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Topology and dynamics of compact plane waves
By Malek Hanounah at Greifswald, Ines Kath at Greifswald, Lilia Mehidi at Granada

and Abdelghani Zeghib at Lyon

Abstract. We study compact locally homogeneous plane waves. Such a manifold is
a quotient of a homogeneous plane wave X by a discrete subgroup of its isometry group. This
quotient is called standard if the discrete subgroup is contained in a connected subgroup of
the isometry group that acts properly cocompactly on X . We show that compact quotients of
homogeneous plane waves are “essentially” standard; more precisely, we show that they are
standard or “semi-standard”. We find conditions which ensure that a quotient is not only semi-
standard but even standard. As a consequence of these results, we obtain that the flow of the
parallel lightlike vector field of a compact locally homogeneous plane wave is equicontinuous.

1. Introduction

The general theme of the present article is the study of the fundamental group and the
isometry group of compact locally homogeneous Lorentzian manifolds. More precisely, the
Lorentzian metrics that we consider here are plane waves (see Definition 1.6). Compact locally
homogeneous plane waves are quotients of a homogeneous plane wave by a discrete subgroup
of its isometry group. So they fit into the following more general situation. Let X D G=H be
a homogeneous space (not necessarily endowed with a metric), and let � � G be a discrete
subgroup acting properly, cocompactly and freely on X . Then �nX is a manifold. It is called
a compact quotient ofX . This leads to the problem of describing the discrete subgroups � � G
acting properly and cocompactly on X . Of particular interest is such a description if X is
a semi-Riemannian homogeneous space. The Riemannian case has a long history, especially
in the case of constant sectional curvature. The pseudo-Riemannian situation is comparatively
less studied and involves a lot of additional difficulties.

In the following, we give a little insight into the problems that we want to deal with and
thereby review some classical results. We also present our results in brief. We start with flat
compact Riemannian and Lorentzian manifolds before turning to our actual object of study,
compact locally homogeneous plane waves.

Convention 1.1. We say that a group has a virtual property P if it contains a finite index
subgroup which has property P.

The corresponding author is Ines Kath.
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1.1. Flat case. The flat Riemannian case, that is, whenX is the Euclidean space, corre-
sponds to the crystallographic problem handled by Bieberbach’s theorem, which states that the
fundamental group � � Isom.Rn/ D O.n/ Ë Rn is in fact contained in Rn (up to finite index);
see [4]. The converse is also true, namely, any group which is torsion-free, finitely generated
and virtually isomorphic to Zn can be realized as the fundamental group of a compact flat
Riemannian manifold [29, Theorem 1.3].

The Lorentzian flat case is much more complicated. We can summarize the state of
current research as follows.

Theorem 1.2. Let M nC1 be a connected compact flat Lorentzian manifold.

(1) Completeness: M is the quotient of the Minkowski space Mink1;n by a discrete subgroup
� of Isom.Mink1;n/ acting properly and freely.

(2) Fundamental group: � is virtually polycyclic. More exactly, � is either virtually nilpotent
or virtually an abelian extension of Z, i.e. virtually Z Ë Zn.

(3) Standardness: Up to a finite index, � is a cocompact lattice in a solvable connected Lie
subgroup L of Isom.Mink1;n/ acting simply transitively on Mink1;n. (In other words,
M D �nL, where L is a Lie group endowed with a complete and flat left invariant
Lorentzian metric).

Item (1) was proved by Carrière [10]. The first part of item (2) is proved by Goldman and
Kamishima [18], and a classification up to abstract commensurability is achieved by Grunewald
and Margulis [19]. Item (3) is done by Fried, Goldman, and Kamishima [14, §1], [18]. For an
excellent survey on this topic, see [11].

We are going to prove the following result (see Section 2).

Theorem 1.3 (Parallel fields). If M nC1 is a connected compact flat Lorentzian mani-
fold, then up to taking a finite cover, M has a parallel vector field V .

� If V is timelike, then M is a flat Lorentzian torus, that is, � consists of translations, and
V is a linear flow.

� If V is lightlike, then its flow is equicontinuous.

� If V is spacelike, then its dynamics are encoded in the linear part of L, that is, its
image under the linear part projection Isom.Mink1;n/ D SO.1; n/ Ë R1Cn ! SO.1; n/.
In particular, there are examples where the flow of V is equicontinuous, Anosov, or more
generally partially hyperbolic.

� In all cases, up to a finite cover, M admits a parallel field of lightlike directions, i.e. an
oriented parallel lightlike line field.

To our best knowledge, existence of parallel vector fields was never stated in the litera-
ture. It can be deduced by carefully reading the more general results in [19]. Our proof is only
targeted on the existence of such a vector and is therefore simpler.

Example 2.6 is an interesting example of a non-equicontinuous spacelike parallel flow.
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Remark 1.4 (Kundt spacetimes). It is worth pointing out that, by Theorem 1.2, any
flat compact Lorentzian manifold is a “weakly” plane wave, i.e. a plane wave in the sense of
Definition 1.6, but with a parallel lightlike line field instead of a parallel lightlike vector field.
This class belongs to the so-called “weakly” Brinkmann manifolds, i.e. Lorentzian manifolds
with a parallel lightlike line field. The latter class fits in a larger class of manifolds called
locally Kundt spacetimes, defined as those having a codimension one lightlike geodesic folia-
tion. These spacetimes are of a great importance in general relativity; see [6] for more details
on the subject.

