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1. Introduction

A pseudo-Riemannian manifold is a differentiable manifold M endowed with a pseudo-Riemannian metric 
g of signature (p, q). Two metrics g1 and g2 on M are said to be conformally equivalent if and only if 
g1 = exp(f)g2 where f is C∞ function. A conformal structure is then an equivalence class [g] of a pseudo-
Riemannian metric g and a conformal manifold is a manifold endowed with a pseudo-Riemannian conformal 
structure. A remarkable family of conformal manifolds is given by the conformally flat ones. These are 
pseudo-Riemannian conformal manifolds that are locally conformally diffeomorphic (i.e. preserving the 
conformal structures) to the Minkowski space Rp,q i.e. the vector space Rp+q endowed with the pseudo-
Riemannian metric −dx2

0 − ... − dx2
p−1 + dy2

0 + ... + dy2
q−1.

The conformal group Conf(M, g) is the group of transformations that preserve the conformal structure 
[g]. It is said to be essential if there is no metric in the conformal class of g for which it acts isometrically. 
In the Riemannian case, the sphere Sn is a compact conformally flat manifold with an essential conformal 
group.

The Einstein universe Einp,q is the equivalent model of the standard conformal sphere in the pseudo-
Riemannian setting. It admits a two-fold covering conformally equivalent to the product Sp × Sq endowed 
with the conformal class of −gSp ⊕ gSq . It is conformally flat and its conformal group, which is in fact the 
pseudo-Riemannian Möbius group O(p +1, q+1), is essential. Actually the Einstein universe is the flat model 
of conformal pseudo-Riemannian geometry. This is essentially due to the fact that the Minkowski space 
embeds conformally as a dense open subset of the Einstein universe Einp,q and in addition to the Liouville 
theorem asserting that conformal local diffeomorphisms on Einp,q are unique restrictions of elements of 
O(p + 1, q + 1). Hence a manifold is conformally flat if and only if it admits a (O(p + 1, q + 1),Einp,q)-
structure.

In the sixties A. Lichnérowicz conjectured that among compact Riemannian manifolds, the sphere is the 
only essential conformal structure. This was generalised and proved independently by Obata and Ferrand 
(see [19], [16]). In the pseudo-Riemannian case, a similar question, called the pseudo-Riemannian Lichnérow-
icz conjecture, was raised by D’Ambra and Gromov [1]. Namely, if a compact pseudo-Riemannian conformal 
manifold is essential then it is conformally flat. This was disproved by Frances see [7], [9].

1.1. Examples

The following examples will be, as predicted by our results, conformally flat. In the classical Riemannian 
case, Ein0,n is the usual sphere Sn endowed with the conformal action of the Möbius group O(1, n).

For p, q > 1, the double covering Sp × Sq → Einp,q is non-trivial and yields another conformal essential 
action of O(p + 1, q + 1).

One can also ask which subgroups G ⊂ O(p + 1, q + 1) act transitively and essentially on Einp,q. Let us 
mention here the natural example of orthogonal groups (preserving the quadratic form Rp+1,q+1) together 
with a complex, quaternionic or an octonian structure. More precisely, we have U(m, n) (resp. Sp(m, n)) 
act transitively on Ein2m−1,2n−1 (resp. on Ein4m−1,4n−1). Also, the exceptional group F−20

4 acts naturally 
on Ein7,15. All these actions are transitive and essential.

There is also a non-obvious action of O(1, 4) on Ein3,3. It can be topologically described as follows. The 
Möbius group O(1, 4) acts on the sphere S3. It also acts on the space of orthonormal systems of vectors 
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tangent to S3 (since the action is conformal). It also acts on the projectivization of this space, that is the 
space of tangent orthogonal bases up to a constant. This is topologically Ein3,3, up to a cover, and the 
O(1, 4) action is transitive. Now, the point is that this preserves a conformal structure of type (3, 3). This 
can be showed, but not trivially, by describing the isotropy action. The safest way is to make use of the 
classical fact that O(1, 4) is up to a cover isomorphic to Sp(1, 1). The latter acts naturally on Ein3,3.

Let us finally observe that Sp(1) also acts on Ein3,3, and this commutes with Sp(1, 1), and hence Sp(1, 1) ×
Sp(1) acts on Ein3,3.

1.1.1. The 2-dimensional case
Conformal pseudo-Riemannian structures in dimension 2 are not rigid, in particular the group of local 

conformal transformations has infinite dimension. Conformal actions on compact surfaces of Lie groups 
are however relevant even in this dimension. In the Riemannian case, the conformal group of a compact 
surface is in fact a Lie group, e.g. Conf(S2) = SO(1, 3) = PSL(2, C). This is no longer the case of Ein1,1. 
This latter surface is in fact the torus S1 × S1, with the conformal structure given by the fact that the 
two factors are isotropic. So, Conf(Ein1,1) coincides with diffeomorphisms preserving the product structure. 
This is therefore Diff(S1) × Diff(S1) augmented with the involution (x, y) → (y, x). On the other hand, 
from the quadric model of Ein1,1, one gets the restricted conformal group PSO(2, 2) which is identified to 
L = PSL(2, R) ×PSL(2, R). Therefore L as well as PSL(2, R) ×SO(2) are two examples of Lie groups acting 
transitively and essentially on Ein1,1.

