The Minkowski problem in the Minkowski space

Abdelghani Zeghib

UMPA, ENS-Lyon http://www.umpa.ens-lyon.fr/~zeghib/ (joint work with Thierry Barbot & François Béguin)

July 27, 2011

Introduction

problem Variants Hyperbolic surfaces

Introduction 2: Foliations and times

Algebraic level Geometry Flat MGHC

Compactne

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometri

andard Fact

Minkow

Introduction

Classical Minkowski problem

Variants

Hyperbolic surfaces

Results

Introduction 2: Foliations and times

Algebraic level

Geometry

Flat MGHC

A priori Compactness

Properness of Cauchy surfaces

Uniform Convexity

Regularity of Isometric embedding spaces

Standard Facts

Causality Theory

Lorentz geometry of submanifolds

F-times

troduction

oblem ariants yperbolic surfaces

troduction 2: bliations and mes

gebraic level cometry at MGHC

A priori Compactne

mpactnes

rroperness of Cauchy urfaces Iniform Convexity Regularity of Isometric mbedding spaces

ndard Facts

Causality Theory

F-times

Introduction: Minkowski

ntroduction

problem
Variants
Hyperbolic surfaces
Results

Introduction 2 Foliations and times

Algebraic leve Geometry Flat MGHC

A priori Compactne

Properness of Cauch surfaces Uniform Convexity Regularity of Isometr

Standard Facts

Hermann Minkowski (1864 – 1909)

Classical Minkowski

problem

Hyperbolic surface Results

Introduction 2: Foliations and times

Geometry Flat MGHC

Compactne

Properness of Cauchy surfaces Uniform Convexity

Standard Facts

Standard Facts

Lorentz geometry of submanifolds

Minkowski

Minkowski space Mink_n:

$$\mathbb{R}^n$$
 with the quadratic form $q(t,x)=-t^2+x_1^2+\ldots x_{n-1}^2$

Spheres:
$$S(r) = \{(t, x), q(t, x) = r^2\}$$

e.g. the hyperbolic space \mathbb{H}^{n-1} = sphere of radius $\sqrt{-1}$

• Mink₄ is the spacetime of special Relativity

Classical Minkowski problem

Minkowski

Minkowski space Mink $_n$:

$$\mathbb{R}^n$$
 with the quadratic form $q(t,x)=-t^2+x_1^2+\ldots x_{n-1}^2$

Spheres:
$$S(r) = \{(t, x), q(t, x) = r^2\}$$

e.g. the hyperbolic space
$$\mathbb{H}^{n-1}=$$
 sphere of radius $\sqrt{-1}$

• Mink₄ is the spacetime of special Relativity

Classical Minkowski problem

Isometry groups

Poincaré group $Poi_n = Isom(Mink_n)$:

It contains linear isometries: the Lorentz group

$$Lor_n = O(1, n-1)$$

and

Translations: \mathbb{R}^n

 Poi_n is a semi-direct product $Lor_n \ltimes \mathbb{R}^n$

Classical Minkowski problem

Variants
Hyperbolic surface:
Results

Introduction 2: Foliations and times

Algebraic leve Geometry Flat MGHC

A priori

Compactnes

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometri

andard Facts

Causality Theory

F-times

Remark, in Convex and Finsler geometry

In convex geometry...

Finsler metric on a manifold M: a norm on each tangent space $T_{x}M$

 \mathbb{R}^n endowed with a constant norm (i.e a Finsler metric invariant by translation): a Minkowski space!

Classical Minkowski

Variants
Hyperbolic surface:
Results

Introduction 2: Foliations and

Algebraic lev Geometry Flat MGHC

A priori

Compactnes

July Convexity

Regularity of Isometric

Embedding spaces

andard Facts

Classical Minkowski problem

 $\Sigma \subset \mathbb{R}^3$ a compact convex surface (topological sphere)

 $G:\Sigma o\mathbb{S}^2$ Gauß map,

 $\textit{K}^{\Sigma}:\Sigma\to\mathbb{R}^{+}$

 $f: \mathcal{K}^{\Sigma} \circ (\mathcal{G}^{\Sigma})^{-1}$ is a function on \mathbb{S}^2

Question: which functions on \mathbb{S}^2 have this form?

Necessary condition $\int_{\mathbb{S}^2} rac{x}{f(x)} dx = 0$

Classical Minkowski

problem
Variants
Hyperbolic surface

Hyperbolic surfaces Results

Introduction 2: Foliations and times

Algebraic lev Geometry Flat MGHC

A priori Compactnes

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometri

andard Facts

Classical Minkowski problem

 $\Sigma \subset \mathbb{R}^3$ a compact convex surface (topological sphere)

 $G:\Sigma o \mathbb{S}^2$ Gauß map,

 $\textit{K}^{\Sigma}:\Sigma\to\mathbb{R}^{+}$

 $f: \mathcal{K}^\Sigma \circ (\mathcal{G}^\Sigma)^{-1}$ is a function on \mathbb{S}^2

Question: which functions on \mathbb{S}^2 have this form?

Necessary condition $\int_{\mathbb{S}^2} \frac{x}{f(x)} dx = 0$

Classical Minkowski problem

Hyperbolic surface: Results

> Introduction 2: Foliations and times

Algebraic leve Geometry Flat MGHC

A priori Compactnes

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric

ndard Facts

Its solution

Minkowski, Lewy, Alexandrov, Pogorelov, Nirenberg, Gluck, Yau, Cheng...:

 Σ exists for any f on \mathbb{S}^2 satisfying the necessary condition.

It is unique up to translation.

Steps:

- Polyhedral case analytic case generalized solution regularity....
- Rigidity...

Classical Minkowski problem

Variants
Hyperbolic surfaces
Results

Introduction
Foliations an

Algebraic leve Geometry Flat MGHC

Compactne

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric

indard Facts

Polyhedral case

Σ polyhedra

 $G: \Sigma \to \mathbb{S}^2$ multivalued Gauß map μ the (Hausdorff) volume measure on Σ $\nu = G^*\mu$ its image: a measure on \mathbb{S}^2

ullet Which measure on the sphere has the form $u=G^*\mu$ for some Σ ?

Necessary condition $\int_{\mathbb{S}^2} x d\nu = 0$

Classical Minkowski problem

Hyperbolic surfaces
Results

Introduction 2 Foliations and times

Algebraic lev Geometry

Compactn

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric

andard Facts

In dimension 2

 u_1, \ldots, u_k unit vectors l_1, \ldots, l_k lengths

Construct a polygon P with edges e_1, \ldots, e_k (non-ordered) parallel to the directions of u_1, \ldots, u_k and having lengths l_1,\ldots,l_k

Classical Minkowski problem

In dimension 2

 u_1, \ldots, u_k unit vectors I_1, \ldots, I_k lengths

Construct a polygon P with edges e_1, \ldots, e_k (non-ordered) parallel to the directions of u_1, \ldots, u_k and having lengths I_1, \ldots, I_k

This consists in choosing the right order?