Remark 1.5 (Constant curvature). Klingler [24] extended Carrière’s result by showing
that any compact Lorentzian manifold of constant curvature is complete. Namely, in curvature
�1, it is the quotient of anti-de-Sitter space AdS1;n by a discrete subgroup of Isom.AdS1;n/.
In the positive curvature, due to a classical result known as the Calabi–Markus phenomena [9],
there are no compact Lorentzian manifolds with positive constant curvature. On the other hand,
compact quotients exist in negative curvature only if n is even. In dimension 3, Goldman shows
in [16] that there are non-standard (for the definition of standard, see Section 5) compact quo-
tients. However, it is conjectured [34] that, for n > 3, all compact quotients are standard. For
recent developments on proper actions in the constant curvature case, see [12, 20].

Our aim in the present article is to generalize Theorem 1.2 and Theorem 1.3 to the case
where Minkowski space is replaced by a plane wave spacetime. Plane waves can be thought
of as a generalization as well as a deformation of Minkowski spacetime. They are of great
mathematical and physical interest, which can be seen from the amount of recent research
on the topic. However, results on compact plane waves are rare since most of the research
is from the physical point of view, and compact Lorentzian manifolds have a bad causal
behavior. More precisely, as stated in the beginning of the section, we consider here compact
locally homogeneous plane waves. Since compact plane waves are complete by [25, Theo-
rem B] (see also [28, Theorem 1.2] for completeness in the more general context of compact
Brinkmann spacetimes), the universal cover of a compact locally homogeneous plane wave is
homogeneous.

1.2. Homogeneous plane waves. A Lorentzian manifold with a lightlike parallel vec-
tor field V is called a Brinkmann manifold. The orthogonal distribution V ? is integrable and
defines a foliation denoted by F , having lightlike geodesic leaves. Plane waves are particular
Brinkmann spaces, defined as follows.

Definition 1.6. A plane wave is a Brinkmann manifold such that the leaves of F are
flat, and rXR D 0, for any X tangent to V ?, where R is the Riemannian tensor.

The .2nC 1/-dimensional Heisenberg group Heis2nC1 D Rn Ë RnC1 is the subgroup
of Aff.RnC1/ defined by

Heis2nC1 D
²�
1 ˛>

0 In

� ˇ̌̌̌
˛ 2 Rn

³
Ë RnC1:

Denote by AC D Rn the abelian subgroup of unipotent matrices, and by A� the subgroup
¹0º �Rn of the translation part.
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Definition 1.7 (Affine unimodular lightlike group). Suppose that RnC1 with coordi-
nates .x0; x1; : : : ; xn/ is endowed with the lightlike quadratic form q0´ x21 C � � � C x

2
n.

The group of affine isometries of q0 preserving a lightlike vector is

Lu.n/´ .O.n/ Ë Rn/ Ë RnC1

D

²�
1 ˛>

0 A

� ˇ̌̌̌
˛ 2 Rn; A 2 O.n/

³
Ë RnC1;

and Rn Ë RnC1 � Lu.n/ is the Heisenberg group. It will be called the affine unimodular light-
like group. It can also be seen as the group of diffeomorphisms of RnC1 preserving q0, a flat
affine connection, and a lightlike vector.

A manifold modeled on .Lu.n/;RnC1/will be said to have an affine unimodular lightlike
geometry in the sense of geometric structures (see [33, Chapter 3] and [17]).

Plane waves admit an isometric infinitesimal action of the Heisenberg algebra (see [5,
Section 3.2]), whose action preserves individually the leaves of F and is locally transitive on
each F -leaf. Thus general plane waves have already local cohomogeneity 1. Moreover, since
the leaves of F are flat and lightlike, with a tangent parallel lightlike vector field V , they have
an affine unimodular lightlike geometry.

Let X be a non-flat simply connected homogeneous plane wave of dimension nC 2. The
connected component of the isometry group of X is computed in [21, Theorem 5.13] and has
the following form:

(1.1) G� D .R �K/ Ë� Heis2nC1;

where K is a closed subgroup of SO.n/ and � is a suitable homomorphism from R �K to
Aut.Heis2nC1/. The spaceX identifies with the quotientX� D G�=I , with I D K Ë AC. And
the codimension 1 foliation F is given by the left action of the normal subgroupK Ë Heis2nC1;
it is invariant by the left action of G�. More details are given in Section 3.

There are many works on general homogeneous plane waves, for instance [5, 15], but
none of these is interested in compact quotients of such spaces. A systematic study of compact
quotients of Cahen–Wallach spaces is carried out by Kath and Olbrich in [23]. These spaces,
first introduced in [8], are exactly the indecomposable symmetric plane waves. In this case, the
�-action in the semi-direct product G� is semi-simple. For general locally homogeneous plane
waves, this is not necessarily the case. Compact quotients of general homogeneous plane waves
are considered in the recent paper [1], in dimension 3.

1.3. Fundamental groups of compact quotients. In the affine case, i.e. M D �nX ,
where G D Aff.Rn/ and X D Aff.Rn/=GLn.R/, a conjecture of Auslander states that the fun-
damental group of a compact complete affine flat manifold is virtually solvable. It is shown to
be true in dimension 3 by Goldman and Fried [14].

In the flat Riemannian setting and flat Lorentzian setting, which are particular affine
geometries, results about the fundamental group of compact quotients have been already pre-
sented in Section 1.1.

Now let us turn from the flat to the curved case, in particular to the Lorentzian one. We
start by considering compact quotients of Cahen–Wallach spaces: a classification of fundamen-
tal groups of those quotients, up to finite index, is achieved in [23, Proposition 8.3].
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The latter family of symmetric spaces is contained in the class of locally homogeneous
plane waves. Recall the definition of G� and X� from the previous subsection. Any compact
locally homogeneous plane wave is complete and therefore (up to a finite cover) a Clifford–
Klein form of a particular .G�; X�/-geometry. For a compact quotient of a general X� by
a discrete subgroup � � G�, we show the following.