It turns out that L is a maximal Lie group in Conf(Ein1,1), that is there is no bigger Lie group L′ ⊂
Conf(Ein1,1) which contains L.

Consider two finite covers of degrees m and n: S1 → S1, and let PSLk(2, R) denote the k-cover of 
PSL(2, R). Then Lm,n = PSLm(2, R) ×PSLn(2, R) acts conformally on S1 ×S1 endowed with the pull back 
of the conformal structure of Ein1,1 via the covering of degree mn: S1 ×S1 → Ein1,1. Observe however that 
this conformal structure is also just given by the product structure, and so it is isomorphic to Ein1,1. From 
all this, we infer that the Lie groups Lm,n act faithfully transitively and essentially on Ein1,1. In sum, on the 
same Ein1,1, we have different actions of these Lie groups Lm,n, but they all finitely cover the L1,1-action 
(so we can say they are all the same up a finite covers).

1.2. Results

The present article is the first of a series on the pseudo-Riemannian Lichnérowicz conjecture in a homo-
geneous setting [5,4]. The general non homogeneous case, but with signature restrictions, was amply studied 
by Zimmer, Bader, Nevo, Frances, Zeghib, Melnick and Pecastaing (see [24], [2], [10], [21], [22], [20], [17]). 
Let us also quote [15] as a recent work in the Lorentz case. More exactly, we prove the following classification 
result.

Theorem 1.1. Let (M, [g]) be a conformal connected compact pseudo-Riemannian manifold. We suppose 
that there exists G a Lie subgroup of the conformal group Conf(M, g) acting essentially and transitively 
on (M, [g]). We suppose moreover that the non-compact semi-simple part of G is locally isomorphic to 
the Möbius group SO(1, n + 1). Then (M, [g]) is conformally flat. More precisely (M, [g]) is conformally 
equivalent to

• The conformal Riemannian n-sphere or;
• Up to a finite cover, the Einstein universe Ein1,1 or;
• Up to a double cover, the Einstein universe Ein3,3.
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2. Preliminaries

2.1. Notations

Throughout this paper (M, g) will be a compact connected pseudo-Riemannian manifold of dimension n
endowed with a transitive and essential action of a Lie subgroup G of the conformal group Conf(M, g).

Lemma 2.1. We can assume that G is connected.

Proof. The connected component G0 acts transitively. Let us show that it acts essentially. If not, it will 
preserve a metric g0 in the conformal class. If f ∈ G, then f∗g0 is another G0-invariant metric since G0

is normal in G. But any other G0-invariant metric in the conformal class has the form αg0, with α a G0-
invariant function and hence constant. It follows that f∗g0 = α(f)g0, where α : G → R∗ is a homomorphism. 
In other words G act by g0-homotheties. Since M is compact, this implies α = ±1, and hence G acts non-
essentially. �

Fix a point x in M and denote by H = Stab(x) its stabilizer in G. Denote respectively by g, h the Lie 
algebras of G and H. Let g = s � r be a Levi decomposition of g, where s is semi-simple and r is the solvable 
radical of g. Denote by snc the non-compact semi-simple factor of s, by sc the compact one and let n be the 
nilpotent radical of g. Note that n is an ideal of g. Let us denote respectively by S, Snc, Sc, R and N the 
connected Lie sub-groups of G associated to s, snc, sc, r and n.

Let a be a Cartan subalgebra of s associated with a Cartan involution Θ. Consider s = s0 ⊕
⊕

α∈Δ sα =
a ⊕m ⊕

⊕
α∈Δ sα the root space decomposition of s, where Δ is the set of roots of (s, a). Denote respectively 

by Δ+, Δ− the set of positive and negative roots of s for some chosen notion of positivity on a∗. Then 
s = s− ⊕ a ⊕m ⊕ s+, where s+ =

⊕
α∈Δ+ sα and s− =

⊕
α∈Δ− sα.

For every α ∈ a∗, consider

gα = {X ∈ g,∀H ∈ a : adH(X) = α(H)X}.

We say that α is a weight if gα �= 0. In this case gα is its associated weight space. As [g, r] ⊂ n (see [13, 
Theorem 13]) then, for every α �= 0, gα = sα ⊕ nα, where

nα = {X ∈ n,∀H ∈ a : adH(X) = α(H)X}.

Moreover, the commutativity of a together with the fact that finite dimensional representations of a 
semi-simple Lie algebra preserve the Jordan decomposition implies that elements of a are simultaneously 
diagonalisable in some basis of g. Thus g = g0 ⊕

⊕
α �=0 gα.

Finally we will denote respectively by A, S+ the connected Lie subgroups of G corresponding to a and s+.

2.2. General facts

We will prove some general results about the conformal group G. We start with the following general 
fact:
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Proposition 2.2. We have that [s, n] = [s, r]. In particular the sub-algebra s � n is an ideal of g.

Proof. For this, let us consider the semi-simple S-representation in GL(r). It preserves n and thus has a 
supplementary invariant subspace. But [g, r] ⊂ n so automorphisms of r act trivially on r/n and hence 
[s, g] ⊂ s ⊕ [s, n] ⊂ s � n. We deduce that s � n is an ideal of g. �

Next we will prove:

Proposition 2.3. The non-compact semi-simple factor Snc of S is non trivial.