Chasles relation $\Sigma I_i u_i = 0$ (non-ordered)

Equivalent formulation with v_i normal to u_i

In higher dimension: $e_i o ext{facets of dimension } n-1$ $l_i o ext{volume of } e_i ...$

Classical Minkowski problem

Variants
Hyperbolic surfaces
Results

Introduction 2 Foliations and times

Algebraic leve Geometry Flat MGHC

Compactne

Properness of Cauchy surfaces Uniform Convexity

andard Facts

Introduction

problem Variants

Variants
Hyperbolic surfac

Introduction 2
Foliations and

Algebraic level Geometry

Compactness
Properness of Cauchy surfaces

surfaces
Uniform Convexity
Regularity of Isometric
embedding spaces

From the review of the paper "The Weyl and Minkowski problems in differential geometry in the large", by Louis Nirenberg

Because the great expansion of the mathematical literature makes it so hard to follow the developments, an author who treats well known problems has the duty to acquaint himself with the literature, refer the reader to the best sources, and state clearly in which respect his contribution transcends the existing results. The present paper is quite irresponsible in all these respects.

Reviewer: Busemann

Classical Minkowski problem Variants

Hyperbolic surfaces

Introduction :

Algebraic level Geometry

Properness of Cauchy surfaces

Uniform Convexity Regularity of Isometric embedding spaces

From the review of the paper "The Weyl and Minkowski problems in differential geometry in the large", by Louis Nirenberg

Because the great expansion of the mathematical literature makes it so hard to follow the developments, an author who treats well known problems has the duty to acquaint himself with the literature, refer the reader to the best sources, and state clearly in which respect his contribution transcends the existing results. The present paper is quite irresponsible in all these respects.

Reviewer: Busemann

Classical Minkowski problem Variants

Hyperbolic surfaces

Introduction Foliations an

Algebraic level Geometry

Properness of Cauchy surfaces Uniform Convexity

Standard Facts
Causality Theory
Lorentz geometry of

Lorentz geometry submanifolds F-times From the review of the paper "The Weyl and Minkowski problems in differential geometry in the large", by Louis Nirenberg

Because the great expansion of the mathematical literature makes it so hard to follow the developments, an author who treats well known problems has the duty to acquaint himself with the literature, refer the reader to the best sources, and state clearly in which respect his contribution transcends the existing results. The present paper is quite irresponsible in all these respects.

Reviewer: Busemann

Classical Minkowski problem

Variants
Hyperbolic surfaces

Introduction

Algebraic level Geometry

Properness of Cauchy surfaces Uniform Convexity

> andard Facts ausality Theory orentz geometry of

Lorentz geometry of submanifolds

Variants

- Minkowski problem in Higher dimension: The Gauß-Kronecker-Lipschitz-Killing curvature = product of eigenvalues of the second fundamental form = Jacobian of the Gauß-map
- Weyl problem: Which metric g of positive curvature on

Variants

Variants

of the Gauß-map

• Minkowski problem in Higher dimension: The Gauß-Kronecker-Lipschitz-Killing curvature = product of eigenvalues of the second fundamental form = Jacobian

•Weyl problem: Which metric g of positive curvature on \mathbb{S}^2 admits an isometric immersion in \mathbb{R}^3 ?

Variants

• Nirenberg Problem Which function f on \mathbb{S}^2 has the form $f = Scal^{\Sigma} \circ \Phi$, where $\Phi : \mathbb{S}^2 \to \Sigma$ is a conformal diffeomorphism?

— Higher dimensional case?

- Other curvatures
- Intrinsic variants

Introduction

problem

Variants Hyperbolic surface

Results

Introduction 2: Foliations and times

Algebraic lev Geometry

Compactne

Compactness
Properness of (

Uniform Convexity Regularity of Isom

tandard Fact

tandard Fact

Hyperbolic case

Introduction

Classical Minkowsk problem Variants

Hyperbolic surfaces Results

Foliations and times

Geometry
Flat MGHC

Compactne

Properness of Cauchy surfaces Uniform Convexity

embedding space

Standard Facts

Hyperbolic surfaces?

- Hilbert, Effimov...: \mathbb{R}^3 contains no complete surface with negative curvature bounded away from 0.

• $\mathbb{R}^3 \to \text{Mink}_3$

— Examples: Mink₃ :
$$q = -t^2 + x^2 + y^2$$

$$\mathbb{R}^2 = \{t = 0\}, \quad \mathbb{H}^2 = \{q = -1\}.$$

Hyperbolic surfaces

Hyperbolic surfaces?

- Hilbert, Effimov...: \mathbb{R}^3 contains no complete surface with negative curvature bounded away from 0.
- $\bullet \ \mathbb{R}^3 \to \mathsf{Mink}_3$

Let $\Sigma \subset \mathsf{Mink}_3$ be **spacelike**

i.e. the induced metric (from $Mink_3$) is Riemannian

— Examples:
$$Mink_3$$
: $q = -t^2 + x^2 + y^2$

$$\mathbb{R}^2 = \{t = 0\}, \quad \mathbb{H}^2 = \{q = -1\},$$

— Counter-examples, timelike surfaces $Mink_2 = \{y = 0\}$, de Sitter $dS_2 = \{q = +1\}$

ntroduction

Classical Minkowski problem Variants

Hyperbolic surfaces Results

Foliations an times

Algebraic level Geometry Flat MGHC

A priori Compactne

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric

tandard Facts

ntraduction

Classical Minkowski problem Variants

Hyperbolic surfaces Results

Introduction 2: Foliations and times

Algebraic leve Geometry Flat MGHC

Compactne

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric embedding spaces

Standard Facts

Remark: a spacelike surface in Mink₃ can not be closed (compact without boundary)

There is a Gauß map: $\mathit{G}(=\mathit{G}^{\Sigma}):\Sigma\to\mathbb{H}^2$

Gaussian curvature is defined similarly: $K^{\Sigma}: \Sigma \to \mathbb{R}$

$$K^{\Sigma}(x) = \det(D_x G^{\Sigma})$$

If $K^{\Sigma} < 0$, and some "properness condition", G is a global diffeomorphism,

• (naive) Minkowski problem: Given $f: \mathbb{H}^2 \to \mathbb{R}$ negative, find Σ such that $K^{\Sigma} \circ (G^{\Sigma})^{-1} = f$

ntroductio

problem Variants

Hyperbolic surfaces Results

Introduction 2: Foliations and times

Algebraic leve Geometry Flat MGHC

Compactne

Properness of Cauch urfaces

Iniform Convexity Regularity of Isometri mbedding spaces

andard Facts

Remark: a spacelike surface in Mink₃ can not be closed (compact without boundary)

There is a Gauß map: $\mathit{G}(=\mathit{G}^{\Sigma}):\Sigma \to \mathbb{H}^2$

Gaussian curvature is defined similarly: $K^{\Sigma}: \Sigma \to \mathbb{R}$

$$K^{\Sigma}(x) = \det(D_x G^{\Sigma})$$

If $K^{\Sigma} < 0$, and some "properness condition", G is a global diffeomorphism,

• (naive) Minkowski problem: Given $f: \mathbb{H}^2 \to \mathbb{R}$ negative, find Σ such that $K^{\Sigma} \circ (G^{\Sigma})^{-1} = f$

ntroductic

problem
Variants

Hyperbolic surfaces Results

Introduction 2: Foliations and times

Algebraic leve Geometry Flat MGHC

Compactn

surfaces
Uniform Convexity
Regularity of Isometric
embedding spaces

andard Facts

Non-rigidity of \mathbb{H}^2

Hano-Nomizu:

There is (exactly) 1 one-parameter family of revolution surfaces (around the x-axis)