Theorem 1.8. The fundamental group � of a compact quotient �nX� is virtually nil-
potent, or virtually a nilpotent extension of Z by a discrete subgroup of Heisenberg, i.e.
virtually Z Ë �0, where �0 � Heis2nC1.

1.4. Standardness and semi-standardness of compact quotients. When G preserves
a Riemannian metric on X D G=I (which is equivalent to the isotropy I being compact),
the discrete subgroups of G acting properly and cocompactly on X are exactly the uniform
lattices of G. For general homogeneous spaces, the isotropy is not compact. Then the first
source of examples of compact quotients are the standard quotients; see Definition 5.9. In
this case, � is a uniform lattice in some connected Lie subgroup N of G acting properly
and cocompactly on X . In particular, N (which is necessarily closed in G) is a syndetic hull
of �; see Definition 5.1. For some X D G=I , all compact quotients are standard and can even
be obtained by using the same N (up to conjugacy) for all discrete subgroups � � G that act
properly and cocompactly onG=I (up to taking a finite index group). This happens for instance
in the flat Riemannian case, where by Bieberbach’s theorem, N is the group of all translations.
In general, not all quotients are standard, and for the standard ones, N depends on � . Finding
such an N turns out to be an easier problem, and the existence of compact quotients reduces to
an existence theorem for lattices.

As stated in Theorem 1.2, compact quotients in the flat Minkowski space are virtually
standard [18], i.e. they become standard if we replace the discrete group � by a suitable finite
index group. More generally, a theorem of Fried and Goldman [14, Section 1.4] states that
any virtually solvable subgroup of the affine group, acting properly discontinuously on the
affine space, has a syndetic hull (up to finite index). In simply connected nilpotent groups, the
existence of a syndetic hull is due to Malcev [27], and is called the Malcev closure. Unlike the
previous cases, homogeneous plane waves are not affine manifolds. However, they are foliated
by codimension one affine leaves, which are the orbits of the affine unimodular lightlike group.
The group G� may sometimes be solvable, but generically, it is a Lie group which is not even
solvable. However, even in the solvable case, there is no construction analogous to the Malcev
closure, and in this case, we have non-standard examples [26] (see also Section 6). We prove
the following theorem.

Theorem 1.9. Any compact quotient of X� is standard or semi-standard. In the stan-
dard case, there is a syndetic hull N which is nilpotent or an extension of R by a subgroup of
Heis. Moreover, N acts transitively.

For the definition of semi-standard, see Definition 5.10. Note that, in dimension three, all
compact quotients are standard [1, Theorem 12.4].

1.5. More general homogeneous structures. In the study of the fundamental group
and standardness question, we did not make any use of the geometry of X�. In particular,



6 Hanounah, Kath, Mehidi and Zeghib, Topology and dynamics of compact plane waves

G� does not have to preserve any Lorentzian metric on X�. So Theorem 1.8 extends to more
general homogeneous structures (see Theorem 8.2). The property of being standard or semi-
standard in Theorem 1.9 also remains true; the only thing we lose is the transitivity of the action
of the syndetic hull.

Based on this remark, even if the initial motivation was to study the compact quotients of
homogeneous plane waves, one can consider more general groups

G D .R �K/ Ë Heis; X D G=I;

with no restriction on the action, and the isotropy given by I D C Ë AC, where C is a sub-
group of K preserving AC. A natural question in future work would be to see which of these
homogeneous spaces are Lorentzian or, more generally, which geometries on X are preserved
by G.

1.6. Equicontinuity of the parallel flow. The isometry groups considered here are
non-compact Lie groups. Let .M; g/ be a compact Lorentzian manifold. A 1-parameter group
of Isom.M; g/ is equicontinuous if its closure in Isom.M; g/ is compact. This is equivalent to
the fact that it is isometric for some Riemannian metric onM . In a previous work [28], the third
and fourth authors asked the question of the equicontinuity for the parallel flow of a compact
Brinkmann manifold.

Question 1.10. Let .M; g; V / be a compact Brinkmann spacetime. Is the flow �t of V
equicontinuous?

The condition that Isom.M; g/ contains a one-parameter group that is not relatively com-
pact in Isom.M; g/ amounts to the non-compactness of the connected component Isomı.M; g/.

The results of [28] show that the flow �t of an arbitrary compact Brinkmann space is
equicontinuous if it is equicontinuous for any compact locally homogeneous one. We think it
would be interesting to ask this question first in the case of plane waves. This would be an
important step towards the general Brinkmann case. As a corollary of Theorem 1.9, we obtain
the following.

Theorem 1.11. Let .M; V / be a compact locally homogeneous plane wave. The action
of the parallel flow V is equicontinuous.

In the locally symmetric indecomposable case (Cahen–Wallach spaces), the flow is peri-
odic [23, Proposition 8.2]. In the homogeneous general plane wave case, there are non-periodic
examples (Appendix B).

Organization of the article. The article is organized as follows. In Section 2, we prove
existence of parallel vector fields for any flat compact Lorentzian manifold. In Section 3, we
give a description of the isometry group of a non-flat simply connected homogeneous plane
wave. Section 4 deals with the fundamental group of compact quotients of such manifolds,
where we prove Theorem 1.8. In Section 5, we prove Theorem 1.9 about standardness and semi-
standardness of compact quotients, and we consider more general homogeneous structures
in Section 8. This allows to prove equicontinuity of the parallel flow in Section 7 (see also
Appendix B for an example of a non-periodic action). Appendix A is related with Section 5:
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we show that a cocompact proper action on a contractible space of any connected Lie group
admitting a torsion-free uniform lattice is transitive. In Section 6, we study the non-standard
phenomena, starting with a concrete example of a non-standard compact quotient.