Let us first start with the following simple observation:

Proposition 2.4. If a conformal diffeomorphism f of (M, g) preserves a volume form ω on M , then it 
preserves a metric in the conformal class of g.

Proof. Let f be a diffeomorphism preserving the conformal class [g] and a volume form ω on M . Denote 
by ωg the volume form defined on M by the metric g. On the one hand, there exists a C∞ real function φ
such that ω = eφωg. Hence ω is the volume form defined by the metric e

2φ
n g. On the other hand, we have 

f∗e
2φ
n g = eψe

2φ
n g, for some C∞ function ψ. Thus f∗ω = e

n
2 ψω. But, f preserves the volume form ω, so 

ψ = 0 which means that f preserves the metric e
2φ
n g. �

As a consequence we get:

Corollary 2.5. The conformal group G preserves no volume form on M .

Assume that the non-compact semi-simple factor Snc is trivial. Then by [23, Corollary 4.1.7] the group 
G is amenable. So it preserves a regular Borel measure μ on the compact manifold M . It is in particular a 
quasi-invariant measure with associated rho-function ρ1 = 1 (in the sense of [3]). Let now ωg be the volume 
form corresponding to the metric g. As the group G acts conformally and the action is C∞, the measure 
ωg is also quasi-invariant with C∞ rho-function ρ2 (see [3, Theorem B.1.4]). Again by [3, Theorem B.1.4], 
the measures μ and ωg are equivalent and dμ

dωg
= 1

ρ2
. This shows that μ is a volume form. Then one uses 

Corollary 2.5 to get the Proposition 2.3.
Alternative proof. The previous proof says that, in general, for a homogeneous space G/H, if the G-

action preserves a Radon measure μ, then this measure is smooth. An alternative (self-contained) proof 
consists in lifting this measure to a left invariant measure of G, and use uniqueness (up to a constant) of 
the Haar measure. Let νH be the Haar measure of H. If A ⊂ G is a Borel subset (say with a compact 
closure), x ∈ G let FA(x) be the H-measure of A ∩ xH, that is νH(x−1A ∩ H). Observe that FA(xh) =
νH((h−1x−1)A ∩H) = ν(x

−1A ∩H) = F (x), and thus F is well defined on G/H. Define now ν(A) =
∫
Fdμ. 

For g ∈ G, an explicit computation of FgA shows that ν(gA) = ν(A), that is ν is a left G-invariant measure 
on G, and so it a Haar measure, in particular it is defined by a volume form.

In the general case the essentiality of the action ensures the non discreteness of the stabilizer H.

Proposition 2.6. The stabilizer H is not discrete.

Proof. If it was not the case then H would be a uniform lattice in G. But as the action is essential, there is an 
element h ∈ H that does not preserve the metric on g/h. So |det (Adh)| �= 1 contradicting the unimodilarity 
of G. �

To finish this part let us prove the two following important Lemmas that will be used later in the paper:
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Lemma 2.7. Let π : Snc −→ GL(V ) be a linear representation of Snc into a linear space V . Then, the 
compact orbits of Snc are trivial.

Proof. We can assume without loss of generality that the linear representation π is irreducible. Assume 
that Snc has a compact orbit C ⊂ V . Then the convex envelope Conv(C ∪ −C) is an Snc-invariant compact 
convex symmetric set with non empty interior. Thus the action of Snc preserves the Minkowski gauge ‖.‖
(which is in fact a norm) of Conv(C ∪ −C). But Isom (Conv(C ∪ −C), ‖.‖) is compact. So the restriction of 
the representation π to Conv(C ∪ −C) gives rise to an homomorphism from a semi-simple group with no 
compact factor to a compact group and hence is trivial. �
Lemma 2.8. A linear representation π : snc −→ gl(V ) of snc into a linear space V is completely determined 
by its restriction to a ⊕m ⊕ s+. More precisely, πsnc

(V ) = Vect
(
πa⊕m⊕s+ (V )

)
.

Proof. It is in fact sufficient to show that πs− (V ) ⊂ Vect
(
πa⊕s+ (V )

)
. For that, fix x ∈ s−α ⊂ s− and let 

a ∈ a such that Rx ⊕Ra ⊕RΘ(x) ∼= sl(2, R) (see for example [14, Proposition 6.52]). Thus the restriction of 
π to Rx ⊕Ra ⊕RΘ(x) is isomorphic to a linear representation of sl(2, R) into V . Using Weyl Theorem we 
can assume without loss of generality that this last is irreducible. But irreducible linear representations of 
sl(2, R) into V are unique up to isomorphism (see for instance [12, Theorem 4.32]). It is then easy to check 
that they verify π(x)(V ) ⊂ Vect

(
πRa⊕RΘ(x) (V )

)
(see [12, Examples 4.2]). This finishes the proof. �

3. Lie algebra formulation

3.1. Enlargement of the isotropy group

As the manifold G/H is compact, the isotropy subgroup H is a uniform subgroup of G. If H was discrete 
then it is a uniform lattice and in this case G would be unimodular. In the non discrete case, this imposes 
strong restrictions on the group H. When H and G are both complex algebraic it is equivalent to being 
parabolic i.e. contains maximal solvable connected subgroup of H. In the real case, Borel and Tits [6]
proved that an algebraic group H of a real linear algebraic group G is uniform if it contains a maximal 
connected triangular subgroup of G. Recall that a subgroup of G (respectively a sub-algebra of g) is said 
to be triangular if, in some real basis of g, its image under the adjoint representation is triangular.