- which contains the hyperbolic space \mathbb{H}^2 ,
- all of them have constant curvature -1 but are not congruent to \mathbb{H}^2 (up to $\mathsf{Iso}(\mathsf{Mink}_3))$

Remark

 \mathbb{H}^n is rigid in $Mink_{n+1}$ for $n \geq 3$

itroduction

Classical Minkowski problem Variants

Hyperbolic surfaces Results

Introduction 2: Foliations and times

Algebraic leve Geometry Flat MGHC

A priori Compactne

Properness of Cauchy surfaces Uniform Convexity

nbedding spaces

andard Facts

Non-rigidity of \mathbb{H}^2

Hano-Nomizu:

There is (exactly) 1 one-parameter family of revolution surfaces (around the x-axis)

- which contains the hyperbolic space \mathbb{H}^2 ,
- all of them have constant curvature -1 but are not congruent to \mathbb{H}^2 (up to $\mathsf{Iso}(\mathsf{Mink}_3))$

Remark

 \mathbb{H}^n is rigid in Mink_{n+1} for $n \geq 3$

ntroduction

Classical Minkowski problem Variants

Hyperbolic surfaces Results

Introduction 2 Foliations and times

Algebraic leve Geometry Flat MGHC

Compactne

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric

andard Facts

Equivariant immersions

Giving a surface $(S,g) \iff \text{giving } (\tilde{S},\tilde{g}) \text{ equipped with}$ the isometric $\pi_1(S)$ -action

Equivariant isometric immersion of S: (f, ρ) with

 $f: \tilde{S} \to \mathsf{Mink}_3$ isometric immersion

 $\rho: \pi_1(S) \to \mathsf{Iso}(\mathsf{Mink}_3)$

 $f \circ \gamma = \rho(\gamma) \circ f$, for any $\gamma \in \pi_1(S)$

Example: any metric of curvature -1 has a canonical equivariant isometric immersion with image \mathbb{H}^2

References: Gromov, Labourie, Schlenker, Fillastre, ...

troductior

Classical Minkowski problem Variants

Hyperbolic surfaces Results

Foliations an

Algebraic level Geometry Flat MGHC

. Compactn

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric

andard Facts

Equivariant immersions

Giving a surface $(S,g) \iff \text{giving } (\tilde{S},\tilde{g}) \text{ equipped with}$ the isometric $\pi_1(S)$ -action

Equivariant isometric immersion of S: (f, ρ) with

 $f: \tilde{S} \to \mathsf{Mink}_3$ isometric immersion

 $\rho: \pi_1(S) \to \mathsf{Iso}(\mathsf{Mink}_3)$

 $f \circ \gamma = \rho(\gamma) \circ f$, for any $\gamma \in \pi_1(S)$

Example: any metric of curvature -1 has a canonical equivariant isometric immersion with image \mathbb{H}^2

References: Gromov, Labourie, Schlenker, Fillastre, ...

troduction

problem Variants

Hyperbolic surfaces Results

Foliations an

Algebraic level Geometry Flat MGHC

. Compactn

> Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric embedding spaces

andard Fact

The images $\Sigma = f(\tilde{S})$; $\Gamma = \rho(\pi_1)$

Setting:

The interesting case is when Γ acts properly on Σ , i.e. Σ/Γ is a Hausdorff space

Better: $f: \tilde{S} \to \Sigma$ diffeomorphism, that induces a diffeomorphism

$$S = \tilde{S}/\pi_1 \rightarrow \Sigma/\Gamma$$

In particular, as an abstract group $\Gamma\cong\pi_1$

ntroductior

Classical Minkowski problem Variants

Hyperbolic surfaces Results

Introduction 2: Foliations and times

Algebraic leve Geometry

A priori

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometri

ndard Facts

Example: a hyperbolic structure determines an isometry $\tilde{S}/\pi_1 \to \mathbb{H}^2/\Gamma$

{ Hyperbolic structures } \cong { Fuschian representations of π_1 in O(1,2)}

• Generalization: Here we deal with representations $\pi_1 \to Poi_3 = O(1,2) \ltimes \mathbb{R}^3$, with image Γ acting properly on some Σ ...

ntroductio

oroblem Variants

Hyperbolic surfaces Results

Introduction 2: Foliations and times

Algebraic leve Geometry

Compactr

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric

mbedding space

ausality Theory

Introduction

problem Variants

Hyperbolic surfaces

Introduction 2
Foliations and

Algebraic level Geometry Flat MGHC

> A priori Compactness

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric embedding spaces

ndard Facts

Results

$$G:\Sigma\to\mathbb{H}^2$$
 the Gauß map

 Γ acts on Σ and its **linear part** Γ^L acts on \mathbb{H}^2

The "Linear part" projection: affine \rightarrow linear,

$$\mathit{lin}: \mathit{Affin}(\mathbb{R}^3) o \mathit{GL}(\mathbb{R}^3)$$

$$(\mathit{lin}: \mathit{Poi}_3 \rightarrow \mathit{Lor}_3)$$

$$\Gamma^L = lin(\Gamma)$$

G is *lin*-equivariant: $G \circ \gamma = lin(\gamma) \circ G$

Direct problem:

$$(\Sigma, \Gamma, \mathcal{K}^{\Sigma}) - --
ightarrow (\mathbb{H}^2, \Gamma^L, f = \mathcal{K}^{\Sigma} \circ (\mathcal{G}^{\Sigma})^{-1})$$

troduction

problem Variants

Results

ntroduction 2: Foliations and

Algebraic level Geometry Flat MGHC

A priori

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric

embedding spaces

Inverse problem

• Data:

 Γ^L subgroup of O(1,2)

 $f: \mathbb{H}^2 \to \mathbb{R}$ negative and Γ^L -invariant

- Hypotheses: Γ^L fuschian co-compact (i.e. Γ^L discrete and \mathbb{H}^2/Γ^L compact)
- •• Problem: find all the pairs (Σ, Γ) such that:
- Γ has a linear part projection Γ^L
- $-\Sigma$ is a spacelike Γ -invariant surface and such that:

$$K^{\Sigma} \circ (G^{\Sigma})^{-1} = f$$

ntroduction

problem
Variants
Hyperbolic surfaces

Results

Introduction 2: Foliations and

Algebraic level Geometry Flat MGHC

Compactne

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric embedding spaces

indard Facts

Lorentz geometry of submanifolds F-times

Theorem

Let Γ^L be a co-compact fuschian group in O(1,2), and $f: \mathbb{H}^2 \to \mathbb{R}$ a negative Γ^L -invariant function. For any subgroup Γ in the Poincaré group Poi₃, with linear part Γ^L , there is exactly one Γ -invariant solution of the Minkowski problem.