2. Flat case

This section is devoted to the proof of the first part of Theorem 1.3, namely, the existence
of a parallel vector field and parallel lightlike direction on any compact flat Lorentzian mani-
fold. For the proof of the equicontinuity statement, see Section 7.

LetM be a compact flat Lorentzian manifold of dimension nC 1, and � its fundamental
group. By Theorem 1.2 (3), we have M D �nL up to a finite covering, where L is a solvable
connected subgroup of the Poincaré group O.1; n/ Ë RnC1 that acts simply transitively on
RnC1 and � is a lattice in L. Let � WO.1; n/ Ë R1Cn ! O.1; n/ be the linear part projection,
and let L0 be the projection of L. Recall that, by a direction, we mean an oriented line, i.e.
an oriented one-dimensional linear subspace. Observe that M has a parallel vector field (resp.
a parallel field of lightlike directions) if and only if L0 preserves some vector v 6D 0 (resp.
a lightlike direction l in R1Cn). In [19], Grunewald and Margulis give a precise description of
all simply transitive groups of affine Lorentz motions on R1Cn using theorems by Auslander.
Propositions 5.1 and 5.3 in their paper ensure the existence of v and l for all such groups. In
our situation, L is unimodular. We will use this additional information to give a simpler and
more direct proof of the existence of v and l .

Before we start, let us introduce some notation. Let Pol be the subgroup of elements
of O.1; n/ Ë R1Cn whose linear part preserves a fixed lightlike direction. It has the form
PolDL.Pol/Ë R1Cn, where the linear partL.Pol/ is the group Simn�1 of similarities of Rn�1.
This is a semi-direct product L.Pol/ D .R � O.n � 1// Ë Rn�1, whose radical R Ë Rn�1 is
the group of affine homotheties of Rn�1. The linear part of Pol is equal to

L.Pol/ D

8̂<̂
:
0B@e

˛ ˇ> �
jˇ j2

2

0 A �Aˇ

0 0 e�˛

1CA
ˇ̌̌̌
ˇ̌̌ ˛ 2 R; A 2 O.n � 1/; ˇ 2 Rn�1

9>=>;:
Definition 2.1. (1) The group Pol´ ..R � O.n � 1// Ë Rn�1/ Ë R1Cn above will be

referred to as the polarized Poincaré group.
(2) The subgroup SPol´ .O.n � 1/ Ë Rn�1/ Ë RnC1 of elements of Pol whose linear

part preserves a lightlike vector will be referred to as the special polarized Poincaré group.

We introduce the following notation, which we will keep throughout this section:

� H ´ ¹diag.et ; In�1; e�t / j t 2 Rº,

� K ´ O.n � 1/,

� U ´ Rn�1 � L.Pol/, the unipotent radical of L.Pol/,

� T ´ RnC1, the translation part of Pol.

Then Pol D ..H �K/ Ë U/ Ë T .
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In the proof of Theorem 2.3, we will need the following fact on a 1-parameter subgroup
gt of Pol which has non-trivial projection to H . Let gt D htktut be its Jordan decomposition,
where the hyperbolic part ht , the elliptic part kt , the unipotent part ut are 1-parameter groups in
Pol. Up to conjugacy in Pol, we can assume that ht is inH , and since kt and ht commute, kt is
then a 1-parameter group in K. Define p´ Span.W;Z/, the timelike 2-plane in T D RnC1,
where ht acts by a hyperbolic matrix. Since U Ë RnC1 is normal, the unipotent part ut is
always there, and since ut and ht commute, it is contained in p? � RnC1.

Theorem 2.2. Up to a finite cover, any compact flat Lorentzian manifold M admits
a parallel vector field and a parallel field of lightlike directions.

The first part of Theorem 2.2 follows from Theorem 2.3 below (which is stronger since
we do not assume that L has a lattice).

Theorem 2.3. Let L be a unimodular solvable Lie subgroup of O.1; n/ Ë RnC1 acting
simply transitively on RnC1. Then L preserves some vector field on RnC1.

The following lemma will be used in the proof of Theorem 2.3.

Lemma 2.4 ([19, Propositions 4.2, 4.3]). Let S be a subgroup of O.n/ Ë Rn. Then S
acts simply transitively on Rn if and only if it is generated by pure translations E ´ S \Rn

and a graph �WE? ! O.E/ �E?, �.v/ D .kv; v/. In particular, the linear part of S fixes
some vector in Rn.

Proof of Theorem 2.3. Step 1. Existence of an invariant line. We know that L is solv-
able; hence L0 � O.1; n/ is also solvable. By Lie’s theorem, L0 preserves a line or a 2-plane. In
the first case, L0 even preserves a direction l since L0 is connected. If L0 preserves a 2-plane p,
and p is Lorentzian or degenerate, then it has two or one lightlike direction, which will be
L0-invariant. If p is spacelike, then we consider the L0-action on p? which is Lorentzian. We
repeat the process and surely arrive at either some 2-plane which is not spacelike, or at a line.
In all cases, L0 preserves a direction l .