Let H∗ = Ad−1
(
Ad(H)

Zariski
)

be the smallest algebraic Lie subgroup of G containing H. By [11, 
Corollary 5.1.1], the Lie algebra h∗ of H∗ contains a maximal triangular sub-algebra of g. The sub-algebra 
(a⊕ s+) � n being triangular, we get the following fact:

Fact 3.1. Up to conjugacy, the sub-algebra h∗ contains (a⊕ s+) � n.

Consider the vector space Sym(g) of bilinear symmetric forms on g. The group G acts naturally on 
Sym(g) by g.Φ(X, Y ) = Φ(Adg−1X, Adg−1Y ). Let 〈., .〉 be the bilinear symmetric form on g defined by

〈X,Y 〉 = g (X∗(x), Y ∗(x)) ,

where g is the pseudo-Riemannian metric, X∗, Y ∗ are the fundamental vector fields associated to X and Y
and x is the point fixed previously. It is a degenerate symmetric form with kernel equal to h.

Let P be the subgroup of G preserving the conformal class of 〈., .〉. It is an algebraic group containing 
H and normalizing the sub-algebra h. In particular, it contains H∗: the smallest algebraic group containing 
H. Using Fact 3.1 we get that up to conjugacy, the Lie algebra p of P contains (a⊕ s+) � n.

Proposition 3.2. The Cartan sub-group A does not preserve the metric 〈., .〉.
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Proof. First as h is an ideal of p then by taking quotient of both P and H by H, we can suppose that H is 
a uniform lattice of P and in particular that P is unimodular.

Assume that A preserves the metric 〈., .〉. On the one hand, the groups S+ and N preserve the conformal 
class of 〈., .〉. On the other hand, they act on Sym(g) by unipotent elements. So the groups A, S+, and N
preserve the metric 〈., .〉. But by Iwasawa decomposition (A � S+) is co-compact in S. Thus the Snc-orbit 
of 〈., .〉 is compact in Sym(g) and hence trivial by Lemma 2.7. Therefore Snc and N are subgroups of P . 
This implies that for any p ∈ P , 

∣∣∣det (Adp)|g/p
∣∣∣ = 1. Indeed, the action of G on (sc + r)/n factors through 

the product of the action of Sc on sc by the trivial action on r/n. As P contains Snc and N , its action on 
g/p is a quotient of the action of Sc on sc. But Sc is compact, thus it preserves some positive definite scalar 
product and hence the determinant 

∣∣∣det (Adp)|g/p
∣∣∣ = 1.

Now let h ∈ H such that Adh does not preserve 〈., .〉. We have that

1 �=
∣∣∣det (Adh)|g/h

∣∣∣ =
∣∣∣det (Adh)|g/p

∣∣∣
∣∣∣det (Adh)|p/h

∣∣∣

Finally we get 
∣∣∣det (Adh)|p/h

∣∣∣ �= 1 which contradicts the unimodularity of P . �
3.2. Distortion

The group P preserves the conformal class of 〈., .〉. There exists thus an homomorphism δ : P → R such 
that: for every p ∈ P and every u, v ∈ g,

〈Adp(u),Adp(v)〉 = eδ(p) 〈u, v〉 =
∣∣∣det (Adp)|g/h

∣∣∣
2
n 〈u, v〉 (1)

In particular if p ∈ P preserves the metric then δ(p) = 0 and

〈Adp(u),Adp(v)〉 = 〈u, v〉 (2)

Or equivalently

〈adp(u), v〉 + 〈u, adp(v)〉 = 0 (3)

It follows that if the action of p ∈ P on g is unipotent then δ(p) = 0. Therefore, the homomorphism δ is 
trivial on S− and N but not on A by Proposition 3.2. We continue to denote by δ the restriction of δ to A. 
We can see it alternatively as a linear form δ : a → R, called distortion, verifying: for every a ∈ a and every 
u, v ∈ g,

〈ada(u), v〉 + 〈u, ada(v)〉 = δ(a) 〈u, v〉 (4)

Definition 3.1. Two weights spaces gα and gβ are said to be paired if they are not 〈., .〉-orthogonal.

Definition 3.2. A weight α is a non-degenerate weight if gα is not contained in h.

It turns out that in all our forthcoming proofs we can forget our initial group data and instead use (only) 
the Lie algebra data above, that is:

• There is a weight decomposition as above,
• There is a distortion δ : a −→ R,
• The pairing condition of two weight spaces implies their sum is δ,
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• h is normalized by (a⊕ s+) � n.
• The essentiality is translated into the fact that δ �= 0, and the compactness of G/H is replaced by that 

(a⊕ s+) � n normalizes h.

Definition 3.3. We say that a subalgebra g′ is a modification of g if g′ projects surjectively on g/h and in 
addition g′ contains the non-compact semi-simple factor snc of g.

In this case g′/h′ = g/h, where h′ = g′ ∩ h. Since g′ contains snc, the pair (g′, h′) satisfies all the previous 
Lie algebraic requirements. (This however doesn’t ensure (a priori) that G′/H ′ = G/H, and thus compact).