Introduction

problem Variants

Results

Introduction 2
Foliations and times

Algebraic leve Geometry Flat MGHC

Compactn

Properness of Cauch surfaces Uniform Convexity

embedding spaces

Standard Facts

Causality Theory

Introduction 2: Foliations and time functions

ntroduction

problem
Variants
Hyperbolic surface:
Results

Introduction 2 Foliations and times

Geometry
Flat MGHC

A priori Compactn

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometri

Standard Facts

Causality Theory Lorentz geometry of submanifolds F-times

Introduction

problem
Variants
Hyperbolic surfaces

Introduction 2 Foliations and times

Algebraic level Geometry Flat MGHC

Compac

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric embedding spaces

ndard Facts

Causality Theory Lorentz geometry of submanifolds F-times $\Gamma^L \subset Lor_3$ given, what are the $\Gamma \subset Poi_3$ having Γ^L as a linear projection

 Γ is an affine deformation of Γ^L

General setting: $\Gamma^L \subset GL(\mathbb{R}^3)$ given, consider its affine representations

$$\rho: \gamma \in \Gamma^L \to (\gamma, t(\gamma)) \in \mathit{Aff}(\mathbb{R}^3)$$

 $t(\gamma)$ translational part of $\rho(\gamma)$

ntroduction

Classical Minkowski problem Variants Hyperbolic surfaces Results

Foliations and times

Algebraic level Geometry

Compactne

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric

andard Facts

Causality Theory Lorentz geometry of submanifolds • ρ is a homomorphism $\iff t: \Gamma^L \to \mathbb{R}^3$ is a cocycle: $t(\gamma_1\gamma_2) = \gamma_1(t(\gamma_2)) + t(\gamma_2)$

 $\rho \sim \rho' \iff$ they are conjugate via a translation

The quotient space: $H^1(\Gamma^L)$ (or $H^1(\Gamma^L, \mathbb{R}^3)$)

ntroductio

problem
Variants
Hyperbolic surfaces
Results

Introduction 2: Foliations and times

Algebraic level Geometry Flat MGHC

Compactness

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric

andard Fact

Causality Theory Lorentz geometry of submanifolds

Identification of the cohomology

 \mathbb{R}^3 is identified to the Lie algebra $o(1,2)\cong sl_2(\mathbb{R})$ The representation of $\Gamma^L\subset O(1,2)\cong PSL_2(\mathbb{R})$ is identified to its adjoint representation

 H^1 is the tangent space to the space of representation of Γ^L in O(1,2) up to conjugacy

troduction

oroblem Variants Hyperbolic surfaces

Introduction 2: Foliations and times

Algebraic level Geometry Flat MGHC

Compactness

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric embedding spaces

andard Facts

Causality Theory Lorentz geometry of submanifolds F-times

```
Equivalently, if \Gamma^L\cong\pi_1(S), then, -\Gamma^L\in \mathit{Teic}(S) - and H^1=T_{\Gamma^L}\mathit{Teic}(S) dim H^1=6g-6, g=\mathrm{genus}(S)
```

Introduction

problem
Variants
Hyperbolic surface:
Results

Introduction 2: Foliations and times

Algebraic level Geometry Flat MGHC

A priori Compactne

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric

Standard Facto

Standard Facts

Causality Theory
Lorentz geometry of submanifolds
E-times

Introduction

problem Variants

Hyperbolic surface Results

Introduction 2: Foliations and

Algebraic level Geometry

Compactness
Properness of Cauchy surfaces
Uniform Conveyity

Regularity of Isometric embedding spaces

Causality Theory Lorentz geometry of submanifolds F-times

Geometric counterpart

- ullet The geometric counterpart of Γ^L Fuschian is a hyperbolic structure on S
- Now the **geometric counterpart** of Γ a subgroup of Poi_3 acting properly co-compactly on some Σ is a **Lorentz** 3-manifold M_{Γ} such that:
- $-M_{\Gamma}$ is flat, i.e. locally isometric to Mink₃
- M_{Γ} is diffeomorphic to $\mathbb{R} \times S$
- M_{Γ} contains "any" Σ/Γ as previously...
- $-M_{\Gamma}$ is maximal with respect to these properties

Classical Minkowski problem Variants Hyperbolic surfaces

Introduction :

Algebraic level
Geometry
Flat MGHC

Compact

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric embedding spaces

tandard Facts

Causality Theory Lorentz geometry of submanifolds

The conformally static case

In the case $\Gamma = \Gamma^L \iff \Gamma$ contained in O(1,2) up to a conjugacy, $\iff \Gamma$ has a global fixed point, then $M_\Gamma = Co^3/\Gamma$ Co^3 the 3-dimensional (solid) light-cone = $\{x,y,t)/x^2+y^2-t^2<0\}$

$$S=\mathbb{H}^2/\Gamma$$

 $M_{\Gamma} = \mathbb{R}^+ \times S$ with the warped product metric $-dr^2 + r^2 ds^2$ where ds^2 is the hyperbolic metric on S

troductior

problem Variants Hyperbolic surfaces Results

Introduction 2 Foliations and times

Algebraic level Geometry Flat MGHC

Compact

surfaces
Uniform Convexity
Regularity of Isometric
embedding spaces

andard Facts

Causality Theory Lorentz geometry of submanifolds F-times

Conformally static: homotheties act conformally

REM: Big-bang models: warped products $-dr^2 + w(r)ds^2$ where ds^2 is a metric of constant sectional curvature on a 3-manifold.

Geometry

Compare with hyperbolic ends:

Fuschian case \cong conformally static

Geometry

Lorentz geometry of submanifolds

Domains of dependence

If Γ is not linear, then the light-cone is replaced by \mathcal{D} the domain of dependence of Σ

A little bit Causality theory:

Geometry

Timelike curves (in Minkowski), figure

troduction

problem Variants Hyperbolic surfaces

Introduction 2: Foliations and times

Geometry

Compactne

Properness of Cauch surfaces Uniform Convexity Regularity of Isometr

Standard Facts

Causality Theory
Lorentz geometry of submanifolds

Minkowski

stroduction

problem
Variants
Hyperbolic surfaces

Introduction 2: Foliations and times

Algebraic level Geometry Flat MGHC

Compactn

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric embedding spaces

Standard Facts

Causality Theory Lorentz geometry of submanifolds

Global hyperbolicity

M is globally hyperbolic if it contains a Cauchy hypersurface Σ :

- $-\Sigma$ spacelike
- A timelike curve meet Σ at most on 1 point
- Any timelike curve can be extended to meet Σ

ntroduction

problem Variants Hyperbolic surfaces

ntroduction 2: Foliations and times

Algebraic leve Geometry

Compactn

Compactness
Properness of Cauc

Jniform Convexity Regularity of Isometr embedding spaces

indard Facts

Causality Theory Lorentz geometry of submanifolds

Domains of dependence

 $\Sigma \subset \mathsf{Mink}_3 \ (\mathsf{or} \ \mathsf{any} \ \mathit{M})$

 $\mathcal{D}=\mathcal{D}(\Sigma)=$ domain of dependence of $\Sigma=$ the maximal open set in which Σ is a Cauchy surface

 $x \in \mathcal{D}^+ = \text{any futur oriented timelike curve from } x \text{ meets } \Sigma$ $x \in \mathcal{D}^- \dots$

Examples:

 $\mathbb{H}^2 ---- \to \text{the light-cone } \textit{Co}^3$ The spacelike $\mathbb{R}^2 --- \to \text{the full Mink}_3$

ntroduction

problem
Variants
Hyperbolic surfaces
Results

Introduction 2: Foliations and times

Algebraic leve Geometry

A priori

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric

tandard Facts

Causality Theory Lorentz geometry of

F-times

Introduction

problem Variants

Results

Introduction 2: Foliations and

Algebraic level Geometry

Flat MGHC

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric embedding spaces

Standard Facts
Causality Theory
Lorentz geometry of submanifolds

ntroduction

problem Variants

Hyperbolic surface Results

Introduction 2: Foliations and

Algebraic level Geometry

Flat MGHC

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric embedding spaces

ctandard Facts
Causality Theory

Lorentz geometry of submanifolds

Flat MGHC

Abstract approach: Witten question, initialized by Mess:

Classify MGHC flat spacetimes M of dimension 3:

F: M is a (locally) flat Lorentz 3-manifold (i.e. locally isometric to Mink₃)

GH: *M* is globally hyperbolic

C: *M* is spatially compact, i.e. it has a compact Cauchy surface, say homeomorphic to a surface S of genus ≥ 2 (so *M* is homeomorphic to $\mathbb{R} \times S$)

M: M is maximal with respect to these properties (i.e. if M isometrically embeds in a similar M', then $M \cong M'$)

Flat MGHC

The theory

Mess,... Bennedeti, Guadagnini, Bonsante....