Step 2. Existence of an invariant vector. If l is not lightlike, then L0 preserves a unit
vector on it. It then remains to consider the case where l is lightlike. If L is contained in SPol,
then L0 obviously preserves a lightlike vector. Henceforth, we assume that L is not contained
in SPol. Then (up to conjugacy in Pol) L contains a 1-parameter group gt D htktut , with ht

in H . The adjoint action of ht on the Lie algebra of Pol is as follows.

� Adht .W / D e�tW , Adht .Z/ D etZ, where p´ Span.W;Z/.

� Adht .X/ D etX for any X 2 u.

� Adht .Y / D Y for any Y 2 p?.

� Adht .B/ D B for any B 2 k.

We have that Adgt preserves l´ Lie.L/. Since htkt is the semi-simple part of the Jordan
decomposition of gt , Adhtkt also preserves l, which implies Adht .l/ D l. Moreover, since L
is unimodular, the adjoint action of ht restricted to l is unimodular. This gives restrictions on
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the possible eigenvectors of Adht inside l, and hence allows to have some precise information
on L, which we unroll as follows.

(1) p D Span.W;Z/ is contained in l. Indeed, L acts transitively on RnC1; in partic-
ular, L.0/ D RnC1. Hence there exists an element V 2 .h˚ k/ Ë u such that V CW is in
l. On the other hand, l decomposes into eigenspaces of Adht . So we can write V CW as
a linear combination of eigenvectors. Since V belongs to .h˚ k/ Ë u, where Adht has only
eigenvalues 1 and et ,W itself must belong to l. Then et is also an eigenvalue of Adht of multi-
plicity 1; hence �Z CX 2 l for some � 2 R andX 2 u. ButX is necessarily zero. Otherwise,
the action of the 1-parameter group in U Ë RnC1 generated by �Z CX on RnC1 would have
a fixed point, which contradicts the simple transitivity assumption on the L-action.

(2) L is contained in .H �K/ Ë T , i.e. has no element with non-trivial projection to U .
The only other eigenvalue of Adht is 1, and the eigenspace q is contained in .h˚ k/ Ë p? (p is
invariant by the adjoint action of H �K, hence also p?). This, together with the first point,
implies that l is contained in .h˚ k/ Ë RnC1, hence claim (2).

(3) L0 preserves a spacelike vector in p?. We consider the group

Q´ ¹q 2 L j htqh�t D qº;

whose Lie algebra is q � .h˚ k/ Ë p?. Let P � L be the connected subgroup with Lie alge-
bra p and P? Š Rn�1 the one with Lie algebra p?. Then L D Q Ë P . Since L acts simply
transitively on RnC1, Q must act simply transitively on p?. To verify this, it is sufficient
to show that Q acts transitively on p?. Take x 2 p?. Then there exists an element pq 2 L,
p 2 P , q 2 Q, such that pq.0/ D x. Since q.0/ and x are in p?, p is the identity map.
Hence Q acts transitively on p?. Since the action of H on p? is trivial, the projection of Q to
O.n � 1/ Ë P? also acts simply transitively on p? Š Rn�1, which implies, using Lemma 2.4,
that the linear part of Q fixes some vector in p? (necessarily spacelike). However, the lin-
ear part of L coincides with the linear part of Q, i.e. there is a spacelike vector in p? fixed
by L0.

Proof of Theorem 2.2. Let M nC1 be a compact, connected flat Lorentzian manifold.
By Theorem 1.3, there is a finite index subgroup � 0 of � ´ �1.M/ that has a syndetic hull
L�O.1;n/Ë RnC1 which acts simply transitively on the universal cover ofM nC1, i.e. a finite
cover ofM is isometric to � 0nL. The existence of a parallel vector field on the finite cover � 0nL
follows from Theorem 2.3.

To prove the existence of a parallel field of lightlike directions, observe first that, when
there is a timelike vector which is L0-invariant, the claim is a direct consequence of Bieber-
bach’s theorem. Indeed, up to finite index, � is contained in the translation part RnC1 of the
isometry group; hence any constant vector field of Minkn;1 induces a parallel vector field on
the quotient. To conclude, we proceed as in Step 1 of the previous proof. If the linear part L0

preserves a lightlike or timelike line or plane, then it preserves a lightlike direction, up to taking
a finite cover. Otherwise, it preserves a maximal spacelike subspace, but repeating the process
again on its orthogonal gives an invariant line or plane, which is lightlike or timelike.

Remark 2.5. We proved that any compact flat Lorentzian manifold M D �nMink ad-
mits a parallel vector field. When the latter is lightlike, M is a flat plane wave and � preserves
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a lightlike vector field. So compact flat plane waves are the compact quotients of Mink with
fundamental group contained in SPol.

In the following, we give examples of tori with a non-equicontinuous spacelike parallel
flow (see Theorem 1.3), which is in fact Anosov in dimension 3 and partially hyperbolic in
higher dimension. These examples admit a lightlike parallel line field, but neither lightlike (nor
timelike) parallel vector field.

Example 2.6. Let q D †aijxixj be a Lorentzian quadratic form on Rn. Consider
the flat Lorentzian torus .Tn D Rn=Zn; q/. Its isometry group is generated by translations
together with linear transformations OZ.q/ D O.q/ \ GL.n;Z/, where O.q/ is the orthogonal
group of q. Let h 2 OZ.q/ be a partially hyperbolic matrix, i.e. there exists a 2-dimensional h-
invariant space of signature .1; 1/, where the restriction of h has eigenvalues different from˙1.
Consider the suspension M of h, that is, Tn � Œ0; 1�, where .x; 1/ is identified with .h.x/; 0/.
Endow it with the product Lorentzian (flat) metric q C dt2. Then 𝜕𝜕t is a spacelike parallel
vector field. When n D 2, the 𝜕𝜕t -flow is Anosov. For n � 3, the 𝜕𝜕t -flow is partially hyperbolic.
In both cases, the 𝜕𝜕t -flow is non-equicontinuous.

