformally static case

Theorem

Let M = Co3/ΓL be a conformally static MGHCF.

Let K ⊂ M compact.

Then Sp(K ) (The set of Cauchy surfaces meeting K ) is

compact (when endowed with the Hausdorff topology)

Question: for which spaces this compactness property holds?

- Yes for higher dimensional conformally static MGHCF

- Maybe, never in the non-conformally static case?
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Proof

x ∈ M

NC (x) = M − (I +(x) ∪ I−(x)): set of non-comparable

points with x (in the sense of the causality order)

Fact: NC (x) is compact for any x

Because M is conformally static, this does not depend on

the height of x

Consider x high enough.
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ΓL has a compact fundamental domain in Hn

– Homethetic images of this domain are fundamental for the

action on the homethetics of Hn

Thus, there is a closed cone C strictly contained in Co3, a

covering domain for ΓL: iterates of C cover Co3

Now: C− (I +(x) ∪ I−(x)) is compact for any x ∈ C
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In the general case

Theorem

Let M = D/Γ be a MGHCF.

Let K ⊂ M compact, then the diameter of the elements of

Sp(K ) is uniformly bounded.

Let ε > 0, then, the set of elements of Sp(K ) having a

systole ≥ ε is compact.

In other words, if Sn ∈ Sp(K ) leave any compact subset of

M, then their systole → 0.
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Uniform convexity

Theorem

Along a compact K ⊂ M, all the convex Cauchy surfaces are

uniformly spacelike: there exists ε such that d(TxS ,Cx) ≥ ε,
for any x ∈ K and S a Convex Cauchy surface (where d is

any auxiliary metric).

In particular, the volume of S is (locally) uniformly bounded

(from below).
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Proof

Otherwise, we get a convex Cauchy surface containing a

complete lightlike (isotropic) half-line.
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Smooth regularity of limits

Theorem

Let M be a MGHCF with Cauchy surface homeomorphic to

(the topological surface) S endowed with the C∞-topology.

and Met∞Curv≤0(S) those of non-positive scalar curvature.

— Let Emb(S ,M) be the set of metrics g having an

isometric embedding in M.

• Then Emb(S ,M) is closed in Met∞(S)

Furthermore, let K ⊂ M compact, and C ⊂ C∞(S)

compact, and consider Emb(S ,M; K ,C ) the space of

g ∈ Emb(S ,M) whose curvature belongs to C and image of

their embedding meets K .

• Then, Emb(M,S ; K ,C ) is compact in

Met∞(S)/Diff∞(S).

• This applies in particular if C consists of constant

functions in a bounded interval.
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Proof

(Sn, gn)

fn : S → M isometric immersions,

If gn → g , we can see the fn as isometric immersions of the

same (S , g)

Question: What happens for the limit of fn : (S , g)→ M,

knowing that the images fn(S) converge geometrically to a

surface S∞

– What happens if fn does not converge in the C∞-topology,

– Equivalently, if S∞ is not a smooth surface?
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Answer: if S∞ is not smooth, then it is a “pleated” surface,

More precisely, S∞ contains a complete ambiant geodesic,

i.e. a straight line.

This is impossible in our case

References: ... Labourie, Schlenker

One synthetic approach: this isometric immersion problem

can be formulated as a pseudo-holomorphic curve problem

for a suitable almost complex “symplectic” structure,
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Degeneration of pseudo-holomorphic curves: Gromov’s

compactness theorem

Example: in CP1 × CP1, let Sn be the graph of

hn ∈ SL2(C)...
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Last part of the theorem

In the case of constant curvature: boundness of curvature

and diameter implies compactness
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Quick use

Steps to get a K-foliation (i.e. by constant Gaussian

curvature surfaces)

1. A constant Gaussian curvature surface generates a

K-foliation in its neighborhood (the Gauß flow creates

barriers, and the maximum principle puts all K-surfaces in

order, and hence foliate)

2. By the compactness and regularity theorems, the foliation

extends to the boundary...
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A preliminary step

Find one Σ of constant Gaussian curvature?

High levels of the cosmological time have almost 0 curvature

The same is true for CMC-levels

By Treibergs: the CMC-leaves are convex

Push by the Gauß flow (i.e. normals) to create barriers
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Standard Facts: Geometric
times on globally hyperbolic

spacetimes
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Causality

• at the infinitesimal level, causal characters:

(E , q) a Lorentz vector space: q has type −+ . . .+

Rn+1: q = −x2
0 + x2

1 + . . . x2
n

u ∈ E

spacelike: q(u) > 0

timelike q(u) < 0

lightlike (isotropic, null): q(u) = 0
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F ⊂ E subspace

- spacelike: q|F Euclidean scalar product

- timelike q|F Lorentz product

- lighluike q|F degenerate (and thus positive with Kernel of

dimension 1)

(M, g) Lorentz manifold

x → Cx isotropic cone at x : a field of cones

Two Lorentz metrics are conformal iff they have the same

cone field.