Proposition 3.3. If the weight space g0 is degenerate then up to modification, g is semi-simple and M = G/H

is conformally flat.

Proof. On the one hand, g0 ⊂ h implies that a ⊂ h. As h is an ideal of p, we get that s+ = [s+, a] ⊂ h. On 
the other hand, r ⊂ g0 + n ⊂ g0 + [n, a] ⊂ h. Thus, up to modification, we can assume that g is semi-simple 
and that h contains a + m + s+.

Now let αmax be the highest positive root and let X ∈ gαmax
. Then d1e

X : g/h → g/h is trivial. Yet eX
is not trivial. We conclude using [8, Theorem 1.4]. �

A direct consequence of Equation (4), is that if gα and gβ are paired then α+β = δ. This shows that if α
is a non-degenerate weight then δ−α is also a non-degenerate weight. In particular if 0 is a non-degenerate 
weight, then g0 and gδ are paired and hence δ is a non-degenerate weight. In fact:

Proposition 3.4. If 0 is a non-degenerate weight then δ is a root. Moreover sδ �⊂ h.

Proof. First we will prove that the subalgebras a and nδ are 〈., .〉-orthogonal. Let a ∈ a such that δ(a) �= 0. 
Using Equation (4) for a, u = a and v ∈ nδ, we get, 〈a, ada(v)〉 = δ(a) 〈a, v〉. But v preserves 〈., .〉, thus by 
Equation (3), δ(a) 〈a, v〉 = 0. Hence 〈a, v〉 = 0, for every v ∈ nδ. We conclude by continuity.

Now if δ was not a root then sδ = 0 and gδ = nδ. Thus a and gδ are orthogonal. Which implies that 
a ⊂ h. But h is an ideal of p, so gδ = [gδ, a] ⊂ h. This contradicts the fact that gδ is paired with g0.

To finish we need to prove that sδ �⊂ h. If this was not the case then a would be orthogonal to gδ. Hence 
gδ ⊂ h which contradicts again the fact that gδ is paired with g0. �
3.3. The isotropy group is big

From now and until the end we will suppose that the non-compact semi-simple part Snc of G is locally 
isomorphic to the Möbius group SO(1, n + 1). In this case the Cartan Lie algebra a is one dimensional and 
we have snc = s−α ⊕ a ⊕ m ⊕ sα, where α is a positive root, a ∼= R, m ∼= so(n), and s−α

∼= sα
∼= Rn. 

Moreover, g±α = s±α ⊕ n±α, g0 = a ⊕m ⊕ sc ⊕ r0, gβ = nβ for every β �= 0, ±α and r = r0 ⊕
⊕

β �=0 nβ .
In section 3.1 we saw that the isotropy group H is contained in the algebraic group P which turn out to 

be big i.e. to contain the connected Lie groups A, Sα and N . Our next result shows that the group H itself 
is big:

Proposition 3.5. The Lie algebra h contains a ⊕ sα ⊕
⊕

β �=0 nβ.

Proof. We have that a ⊂ h. Indeed, if 0 is a degenerate weight then we are done. If not, then δ is a root 
and a ⊂ g0 is orthogonal to every gβ with β �= δ. From the proof of Proposition 3.4 we know that a and nδ
are orthogonal. Thus it remains to show that a and sδ are orthogonal. For that, let x ∈ sδ then Θ(x) ∈ s−δ
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and [x,Θ(x)] �= 0 in a. Now using Equation (3) and the fact that one of x or Θ(x) preserve 〈., .〉, we get 
〈adx(Θ(x)), x〉 = 0. But a is one dimensional so it is orthogonal to sδ.

To end this proof, we have that h is an ideal of p and so

a⊕ sα ⊕
⊕
β �=0

nβ = a⊕

⎡
⎣a, sα ⊕

⊕
β �=0

nβ

⎤
⎦ ⊂ h⊕ [h, p] ⊂ h. �

As a consequence we get:

Corollary 3.6. If 0 is a non-degenerate weight, then δ = −α.

3.4. A suitable modification of g

We will show that g admits a suitable modification g′. This allows us to considerably simplify the proofs 
in the next section. More precisely, we have:

Proposition 3.7. The solvable radical decomposes as a direct sum r = r1 ⊕ r2, where r1 is a subalgebra 
commuting with the semi-simple factor s and r2 is an s-invariant linear subspace contained in h. In particular 
g′ = s ⊕ r1 is a modification of g.

To prove Proposition 3.7, we need the following lemma:

Lemma 3.8. We have [s, n] = [s, r] ⊂ h.

Proof of Lemma 3.8. First we prove that [n, g0] ⊂ h. For this, note that by the Jacobi identity and the fact 
that n is an ideal of g, we have 

[⊕
β �=0 nβ , g0

]
=

⊕
β �=0 nβ which in turn is a subset of h by Proposition 3.5. 

Thus one need to prove that [n0, g0] ⊂ h. We know that n preserve the metric 〈., .〉. So using Equation (3)
for p ∈ n0, u ∈ g0 and v ∈ gδ gives us: 〈adp(u), v〉 + 〈u, adp(v)〉 = 0. But once again by Jacobi identity, the 
fact that n is an ideal of g and Proposition 3.5 we have adp(v) ∈ gδ ∩ n = nδ ⊂ h. So 〈adp(u), v〉 = 0, which 
means that [n0, g0] is orthogonal to gδ. Using the fact that [n0, g0] ⊂ g0 and that g0 is orthogonal to every 
gβ for β �= δ we get that [n0, g0] ⊂ h.