 $M = \mathcal{D}/\Gamma$ as previously

 $\mathcal D$ is the domain of dependence of some Σ spacelike in Mink₃,

- but not necessarily with negative curvature (smooth and convex)
- $-\Sigma$ is not "privileged"

ntroduction

problem
Variants
Hyperbolic surfaces
Results

Introduction 2: Foliations and times

Algebraic leve Geometry

Flat MGHC

A priori

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric

andard Facts

andard Facts

Causality Theory
Lorentz geometry of submanifolds
F-times

Introduction

problem Variants

Hyperbolic surface Results

Introduction 2
Foliations and

Algebraic level Geometry

Flat MGHC

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric embedding spaces

tandard Facts

Lorentz geometry of submanifolds

Canonical times

Time function $T: M \to \mathbb{R}$: the levels of T are Cauchy surfaces

There is a canonical time: the **cosmological time** $T^C: \mathcal{D} \to \mathbb{R}^+ \text{ (or } M \to \mathbb{R}^+)$

 $T^{C}(x) = \sup$ of lengths of timelike curves having x as a terminal extremity

Example: \mathbb{H}^2 : $\mathcal{T}^{\mathcal{C}}(x) = \sqrt{-q(x)}$ q is the Lorentz form (T^{C} is intrinsic, so the quadratic form q can be recovered from the solid light-cone, without reference to the ambient Minkowski)

Flat MGHC

Remarks:

- For Mink₃, $T^{C} = \infty$
- By definition, $T^{C} < \infty$ for big-bang models
- Relativity and abolition of time?

Flat MGHC

Geometrically, $T^C: \mathcal{D} \to \mathbb{R}^+$ is the time distance to $\partial \mathcal{D}$ $T^C(x) = d(x, \partial \mathcal{D})$

As in the Euclidean case, the gradient ∇T is Lipschitz and has straight lines trajectories

The levels of T are equidistant, and are $C^{1,1}$ -submanifolds

Fact (smooth rigidity)

 T^C is C^2 (and hence C^{∞}) $\iff \mathcal{D}$ is the light-cone Co^3

Introduction

problem Variants Hyperbolic surfaces

Introduction 2: Foliations and times

Algebraic leve Geometry

Flat MGHC

A priori

Compactness
Properness of Cauck

niform Convexity egularity of Isometr nbedding spaces

Standard Fact

Causality Theory Lorentz geometry of submanifolds In the light-cone case, and more generally warped products $-dt^2+w(t)ds^2$, the time T(t,x)=t has "**rigid**" geometrical levels:

They are umbilical,

Question: Does M have a geometrical time, i.e. with levels satisfying some extrinsic condition?

ntroduction

problem Variants Hyperbolic surfaces

Introduction 2: Foliations and

Algebraic leve Geometry

Flat MGHC

Flat MG

A priori Compactn

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric embedding spaces

andard Facts

Causality Theory Lorentz geometry of submanifolds F-times This is motivated by the fact that M_{Γ} is a deformation of $M_{\Gamma^L} = Co^3/\Gamma^L$

 – what remains from the warped product structure after deformation?

Hope: existence of times with levels satisfying one PDE (there are many in the umbilical case)

Introduction

problem Variants Hyperbolic surfaces Results

Introduction 2: Foliations and times

Geometry

Flat MGHC

A priori Compacto

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric

andard Facts

andard Fact

Causality Theory
orentz geometry of
ubmanifolds

Flat MGHC

Theorem (Barbot-Béguin-Zeghib, Existence of K-time)

 M_{Γ} admits a unique time function $T^K: M \rightarrow]-\infty, 0[$, such that the level $T^{K-1}(c)$ has constant Gaussian-curvature c. Furthermore any compact spacelike surface with constant Gaussian curvature in M_{Γ} coincides with some level of T^K

The CMC-case

This is done, for any dimension Andersson-Barbot-Béguin-Zeghib

Flat MGHC

K-times and CMC-times exist in for MGHC spacetimes of constant curvature, i.e. locally isometric to the de Sitter of the anti de Sitter spaces.

Rem: more authors for the structure of MGHC spacetimes locally modelled of de Sitter or anti de Sitter: Scannel...

Flat MGHC

Introduction

problem Variants

Hyperbolic surface Results

Introduction 2
Foliations and

Algebraic level Geometry

Flat MGHC

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric embedding spaces

tandard Facts

Lorentz geometry of submanifolds

Use in the solution of Minkowski problem

The leaves of the K-time are used as barriers....

troduction

oroblem /ariants Hyperbolic surfaces

Introduction 2
Foliations and

Algebraic les Geometry

Flat MGHC

Flat MGH0

A priori Compactne

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometri

andard Facts

Causality Theory Lorentz geometry of submanifolds

Introduction

problem Variants

Hyperbolic surface Results

Introduction 2
Foliations and

Algebraic level Geometry

Flat MGHC

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric embedding spaces

tandard Facts

Lorentz geometry of submanifolds

Convex Geometry of domains of dependence, Regular light domains

(as a complement)

Let *Hyp* be the set of affine hyperplanes in Mink₃

 $Hyp^+ \subset Hyp$ spacelike hyperplanes

 $Hyp^0 \subset Hyp$ lightlike

Fact

 $\mathcal D$ is $\mathsf{Hyp^0} ext{-}$ convex: any $y\in\partial\mathcal D$ has support hyperplane

 $\in \mathit{Hyp}^0$

- In particular, if x is regular, then the tangent plane

 $T_x\mathcal{D}\in Hyp^0$

REM: Define \mathcal{L} -convex sets, fro \mathcal{L} a (nice) subset of Hyp.

Classical Minkowski problem Variants

Results

Foliations and

Algebraic level Geometrv

Flat MGHC

Compactn

surfaces Uniform Convexity Regularity of Isometr embedding spaces

Standard Fac

Lorentz geometry of submanifolds For $P \in Hyp^0$ let $I^+(P)$ its future $= \bigcup \{I^+(x), x \in P\}$

$$\mathcal{D} = \cap_{\mathcal{F}} I^+(P)$$
$$\mathcal{F} \subset Hvp^0$$

Example: Misner strip: $I^+(P_1) \cap I^+(P_2)$

$$Co^3 = \cap \{I^+(P) \text{ such that } 0 \in P\}$$

Any \mathcal{D} is a "fractured" cone...