3. Preliminary facts on the isometry group

Plane waves (and Brinkmann spacetimes in general) admit locally what is called Brink-
mann coordinates, in which the metric has a particular form. When such coordinates exist
globally on J �RnC1, for an open interval J , we refer to it as a “plane wave in standard
form”. It is known that the Lie algebra of Killing fields of an indecomposable plane wave in
standard form contains the Heisenberg algebra heis2nC1, which acts locally transitively on
¹uº �RnC1 for all u 2 J . In the homogeneous case, Blau and O’Loughlin [5] determined
the Lie algebra of Killing fields of a plane wave in standard form by analysis of the Killing
equation, and classified plane waves in standard form that are homogeneous. Note, however,
that they only consider infinitesimal isometries. In [21, Proposition 5.1], we show that, for
(general) simply connected non-flat homogeneous plane waves, the infinitesimal action of the
Heisenberg algebra integrates to an isometric action of the Heisenberg group. Moreover, we
compute the identity component of their isometry group. It turns out [21] that these spaces
coincide with those found in [5], i.e. these spaces admit global Brinkmann coordinates (see
[21, Section 6]).

Let .X; V / be a non-flat simply connected homogeneous plane wave of dimension nC 2.
In [21, Theorem 1.5], it is shown that the identity component of the isometry group of a simply
connected non-flat homogeneous plane wave of dimension nC 2 has the form

G� ´ .R �K/ Ë� Heis2nC1:

This result holds independently of the indecomposability of the plane wave. Here,K is a closed
subgroup of SO.n/ and � is a morphism �WR �K ! Aut.Heis/, where � restricted to R is
given by �.t/ D etL, L 2 Der.heis/, and �.k/ is the identity on the center of Heis and equals
the standard action of k on AC and A� for all k 2 K.
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ThenX identifies with a quotientX� ´ G�=I , with the isotropy given by I ´ K Ë AC.
Conversely, the �-actions for which G� preserves a Lorentzian metric on G�=I are character-
ized in [21, Propositions 5.6, 5.8], and in this case, the Lorentzian space is necessarily a plane
wave. Accordingly, throughout this article, we will refer to a homogeneous plane wave as
a homogeneous space of the form X�.

In [5], non-flat homogeneous plane waves come in two families. Using the notation intro-
duced above, the two families differ in that L acts trivially on the center of heis in one case
and non-trivially in the other. In other words, the center of G� is non-trivial in the first case and
trivial in the second. The homogeneous plane waves of the first family are complete; those of
the second family are incomplete.

Fact 3.1. The parallel vector field V is a generator of the center of heis.

Proof. Let z be a generator of the center of heis. The Lorentzian scalar product on
To.G�=I / is Adh-invariant for any h 2 AC. Consider a non-trivial h 2 AC. The action of Adh
on g�=i is a unipotent matrix for which z is the eigenvector of eigenvalue 1. This implies that
z is necessarily lightlike. Moreover, Heis contains an abelian subgroup (whose Lie algebra
contains z) acting transitively on the leaves of V ?. So, by [15, Theorem 3], the vector field on
G�=I induced by the action of z is parallel. Now, when X is non-flat, it has a unique parallel
lightlike vector field, which is then the one induced by z.

Let us now make the following observation. Let G D Isom.X�/ denote the full isometry
group of a non-flat simply connected homogeneous plane wave X�. The identity component of
G is Isomo.X�/ D G�. We have that G� has finite index in G (see [21, Proposition 5.1]). So,
for a compact .G;X�/-manifold, there is a finite cover which is a .G�; X�/-manifold. Hence,
when studying compact quotients, one restricts to .G�; X�/-manifolds.

4. Discrete subgroups

In Sections 4–7, we considerG� to be the connected component of the isometry group of
a simply connected non-flat homogeneous plane wave. For notation to be lighter, the Heisen-
berg group Heis2nC1 will be denoted simply by Heis. Although we introduced Heis as a linear
group, we will also use the common realization of Heis as an extension of Cn by R and we will
write Heis Š R �Cn. Under this identification, we have AC Š Rn D ¹0º �Rn � R �Cn

and A� Š Rn D ¹0º � .iR/n � R �Cn.
Let G� D .R �K/ Ë� Heis, I D K Ë AC, and X� ´ G�=I . Unless otherwise stated,

all over the paper, R acts on Heis via a morphism �WR! Aut.Heis/, with

�.t/ D etL; L 2 Der.heis/;

and K acts on Heis, trivially on the center, and by standard action on AC and A�. We can
suppose (up to adding ad.h/ for a suitable h 2 heis) that L preserves aC ˚ a� � heis, where
a˙ D Lie.A˙/.

In this section, we generalize results from [23, Section 3] to the case where � is not
semi-simple. We will use a different, more conceptual approach, providing the general case
directly.
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Notation. Define the projection morphisms

pWG� ! R; pK WG� ! K; and r WG� ! R �K:

Observe that G� is a connected amenable Lie group, i.e. a Lie group having a normal
solvable subgroup with compact quotient. Hence any discrete subgroup � of G� is virtu-
ally polycyclic (this follows from general properties of connected amenable Lie groups (see
[29, Lemma 2.2]). Moreover, it is well known that polycyclic groups are finitely generated;
therefore, so is any discrete subgroup of G�. The latter property will be used in the proof of the
next theorem.