Next we have that sc ⊂ g0 thus [sc, n] ⊂ [g0, n] ⊂ h.
Finally we finish by proving that [snc, n] ⊂ h. On the one hand we have,

[a⊕ sα ⊕m, n] ⊂ [a⊕ sα, n] + [g0, n] ⊂ h + h ⊂ h.

On the other hand, as snc is semi-simple we have by Lemma 2.8 that [snc, n] ⊂ Vect ([a⊕m⊕ sα, n]) ⊂ h.

Proof of Proposition 3.7. The subalgebra [s, n] = [s, r] is s-invariant, so it admits an s-invariant supplemen-
tary subspace r′1 in r. But s acts trivially on r/ [s, n] and thus it acts trivially on r′1. We take r1 to be the 
s-invariant subalgebra generated by r′1 (in fact the action of s on r1 is trivial).

It is clear that r1 is a direct sum of r′1 and r′′1 : an s-invariant subspace of [s, n]. Consider r2 to be the 
supplementary of r′′1 in [s, n] = [s, r]. It is s-invariant and by Lemma 3.8 we have r2 ⊂ h.

4. The Möbius conformal group: a classification theorem

This section is devoted to prove Theorem 1.1. We distinguish two situations: when m is contained in h
and when it is not. In this last one, we first consider the case where only the non-compact semi-simple part 
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Snc is non trivial. Then deduce from it the general case. From now and until the end we will assume, up to 
modification, that g = s ⊕ r1.

4.1. The Frances-Melnick case

We suppose that the sub-algebra m is contained in h. Then we have the following proposition:

Proposition 4.1. M is conformally equivalent to the standard sphere Sn or the Einstein universe Ein1,1.

Proof. Assume first that g0 is contained in h. Then by Proposition 3.3, M is conformally flat and after 
modification, r = 0. Moreover, g/h ∼= s−α. This is because g0 = a ⊕ m ⊕ sc and [m, X] = s−α for every 
X �= 0 in s−α. Thus M is conformally equivalent to SO(1, n + 1)/ CO(n) � Rn ∼= Sn.

Now suppose that g0 is not in h. In this case g−α = gδ is paired with g0. But a, m and nδ are contained in 
h so s−α is paired with sc⊕ (r0 ∩ r1). Note that m acts on s−α⊕ (sc ⊕ (r0 ∩ r1)) by preserving the pairing (in 
fact the action of m preserves the metric 〈., .〉). On the contrary for n ≥ 2, m ∼= so(n) acts trivially on r0∩ r1
and transitively on s−α − {0}, so n = 1. As the metric is of type (p, q), we conclude that the projection of 
sc ⊕ (r0 ∩ r1) on g/h is ∼= R. Thus, after modification g = so(1, 2) ⊕ R = u(1, 1), h = a ⊕ sα = R ⊕ R. In 
this case, g/h is the direct sum of two isotropic 1-dimensional subspaces. This implies in particular that the 
metric on g/h is unique up to constant. One then recognizes the usual action of U(1, 1) on Ein1,1. Hence M
is, up to finite cover, conformally equivalent to Ein1,1. �
4.2. The non-compact semi-simple case

Here we suppose that m is not contained in h, the compact semi-simple part sc and the radical solvable 
part r1 are both trivial. We will show:

Proposition 4.2. The pseudo-Riemannian manifold M is conformally equivalent to Ein3,3

By Corollary 3.6, δ is a negative root. In particular δ = −α and g−α is paired with g0. In addition 
g = s−α ⊕ a ⊕m ⊕ sα and a ⊕ sα ⊂ h. We have:

Proposition 4.3. The root space sδ does not intersect h. In particular the metric is of type (n, n).

Proof. If it was the case then let 0 �= X ∈ sδ ∩ h. We have [[X, s−δ] , X] = sδ so sδ ⊂ h. This contradicts 
the fact that gδ is paired with g0. �

Consider the bracket [., .] : sα× s−α −→ a ⊕m. Denote by . ∧ . : sα× s−α −→ m and . ∨ . : sα× s−α −→ a

its projections on m and a respectively. Direct computations give us:

Lemma 4.4.

(1) ∀X ∈ sα, ∀x ∈ s−α: X ∨ x = Θ(x) ∨ Θ(X).
(2) ∀X ∈ sα, ∀x ∈ s−α, ∀y ∈ s−α: [X ∧ x, y] = [X ∧ y, x] − [Θ(x) ∧ y,Θ(X)]

The Cartan involution identifies sα and s−α, which when identified with Rn, m acts on them as so(n). In 
this case, the map . ∨ . can be seen as a bilinear symmetric map from Rn×Rn to a, and when composed with 
α gives rise to an m-invariant scalar product 〈., .〉0 on Rn. Moreover, by Lemma 4.4, for every x, X ∈ Rn, 
X ∧ x is the antisymmetric endomorphism of Rn defined by X ∧ x(y) = 〈X, y〉 x − 〈x, y〉 X.
0 0
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Let x, X ∈ Rn and consider P the plane generated by x, X. Then X ∧ x when seen as element of 
m ∼= so(n) is the infinitesimal generator of a one parameter group acting trivially on the orthogonal P⊥ of 
P with respect to the scalar product 〈., .〉0. Hence X ∧ x ∈ so(P ). More generally:

Proposition 4.5. Let E be a linear subspace of Rn and let x ∈ E. Consider c the Lie subalgebra of so(n)
generated by {X ∧ x/X ∈ E}. Then c equals the Lie algebra linearly generated by {X ∧X ′/X,X ′ ∈ E}, 
which in turn equals so(E), the Lie algebra of orthogonal transformations preserving E and acting trivially 
on its orthogonal (with respect to 〈., .〉0).