Flat MGHC

Eikonal equation

Fact

 $\partial \mathcal{D}$ is the graph (contained in Mink₃ = $\mathbb{R}^2 \times \mathbb{R}$) of a global continuous solution of the Hamilton-Jacobi equation $\parallel d_{\mathsf{x}}f\parallel = 1, f: \mathbb{R}^2 \to \mathbb{R}$

Flat MGHC

ntroduction

problem Variants

Hyperbolic surface Results

Introduction 2: Foliations and

Algebraic level Geometry

Flat MGHC

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric embedding spaces

ctandard Facts
Causality Theory

Lorentz geometry of submanifolds

Compactness theorems

ntroduction

problem
Variants
Hyperbolic surface:
Results

Introduction 2
Foliations and times

Algebraic leve Geometry Flat MGHC

A priori Compactnes

> Properness of Cauchy surfaces Uniform Convexity Regularity of Isometrembedding spaces

Standard Facts

Plan of the proof: "method of continuity"

(of existence of K-time)

- Assume existence of time function (or foliation) on an open set
- Study what happens at the boundary: show it can be extended excluding degeneracy,

ntroduction

problem Variants Hyperbolic surfaces

Introduction 2: Foliations and times

Algebraic leve Geometry Flat MGHC

A priori

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric embedding spaces

tandard Facts

Minkowski

There are three compactness facts

- 1. Compactness of spacelike surfaces?
- 2. Uniform convexity
- 3. No loos of smoothness.

Introduction

Problem
Variants
Hyperbolic surface:
Results

Introduction 2: Foliations and times

Algebraic leve Geometry Flat MGHC

A priori Compactnes

> Properness of Cauch surfaces Uniform Convexity Regularity of Isometi

Standard Facts

Spacelike accessibility set

M Lorentz, say time-oriented

$$J^+(x) =$$
causal future of x ,

$$J^-(x) = \text{past of } x$$

$$J^+(x) \cup J^-(x)$$
 is the set of points accessible from x by timelike curves

– Spacelike-variant?

Fact: If dim M > 2: any two points can be joined by a spacelike curve

ntroduction

problem Variants Hyperbolic surfaces

Introduction 2: Foliations and

Algebraic leve Geometry Flat MGHC

A priori

Properness of Cauchy surfaces

Uniform Convexity Regularity of Isometric embedding spaces

tandard Facts

Example: Mink₃

$$c: s \to (x(s), y(s), t(s))$$

 $c \text{ spacelike} \iff t'^2(s) \le x'^2 + y'^2.$

Example:

$$s \in \mathbb{R}$$
, $x(s) = r \cos(s/r)$, $y(s) = r \sin(s/r)$, and $t'(s) < 1$, arbitrary

One can join any (x, y, t_1) to any (x, y, t_2)

Classical Minkow

Variants
Hyperbolic surfaces
Results

Introduction 2: Foliations and times

Algebraic level Geometry Flat MGHC

A priori Compacti

Properness of Cauchy surfaces

Uniform Convexity Regularity of Isometric embedding spaces

Standard Fact

Alternative notion:

K compact in M

containing x,

$$Sp(K) = \bigcup \{S, \ S \ \text{Cauchy surface with } S \cap K \neq \emptyset \}$$

In particular $Sp(x)$ is the union of Cauchy surfaces

Remark: One considers here also rough topological Cauchy surfaces: topological sub-manifolds meeting exactly once any non-extensible timelike curve

Introductio

problem
Variants
Hyperbolic surfaces

Introduction 2: Foliations and times

Algebraic level Geometry Flat MGHC

Compactness
Properness of Cau

Properness of Cauchy surfaces

Uniform Convexity Regularity of Isometric embedding spaces

Standard Fac

Conformally static case

Theorem

Let $M = Co^3/\Gamma^L$ be a conformally static MGHCF.

Let $K \subset M$ compact.

Then Sp(K) (The set of Cauchy surfaces meeting K) is compact (when endowed with the Hausdorff topology)

Question: for which spaces this compactness property holds?

- Yes for higher dimensional conformally static MGHCl
- Maybe, never in the non-conformally static case?

itroduction

problem Variants Hyperbolic surfaces

Introduction 2
Foliations and

Algebraic level Geometry Flat MGHC

Compactness
Properness of Cauchy

Properness of Cauchy surfaces Uniform Convexity

Regularity of Isometric embedding spaces

tandard Facts

Theorem

Let $M = Co^3/\Gamma^L$ be a conformally static MGHCF.

Let $K \subset M$ compact.

Then Sp(K) (The set of Cauchy surfaces meeting K) is compact (when endowed with the Hausdorff topology)

Question: for which spaces this compactness property holds?

- Yes for higher dimensional conformally static MGHCF
- Maybe, never in the non-conformally static case?

Classical Minkowski problem /ariants

Results

Foliations and

Algebraic leve Geometry

Properness of Cauchy surfaces

Uniform Convexity Regularity of Isometric embedding spaces

 $x \in M$

 $NC(x) = M - (I^+(x) \cup I^-(x))$: set of non-comparable points with x (in the sense of the causality order)

Fact: NC(x) is compact for any x

Because M is conformally static, this does not depend on the height of \boldsymbol{x}

Consider *x* high enough.

itroduction

problem
Variants
Hyperbolic surfaces

ntroduction 2: Foliations and

> lgebraic level eometry lat MGHC

Compactness

Properness of Cauchy surfaces

Jniform Convexity Regularity of Isometric embedding spaces

tandard Facts

 Γ^L has a compact fundamental domain in \mathbb{H}^n

– Homethetic images of this domain are fundamental for the action on the homethetics of \mathbb{H}^n

Thus, there is a closed cone C strictly contained in Co^3 , a covering domain for Γ^L : iterates of \mathbb{C} cover Co^3

Now: $\mathbf{C} - (I^+(x) \cup I^-(x))$ is compact for any $x \in \mathbf{C}$

Introduction

problem
Variants
Hyperbolic surfaces
Results

Introduction 2: Foliations and times

Algebraic level Geometry Flat MGHC

Compactness

Properness of Cauchy surfaces

Uniform Convexity Regularity of Isometric embedding spaces

tandard Facts

Introduction

Variants
Hyperbolic surfaces

Introduction 2: Foliations and

Algebraic leve Geometry Flat MGHC

Properness of Cauchy surfaces

Uniform Convexity Regularity of Isometric embedding spaces

In the general case

Theorem

Let $M = \mathcal{D}/\Gamma$ be a MGHCF.

Let $K \subset M$ compact, then the diameter of the elements of Sp(K) is uniformly bounded.

Let $\epsilon > 0$, then, the set of elements of Sp(K) having a systole $\geq \epsilon$ is compact.

In other words, if $S_n \in Sp(K)$ leave any compact subset of M, then their systole $\to 0$.

ntroductio

oroblem Variants Hyperbolic surfaces

Foliations and

Algebraic level Geometry Flat MGHC

Compactness Properness of Cauchy surfaces

Uniform Convexity Regularity of Isometric embedding spaces

Standard Fac

Introduction

Variants
Hyperbolic surfaces

Introduction 2 Foliations and

Algebraic level Geometry

Compactness
Properness of Cauchy surfaces

Uniform Convexity
Regularity of Isometric
embedding spaces

Uniform convexity

Theorem

Along a compact $K \subset M$, all the convex Cauchy surfaces are uniformly spacelike: there exists ϵ such that $d(T_xS, C_x) \geq \epsilon$, for any $x \in K$ and S a Convex Cauchy surface (where d is any auxiliary metric).