Temporal orientation: a continuous choose of one

component, say C +
x
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• convex cone-fields

- positive time cone: x → T +
x

- its closure is T̄ +
x = T +

x ∪ C +
x

• temporal curve: an integral curve of the cone-field T +:

c : I ⊂ R→ M, Lipschitz, and almost everywhere

c ′(t) ∈ T +
c(t)

- Causal curve: T̄ instead of T

• (chronological) Future I +(x) = {y ∈ M such that there

exists c : [0, 1] temporal, c(0) = x , c(1) = y }
Similarly: J+(x) causal future:

Past: I−(x), J−(x)
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A (topological) function t : M → R is a time (function) if t

is (strictly) increasing along any (positive) timelike curve.

- A smooth time function is a submersion along any smooth

timelike curve ⇐⇒ The gradient of t is in the negative

time cone.

A hypersurface Σ ⊂ M is a Cauchy hypersurface if:

- any time curve cut it at most once

- any time curve can be extended (as a time curve) in order

to cut it

Remark: with a dynamical systems language, Σ is a cross

section of the cone field.
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(M, g) is globally hyperbolic (GH) if it admits a Cauchy

hypersurface.

This implies M is diffeomorphic to a product N × R, such

that any leaf {.} × N is a Cauchy hyeprsurface.
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Some extrinsic Lorentz geometry
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Second fundamental form

(M, g) a time-oriented Lorentz manifold

S ⊂ M spacelike,

x → ν(x) unit timelike positive normal

〈ν, ν〉 = −1

∇X Y = IIx(X ,Y )ν ⇐⇒ IIx(X ,Y ) = −〈∇Xν,Y 〉
x → Ax ∈ End(TxS),

Ax(X ) = −∇Xν Weingarten map

λ1(x), . . . , λn−1 eigenvalues of Ax

Hk symmetric function of degree k on the λi .
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• Mean curvature H1(x) = HS(x) = λ1 + . . . λn−1

Recall the Gauß equation for the sectional curvature

〈RS(X ,Y )X ,Y 〉 =

〈II (X ,X )ν, II (Y ,Y )ν〉 − 〈II (X ,Y ), II (X ,Y )〉
There is a sign −, since 〈ν, ν〉 = −1

• Scalar curvature ScalS = −(1/2)H2

• Gaussian (or Lipschitz-Killing...) curvature:

KS = −(λ1. . . . .λn−1) = − det(Ax)

• H2: Ax = −IdTxH2
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Maximum principle

• F-curvature: any function of the λi

Fact

Let x ∈ S ∩ S ′, and S ′ in the future of S, say

(S , x) ≤ (S ′, x),

Then, II S ′
x ≤ II S

x

Corollary

(S , x) ≤ (S ′, x) =⇒ HS ′
1 (x) ≤ HS

1 (x)
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Corollary

By definition, S is convex if IIx ≤ 0 (iff λi ≤ 0)

Assume S and S ′ convex, then

(S , x) ≤ (S ′, x) =⇒ KS ′
(x) ≤ KS(x) and

ScalS
′
(x) ≤ ScalS(x)
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Gauß flow

Restrict to M = Minkn,

S convex,

x ∈ S → φt(x) = x + tν(x) ∈ M; φt(S) = St

t → St is an increasing family: t ≤ s =⇒ St ≤ Ss

The second fundamental form of S t increases with t:

ASt

φt(x) = Ax(1 + tAx)−1

(the tangent spaces are identified by parallel translation)
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Monotony

Fact

Assume:

– S ≤ S ′,

– There is a minimal t such that S ′ ≤ St , and the contact of

S ′ and S t is realized at y = φt(x).

Then, II S
x ≤ II S ′

y

In particular, if S and S ′ have constant F -curvature, then

F S ≤ F S ′
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Compact Cauchy surfaces

Assume

– M is locally as Minkn (in order to use Gauß flow)

– M is globally hyperbolic

– In addition, Cauchy surfaces of M are compact (in order

that t and x in the previous fact exist)

Fact

In this case, if S and S ′ have constant F-curvature, and

(say) F S ≤ F S ′
, then S ≤ S ′.
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