Proof. First we have c(E) ⊂ E and hence c ⊂ so(E). It is then sufficient to prove that c and so(E) have the 
same dimensions. For that let {x,X2, ..., Xk} be a basis of E. Note that {X2 ∧ x, ...,Xk ∧ x, [Xi ∧ x,Xj ∧ x] ,
for 2 ≤ i < j ≤ k} are linearly independent. Thus c = so(E). �

For every x �= 0 ∈ s−α consider:

Zx = {X ∈ sα, such that [X,x] ∈ h} .

Denote Θ(Zx) the projection of Θ(Zx) in g/h. Then:

Proposition 4.6. We have:

Θ(Zx) = Θ(Zy) ⇐⇒ Θ(Zx) ∩ Θ(Zy) �= {0} ⇐⇒ x ∈ Θ(Zy) ⇐⇒ y ∈ Θ(Zx).

Proof. By Proposition 4.5 we have,

[Zx,Θ(Zx)] = a⊕ alg ({X ∧ x/X ∈ Zx}) ⊂ h.

This implies that:

Θ(Zx) = Θ(Zy) ⇐⇒ x ∈ Θ(Zy) ⇐⇒ y ∈ Θ(Zx). (5)

Now if ȳ ∈ Θ(Zx), then using (5) we can assume that ȳ = x̄ and so y + x ∈ h. On the one hand 
[Θ(y), y + x] ∈ [Θ(y), h] ⊂ h. On the other hand, [Θ(y), y] ∈ a ⊂ h. Thus [Θ(y), x] ∈ h, which means exactly 
that Θ(y) ∈ Zx or equivalently y ∈ Θ(Zx). This together with (5) give us:

Θ(Zx) = Θ(Zy) ⇐⇒ Θ(Zx) ∩ Θ(Zy) �= {0} ⇐⇒ x ∈ Θ(Zy) ⇐⇒ y ∈ Θ(Zx). �
Next we prove:

Proposition 4.7. The pseudo-Riemannian manifold M is conformally flat.

Proof. We need to prove that the Weyl tensor W (or the Cotton tensor C if the dimension of M is 3) 
vanishes. Actually we will just make use of their conformal invariance property. Namely: if f is a conformal 
transformation of M then,

dxf W(X,Y, Z) = W(dxf(X), dxf(Y ), dxf(Z)) (6)

We denote by x̄ the projection in g/h of an element x ∈ g. A direct application of Equation (6) gives us:

W(x̄, ȳ, z̄) = 0 for every x, y, z ∈ s−α (7)
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W(x̄, ȳ,m) = 0 for every x, y ∈ s−α and every m ∈ m; (8)

[X,W(x̄,m1,m2)] = W([X, x̄] ,m1,m2) ∀X ∈ sα, x ∈ s−α and m1,m2 ∈ m. (9)

Let x ∈ s−α, m1, m2 ∈ m. Then, from Equation (9) we obtain:

[Θ(x),W(x̄,m1,m2)] = W([Θ(x), x̄] ,m1,m2) = 0.

In other words

W(x̄,m1,m2) ∈ Θ(Zx).

Now let x, y ∈ s−α, X ∈ sα and m ∈ m. Then again Equation (6) gives us:

W(x̄, [X, ȳ] ,m) + W([X, x̄] , ȳ,m) = 0.

But W(x̄, [X, ȳ] , m) ∈ Θ(Zx) and W([X, x̄] , ȳ, m) ∈ Θ(Zy). Thus, Proposition 4.6 gives us:

(1) If y /∈ Θ(Zx) then W(x̄, [X, ȳ] , m) = 0;
(2) In the case y ∈ Θ(Zx) and X ∈ Zx, we have W(x̄, [X, ȳ] , m) = 0
(3) If y ∈ Θ(Zx) and X /∈ Zx. Then,

W(x̄, [X, ȳ] ,m) = W(x̄, [X, y],m)

But [X, y] = X ∧ y = Θ(X ∧ y) = Θ(X ∧ y) + Θ(X ∨ y) = Θ([X, y]). Thus,

W(x̄, [X, ȳ] ,m) = −W(x̄,
[
Θ(y),Θ(X)

]
,m) = 0.