Terminology. Let � be a discrete subgroup of G�. We say that � is straight if p.�/ is
discrete. Otherwise, it is non-straight.

Theorem 4.1. Let � be a discrete subgroup of G�.

(1) If � is non-straight, then it is virtually nilpotent.

(2) If � is straight, then either � Š Z Ë �0 or � D �0, where �0 � K Ë Heis is virtually
nilpotent. If, in addition, � acts properly cocompactly on X�, then we are in the case
� Š Z Ë �0. Moreover, the subgroup �0 has a finite projection to K. In particular, � is
virtually a nilpotent extension of the integers Z by a discrete subgroup of Heis.

First we state the following two lemmas and fact.

Lemma 4.2 (Zassenhaus Lemma [32, Theorem 4.1.6], [31, Proposition 8.16]). Let G
be any Lie group. Then there exists a neighborhood U of the identity such that any discrete
subgroup � generated by � \ U is nilpotent. We call such a neighborhood a Zassenhaus
neighborhood.

Lemma 4.3. Let ƒ be a subgroup of a Lie group G. Define ƒ0´ ƒ \ƒ
o
, where ƒ

o

denotes the identity component of the (topological) closure ofƒ. Then the subgroupƒ0 can be
generated by ƒ0 \ V for any V neighborhood of identity in ƒ

o
.

Proof. Let V be a neighborhood of the identity in ƒ
o
. Define ƒ1´ hƒ0 \ V i. Then

ƒ1 is dense in ƒ
o

since V � ƒ1 � ƒ0 D ƒ
o

and ƒ
o

is connected. Now, let �0 2 ƒ0; by
density of ƒ1, there is �1 such that �0��11 2 V .

The following fact will be used to prove the second part of point (2).

Fact 4.4 (Hirsch, Goldman, Fried [13, Theorem A]). Let M be a compact affine mani-
fold with nilpotent holonomy group. Then completeness of M in the sense of .Aff.Rn/;Rn/-
structure is equivalent to the linear holonomy being unipotent.

Proof of Theorem 4.1. (1) The restriction of the projection R �K ! R to r.�/ is a Lie
group homomorphism r.�/! p.�/ D R. It is surjective since K is compact. Thus we obtain
a fibration

r.�/ \K ,! r.�/! R:
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Its fiber has only finitely many components since it is compact. Now we see from the long
exact homotopy sequence of the fibration that also �0.r.�// is finite. This implies that

ƒ0´ r.�/
o
\ r.�/

has finite index in r.�/. Consequently, also �0´ r�1.ƒ0/ \ � has finite index in � . Hence it
is sufficient to show that �0 is nilpotent. Since �0 has finite index in � , it is also finitely gener-
ated. We choose U1 � R �K and U2 � Heis such that U1 � U2 is a Zassenhaus neighborhood
in G�. The above lemma applied to ƒ D r.�/ yields that ƒ0 is generated by ƒ0 \ U1. Let rh
be one of finitely many generators of �0, where r 2R�K and h 2 Heis. Then r D �1 � : : : � �k
for �j 2ƒ0 \U1, j D 1; : : : ; k. Choose elements j 2 �0 such that r.j /D �j , j D 1; : : : ; k.
Then

rh D �1 � : : : � �kh D 1 � : : : � kh
0

for some h0 2 �0 \ Heis since Heis is normal in G�. Thus we may replace rh by 1; : : : ; k
and h0. Doing so for every generator of �0, we obtain a set of generators ¹rihiºmiD1, where
ri 2 U1 and hi 2 Heis. Let A be a K-invariant complement of the center in Heis. We consider
the automorphism ‰ of G� which is the identity on R �K, multiplication by a 2 R>0 on A
and multiplication by a2 on the center of Heis. Choose a so small that ‰.hi / 2 U2 for all
i D 1; : : : ; m. Then ‰.�0/ D hri‰.hi /; i D 1; : : : ; mi is generated by elements of U1 � U2;
thus it is nilpotent. Consequently, also �0 is nilpotent.

(2) If the projection of � to the R-factor is discrete, it is either trivial or isomorphic to Z,
and in both cases, the exact sequence 1! � \ .K Ë Heis/! � ! p.�/! 1 splits. Hence
� is isomorphic to p.�/ Ë �0 for �0´ � \ .K Ë Heis/. The group �0 is virtually nilpotent.
To see this, one can proceed as in the proof of (1) replacing r by the projection pK to K. The
closure pK.�0/ has finitely many connected components. Thusƒ0´ pK.�0/

o
\ pK.�0/ has

finite index in pK.�0/ and �0´ p�1K .ƒ0/ \ �0 has finite index in �0. Now we use a Zassen-
haus neighborhood U1 � U2, U1 � K, U2 � Heis to see that �0 is nilpotent. To complete the
proof of (2), we will show that �0 \ Heis has finite index in �0. Since K Ë Heis is a lin-
ear group, by Selberg’s lemma, �0 contains a torsion-free subgroup � 00 of finite index. The
leaf � 00nK Ë Heis=K Ë AC is a compact manifold having a complete affine structure with nil-
potent holonomy (Remark 4.6). It follows from Fact 4.4 that the linear part of � 00 is unipotent,
meaning that � 00 has a trivial K-part. Thus pK.�0/ is finite. Let �1´ �0 \ Heis; since Heis
is preserved by the Z-action, we can define Z Ë �1 which is a nilpotent extension of Z and
clearly of a finite index in � .

Remark 4.5. The first part of Theorem 4.1 (2) can also be deduced from Auslander’s
theorem [2, Theorem 3]. Note that the formulation in Auslander’s paper is slightly incorrect.