In particular, the volume of S is (locally) uniformly bounded (from below).

ntroduction

Classical Minkowski problem Variants

Introduction 2 Foliations and

Algebraic level Geometry Flat MGHC

Compactnes

Properness of Cauchy surfaces

Uniform Convexity
Regularity of Isomet

embedding spaces

tandard Facts

Proof

Otherwise, we get a convex Cauchy surface containing a complete lightlike (isotropic) half-line.

Uniform Convexity

ntroduction

problem Variants

Results

Introduction 2: Foliations and times

Algebraic leve Geometry Flat MGHC

Compactnes

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric embedding spaces

embedding space

Smooth regularity of limits

Theorem

Let M be a MGHCF with Cauchy surface homeomorphic to (the topological surface) S endowed with the C^{∞} -topology. and $Met^{\infty}_{Curv<0}(S)$ those of non-positive scalar curvature.

- Let Emb(S, M) be the set of metrics g having an isometric embedding in M.
- Then Emb(S, M) is closed in $Met^{\infty}(S)$ Furthermore, let $K \subset M$ compact, and $C \subset C^{\infty}(S)$ compact, and consider Emb(S, M; K, C) the space of $g \in Emb(S, M)$ whose curvature belongs to C and image of their embedding meets K.
- Then, Emb(M, S; K, C) is compact in $Met^{\infty}(S)/Diff^{\infty}(S)$.
- This applies in particular if C consists of constant functions in a bounded interval.

Classical Minkowski problem Variants Hyperbolic surfaces

ntroduction 2: Foliations and

Algebraic level Geometry

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric embedding spaces

 (S_n, g_n)

 $f_n: S \to M$ isometric immersions,

If $g_n \to g$, we can see the f_n as isometric immersions of the same (S, g)

Question: What happens for the limit of $f_n:(S,g)\to M$, knowing that the images $f_n(S)$ converge geometrically to a surface S_∞

- What happens if f_n does not converge in the C^{∞} -topology,
- Equivalently, if S_{∞} is not a smooth surface?

itroductio

roblem /ariants Hyperbolic surfaces

Introduction 2 Foliations and

Algebraic level Geometry

Compactne

Properness of Cauchy surfaces Uniform Convexity

Regularity of Isometric embedding spaces

tandard Fac

Lorentz geometry of submanifolds F-times Answer: if S_{∞} is not smooth, then it is a "pleated" surface, More precisely, S_{∞} contains a **complete ambiant geodesic**, i.e. a straight line.

This is impossible in our case

References: ... Labourie, Schlenker

One synthetic approach: this isometric immersion problem can be formulated as a pseudo-holomorphic curve problem for a suitable almost complex "symplectic" structure,

Classical Minkowsk

Variants
Hyperbolic surface

Introduction
Foliations an

Algebraic leve Geometry

Compact

Properness of Cauchy surfaces Uniform Convexity

Regularity of Isometric embedding spaces

Causality Theory

Lorentz geometry of submanifolds F-times

Degeneration of pseudo-holomorphic curves: Gromov's compactness theorem

Example: in $\mathbb{C}P^1 \times \mathbb{C}P^1$, let S_n be the graph of $h_n \in SL_2(\mathbb{C})...$

Regularity of Isometric embedding spaces

ntroduction

problem Variants

Hyperbolic surface Results

Introduction 2: Foliations and

Algebraic leve Geometry Flat MGHC

Compac

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric embedding spaces

embedding space

Last part of the theorem

In the case of constant curvature: boundness of curvature and diameter implies compactness

Regularity of Isometric embedding spaces

ntroduction

problem Variants

Hyperbolic surface Results

Introduction 2: Foliations and

Algebraic leve Geometry Flat MGHC

Compac

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric embedding spaces

embedding space

Steps to get a K-foliation (i.e. by constant Gaussian curvature surfaces)

- 1. A constant Gaussian curvature surface generates a K-foliation in its neighborhood (the Gauß flow creates barriers, and the maximum principle puts all K-surfaces in order, and hence foliate)
- 2. By the compactness and regularity theorems, the foliation extends to the boundary...

Classical Minkowski problem Variants Hyperbolic surfaces

Foliations and

Algebraic level Geometry

Properness of Cauchy surfaces Uniform Convexity

Uniform Convexity Regularity of Isometric embedding spaces

A preliminary step

Find one Σ of constant Gaussian curvature?

High levels of the cosmological time have almost 0 curvature

The same is true for CMC-levels

By Treibergs: the CMC-leaves are convex

Push by the Gauß flow (i.e. normals) to create barriers

Regularity of Isometric embedding spaces

Standard Facts: Geometric times on globally hyperbolic spacetimes

ntroducti

crassical Milikowski problem Variants Hyperbolic surfaces Results

Introduction 2: Foliations and times

Algebraic leve Geometry Flat MGHC

A priori Compacto

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric

tandard Facts

Causality Theory

ntroduction

problem
Variants
Hyperbolic surface:
Results

Foliations and times

Algebraic leve Geometry Flat MGHC

Compactn

Properness of Cauchy surfaces Uniform Convexity

Standard Facts

Causality Theory

Lorentz geometry of submanifolds

Causality

• at the infinitesimal level, causal characters:

$$(E,q)$$
 a Lorentz vector space: q has type $-+\ldots+\mathbb{R}^{n+1}$: $q=-x_0^2+x_1^2+\ldots x_n^2$

$$u \in E$$

spacelike: q(u) > 0

timelike q(u) < 0

lightlike (isotropic, null): q(u) = 0

Causality Theory

$F \subset E$ subspace

- spacelike: q|F Euclidean scalar product
- timelike q|F Lorentz product
- lighluike q|F degenerate (and thus positive with Kernel of dimension 1)

(M,g) Lorentz manifold

 $x \to C_x$ isotropic cone at x: a field of cones

Two Lorentz metrics are conformal iff they have the same cone field.

Temporal orientation: a continuous choose of one component, say C_x^+

Classical Minkowski problem Variants Hyperbolic surfaces

Introduction 2
Foliations and

Algebraic leve Geometry

Compact

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric embedding spaces

Causality Theory Lorentz geometry o

submanifolds F-times

Figure

ntroduction

ciassicai ivii problem Variants

Hyperbolic surface Results

Introduction 2
Foliations and times

Algebraic lev Geometry Flat MGHC

A priori Compactness

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric embedding spaces

Standard Facts

Causality Theory

Lorentz geometry of submanifolds

- convex cone-fields
- positive time cone: $x \to T_x^+$
- its closure is $\bar{T}_x^+ = T_x^+ \cup C_x^+$
- temporal curve: an integral curve of the cone-field T^+ : $c:I\subset\mathbb{R}\to M$, Lipschitz, and almost everywhere $c'(t)\in T_{c(t)}^+$
- Causal curve: \bar{T} instead of T
- (chronological) Future $I^+(x) = \{y \in M \text{ such that there exists } c : [0,1] \text{ temporal, } c(0) = x, c(1) = y \}$ Similarly: $J^+(x)$ causal future:

Past: $I^{-}(x)$, $J^{-}(x)$

itroduction

problem Variants Hyperbolic surfaces

Introduction 2: Foliations and

Algebraic leve Geometry Flat MGHC

Compactn

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric embedding spaces

Standard Fact

Causality Theory Lorentz geometry of submanifolds

Figure

ntroduction

ciassicai ivii problem Variants

Hyperbolic surface Results

Introduction 2
Foliations and times

Algebraic lev Geometry Flat MGHC

A priori Compactness

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric embedding spaces

Standard Facts

Causality Theory

Lorentz geometry of submanifolds

A (topological) function $t: M \to \mathbb{R}$ is a time (function) if t is (strictly) increasing along any (positive) timelike curve.