So in sum we get:

W(x̄, [X, ȳ] ,m) = 0 for every x, y ∈ s−α, X ∈ sα and m ∈ m (10)

From Proposition 4.5, we know that sα ∧ s−α generates m. Thus applying this to Equation (10) and 
Equation (9) gives us:

W(x̄,m1,m2) = 0 for every x ∈ s−α and m1,m2 ∈ m. (11)

W(m1,m2,m3) = 0 for every m1,m2,m3 ∈ m. (12)

By putting Equations (7), (8), (11), (12) together we get W = 0. �
We finish this section by proving Proposition 4.2:

Proof of Proposition 4.2. For the sake of simplicity of notation, in what follows simple connectedness and 
identification of spaces are considered up to finite covers. First note that if n = 1 then m = 0. Thus we assume 
n ≥ 2. So far we have seen that M = SO(1, n + 1)/H is a conformally flat pseudo-Riemannian manifold of 
signature (n, n). Since the Lie algebra h contains a +sα, the group H is cocompact in SO(1, n +1). Therefore 
SO(1, n + 1)/H is connected and compact, with a connected isotropy and hence simply connected. As M is 
connected, it covers SO(1, n + 1)/H and thus equals it.

On the one hand, the Einstein universe Einn,n is simply connected. Thus M is identified to Einn,n. So 
SO(1, n + 1) acts transitively on Einn,n with isotropy H. By Montgomery Theorem [18, Theorem A] any 
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maximal compact subgroup in SO(1, n + 1), e.g. K2 = SO(n + 1), acts transitively on Sn × Sn the two fold 
cover of Einn,n.

On the other hand, the conformal group of Einn,n is SO(n + 1, n + 1). A maximal compact subgroup of 
it is K1 = SO(n + 1) × SO(n + 1). Up to conjugacy, we can assume K2 ⊂ K1. Therefore, K2 = SO(n + 1)
acts via a homomorphism ρ = (ρ1, ρ2) : SO(n + 1) → SO(n + 1) × SO(n + 1).

If SO(n + 1) is simple, then:
- either ρ1 or ρ2 is trivial and the other one is bijective, in which case ρ(SO(n +1)) does not act transitively 

on Sn × Sn,
- or both are bijective, and ρ(SO(n + 1) is up to conjugacy in SO(n + 1) × SO(n + 1) the diagonal 

{(g, g)/g ∈ SO(n + 1)}. The latter, too, does not act transitively on Sn × Sn.
Hence SO(n + 1) must be non-simple which implies n = 1 or n = 3, but n = 1 was excluded, and then 

remains exactly the case n = 3, for which M is conformally equivalent to Ein3,3.

4.3. The general case

In this section we will show Theorem 1.1 in the general case. We suppose that g = s−α⊕a ⊕m ⊕sα⊕sc⊕r1. 
Let us denote by m0 = m ∩ h so that so(1, n + 1) ∩ h = a ⊕ sα ⊕m0. A priori the subalgebra m0 could be of 
any dimension in m. Nevertheless the hypothesis m �⊂ h restricts drastically the possibilities. So we have:

Proposition 4.8. The subalgebra m0 has codimension n in m.

Proof. If n = 2 then m = so(2). Hence [p, sα] = a ⊕ m for any non null p ∈ s−α. Recall that s−α preserves 
the metric so by applying Equation (3) for p = v ∈ s−α, u ∈ sα we get 〈s−α,m〉 = 0. Thus m ⊂ h which 
contradicts our hypothesis.

Assume that n ≥ 3 and suppose that m0 has codimension less than n − 1. Denote by M0 the connected 
subgroup of SO(n) corresponding to m0.

If the action of M0 on s−α
∼= Rn is reducible then M0 preserves the splitting Rd × Rn−d and hence is 

contained in SO(d) ×SO(n −d). Thus M0 has codimension bigger than the codimension of SO(d) ×SO(n −d)
which in turn achieves its minimum if d = 1 or n − d = 1 and hence M0 = SO(n − 1). One can identify m0

with so(E) for some n − 1 dimensional linear subspace E of s−α. Let then e ∈ s−α such that s−α = Re ⊕E. 
Fix a non zero element x ∈ Θ(E), we have 〈adx(e), X〉 + 〈e, adx X〉 = 0 for every X ∈ s−α and so in 
particular 〈e, adx e〉 = 0. In addition by Proposition 4.5, [E,Θ(E)] = a ⊕ m0 ⊂ h thus 〈adx e,X〉 = 0 for 
every X ∈ E and hence adx e is orthogonal to s−α. This implies that x ∧ e ∈ h ∩ m = m0 = so(E) which 
contradicts the fact that x ∧ e is the infinitesimal rotation of the plane Re ⊕Rx.

The last case to consider is when M0 acts irreducibly. Let m ∈ m0, X ∈ s−α and y ∈ sc ⊕ r1 then 
〈adm(X), y〉+ 〈X, adm y〉 = 0. But adm y = 0 and hence sc ⊕ r1 is orthogonal to [m0, s−α] which is equal to 
s−α by irreducibility. Thus sc ⊕ r1 ⊂ h and we are in the non-compact semi-simple case. Therefore n = 3
and m ∼= so(3). Non trivial Sub-algebras of so(3) have dimension one and are reducible. So the only left 
possibility is m0 = m ∼= so(3) which show that m ⊂ h and this is a contradiction. �
End of Proof of Theorem 1.1. By Proposition 4.8, m0 is of codimension n in m. But s−α is paired with 
g0 = a ⊕ m ⊕ sc ⊕ (r1 ∩ r0). Thus sc ⊕ (r1 ∩ r0) ⊂ h and we are also in the non-compact semi-simple case. 
Therefore n = 3 and M is conformally equivalent to Ein3,3.
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