- A smooth time function is a submersion along any smooth timelike curve \iff The gradient of t is in the negative time cone.

A hypersurface $\Sigma \subset M$ is a Cauchy hypersurface if:

- any time curve cut it at most once
- any time curve can be extended (as a time curve) in order to cut it

Remark: with a dynamical systems language, Σ is a cross section of the cone field.

Classical Minkowski problem

Hyperbolic surface Results

Introduction
Foliations and times

Algebraic level Geometry

. Compact

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric embedding spaces

Causality Theory
Lorentz geometry of

Lorentz geometry of submanifolds F-times (M,g) is globally hyperbolic (GH) if it admits a Cauchy hypersurface.

This implies M is diffeomorphic to a product $N \times \mathbb{R}$, such that any leaf $\{.\} \times N$ is a Cauchy hypersurface.

Introductio

problem Variants Hyperbolic surfaces Results

Introduction 2: Foliations and times

Algebraic level Geometry Flat MGHC

Compact

Properness of Cauchy surfaces Uniform Convexity

embedding spac

Standard Fact

Some extrinsic Lorentz geometry

ntroduction

problem
Variants
Hyperbolic surface
Results

Introduction 2 Foliations and times

Algebraic leve Geometry Flat MGHC

Compactn

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric

Standard Fact

Second fundamental form

(M,g) a time-oriented Lorentz manifold $S\subset M$ spacelike,

 $x \rightarrow \nu(x)$ unit timelike positive normal

$$\langle \nu, \nu \rangle = -1$$

$$\nabla_X Y = II_x(X, Y)\nu \iff II_x(X, Y) = -\langle \nabla_X \nu, Y \rangle$$

$$x \rightarrow A_x \in End(T_xS)$$
,

$$A_{x}(X) = -\nabla_{X}\nu$$
 Weingarten map

$$\lambda_1(x), \dots, \lambda_{n-1}$$
 eigenvalues of A_x

 H_k symmetric function of degree k on the λ_i .

troduction

problem
Variants
Hyperbolic surfaces

Introduction 2: Foliations and

Algebraic level Geometry Flat MGHC

Compactne

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric

andard Facts

• Mean curvature $H_1(x) = H^S(x) = \lambda_1 + \dots \lambda_{n-1}$

Recall the Gauß equation for the sectional curvature $\langle R^S(X,Y)X,Y\rangle = \langle II(X,X)\nu,II(Y,Y)\nu\rangle - \langle II(X,Y),II(X,Y)\rangle$ There is a sign -, since $\langle \nu,\nu\rangle = -1$

- Scalar curvature $Scal^S = -(1/2)H_2$
- Gaussian (or Lipschitz-Killing...) curvature:

$$K^{S} = -(\lambda_{1}....\lambda_{n-1}) = -\det(A_{x})$$

• \mathbb{H}^2 : $A_x = -Id_{T_x\mathbb{H}^2}$

ntroductio

oroblem
/ariants
Hyperbolic surfaces

Introduction 2: Foliations and times

Algebraic level Geometry Flat MGHC

a priori Compactne

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric

andard Facts

Maximum principle

ullet F-curvature: any function of the λ_i

Fact

Let $x \in S \cap S'$, and S' in the future of S, say $(S,x) \leq (S',x)$, Then, $II_x^{S'} \leq II_x^S$

Corollary

$$(S,x) \leq (S',x) \Longrightarrow H_1^{S'}(x) \leq H_1^S(x)$$

ntroduction

problem
Variants
Hyperbolic surfaces

Introduction 2: Foliations and

Algebraic level Geometry Flat MGHC

A priori

ompactnes

Properness of Cauchy surfaces Uniform Convexity

Regularity of Isom embedding spaces

tandard Facts

Corollary

By definition, S is convex if $II_x \leq 0$ (iff $\lambda_i \leq 0$) Assume S and S' **convex**, then $(S,x) \leq (S',x) \Longrightarrow K^{S'}(x) \leq K^S(x)$ and $Scal^{S'}(x) \leq Scal^S(x)$

ntroductio

problem
Variants
Hyperbolic surface:
Results

Introduction 2: Foliations and times

Algebraic level Geometry Flat MGHC

A priori Compactness

roperness of Cauchy urfaces

embedding spaces

tandard Facts

Causality Theory Lorentz geometry o submanifolds

Gauß flow

Restrict to $M = Mink_n$,

S convex,

$$x \in S \rightarrow \phi^t(x) = x + t\nu(x) \in M; \quad \phi^t(S) = S_t$$

$$t \rightarrow S_t$$
 is an increasing family: $t \leq s \Longrightarrow S_t \leq S_s$

The second fundamental form of S^t increases with t:

$$A_{\phi^t(x)}^{S_t} = A_x (1 + tA_x)^{-1}$$

(the tangent spaces are identified by parallel translation)

ntroductior

problem Variants Hyperbolic surfaces

Introduction 2: Foliations and times

Algebraic leve Geometry Flat MGHC

Compactn

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric

andard Facts

Causality Theory Lorentz geometry of submanifolds

Monotony

Fact

Assume:

- $-S \leq S'$,
- There is a minimal t such that $S' \leq S_t$, and the contact of S' and S^t is realized at $y = \phi^t(x)$.

Then,
$$II_x^S \leq II_y^{S'}$$

In particular, if S and S' have constant F-curvature, then $F^S < F^{S'}$

ntroduction

problem Variants Hyperbolic surfaces Results

Introduction 2 Foliations and

Algebraic leve Geometry Flat MGHC

Compactne

Properness of Cauchy surfaces Uniform Convexity

andard Facts

Causality Theory Lorentz geometry of submanifolds

Compact Cauchy surfaces

Assume

- M is locally as $Mink_n$ (in order to use Gauß flow)
- M is globally hyperbolic
- In addition, Cauchy surfaces of M are compact (in order that t and x in the previous fact exist)

Fact

In this case, if S and S' have constant F-curvature, and (say) $F^S \leq F^{S'}$, then $S \leq S'$.

troduction

problem Variants Hyperbolic surfaces Results

Introduction 2: Foliations and times

Algebraic leve Geometry Flat MGHC

Compactne

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric

ndard Facts

Causality Theory Lorentz geometry of submanifolds

F-foliations

troduction

oroblem Variants

Hyperbolic surface Results

Introduction 2
Foliations and times

Algebraic leve Geometry Flat MGHC

A priori Compactness

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric embedding spaces

Standard Facts

Causality Theory Lorentz geometry of submanifolds

Minkowski

F-times

troduction

problem Variants

Hyperbolic surface Results

Introduction 2 Foliations and times

Algebraic leve Geometry Flat MGHC

A priori Compactness

Properness of Cauchy surfaces Uniform Convexity Regularity of Isometric embedding spaces

Standard Facts

Causality Theory Lorentz geometry of submanifolds