Remark 4.6. Let � be a torsion-free discrete subgroup of G� which acts properly and
cocompactly on X�. Then the quotient space �nX� is a compact manifold foliated by a codi-
mension 1 foliation, given by the K Ë Heis-action. Since the K Ë Heis-foliation is defined
by a closed 1-form, the leaves are either all closed or all dense, and they are closed exactly
when p.�/ is discrete. In the straight case, the K Ë Heis-leaves are complete compact affine
manifolds, modeled on the so-called affine unimodular lightlike geometry (see Definition 1.7).
Namely, they have a .Lu.n/;RnC1/-structure.
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Remark 4.7 (Weakly plane waves). Let .X; V / be a simply connected, non-flat homo-
geneous plane wave. The parallel lightlike vector field V is generated by the center of heis (see
Fact 3.1). Since G� preserves the center of Heis, any quotient M of X by a discrete subgroup
of G� inherits a parallel lightlike line field l . If V were timelike or spacelike, then by passing
to a time-orientable cover of M , one would obtain a global parallel vector field spanning l by
taking a constant-length section that is compatible with the orientation. But here, V is lightlike,
so there is no way to choose a global parallel section a priori. In this situation, time orientation
does not help to patch together the existing local parallel sections.

Let us consider this in more detail. Recall that there are two families of simply con-
nected non-flat homogeneous plane waves, one in which the center of Heis is centralized by
G�, and one in which the R-factor acts non-trivially on the center of Heis. Therefore, if we
take a quotient M of a plane wave from the first family, then V descends to a lightlike parallel
vector field on M since in this case V is preserved by any discrete subgroup of G�. Thus M is
also a plane wave. However, in the second family, if the discrete subgroup has non-trivial pro-
jection to the R-factor, then it contains elements sending V to �V , with � ¤ ˙1. Therefore,
only the lightlike parallel line field RV descends to the quotient. Such quotients are weakly
plane waves in the sense of Remark 1.4. The second family is contained in the more gen-
eral family of pp-waves (not necessarily homogeneous) described in [3, Section 6.4]. There
it is shown that all these pp-waves admit (non-compact) quotients which are time-orientable
and admit a parallel lightlike line field but no parallel lightlike vector field. The question
now is whether such a situation can also arise with a compact quotient. If the quotient of
a plane wave in the second family is compact, it possesses a lightlike parallel line field but
no lightlike parallel vector field. Indeed, since the K Ë Heis-leaves have codimension 1 in X ,
the compactness of the quotient implies that the fundamental group has non-trivial projection
to the R-factor. Such compact quotients indeed exist (see [1, Theorem 1.4] for examples in
dimension 3).

5. Standardness and semi-standardness

5.1. Existence of a syndetic hull.

Definition 5.1 (Syndetic hull). Let G be a Lie group and let � be a discrete subgroup.
A syndetic hull of � in G is a closed connected Lie subgroup N � G containing � such that
�nN is compact.

Definition 5.2 (Z-syndetic hull). A Z-syndetic hull of � in G is a closed Lie subgroup
N � G having an infinite cyclic component group such that � � N and �nN is compact.

So far we proved, using the existence of Zassenhaus neighborhoods, that up to finite
index, any discrete subgroup of G� is either virtually nilpotent, or is an extension of Z by
a virtually nilpotent group. The same proofs, using now what we call here “strong Zassenhaus
neighborhood” instead of a Zassenhaus neighborhood, lead to a stronger result, namely, the
existence of a nilpotent syndetic hull (in the non-straight case), or of a Z-syndetic hull with
a nilpotent identity component (in the straight case) for a finite index subgroup. Here, we are
especially interested in the situation where the discrete group acts properly and cocompactly
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on X�. We will see that, for such a group in the straight case, the identity component of the
Z-syndetic hull is contained in Heis.

Fact 5.3 ([32, Theorem 4.1.7]). Let G be a Lie group. There exists a neighborhood U
of 1 inG such that any discrete subgroup � ofG generated by U \ � is a cocompact subgroup
of a connected, closed, nilpotent subgroup N of G.

We call such an identity neighborhood U a strong Zassenhaus neighborhood.

Proposition 5.4. Let � be a discrete subgroup of G� ´ .R �K/ Ë� Heis. If � is non-
straight, then up to finite index, � has a nilpotent syndetic hullN . Furthermore, � acts properly
and cocompactly on X� D G�=I if and only if N acts properly and cocompactly on X�.

Proposition 5.5. Let � D hyi Ë �0 be a straight discrete subgroup of

G� ´ .R �K/ Ë� Heis;

acting properly and cocompactly on X� D G�=I . Then, up to finite index, �0 has a nilpotent
syndetic hull N0 contained in Heis, which is y -invariant.

Proof. The same proof as in Theorem 4.1 yields that � (resp. �0) is generated by
a strongly Zassenhaus neighborhood in the non-straight (resp. straight) case. The claim then
follows from Fact 5.3. In the straight case, up to finite index, we have � D hyi Ë �1, with �1
a subgroup of Heis (proof of Theorem 4.1 (2)). The Malcev closure of �1 in Heis is a syndetic
hull for �1 which is y -invariant.

5.2. Transitivity of cocompact actions of Lie groups. Let � be a discrete subgroup of
G� acting properly on X� Š RnC2. The aim of this section is to prove that the syndetic hull N
(resp. N0) of � (resp. �0) obtained in the previous section acts transitively on X� (resp. on an
F -leaf).

One could actually ask a more general question: letting G be a Lie group acting properly
cocompactly on a contractible manifold X , does G act transitively? In Proposition A.1, we
prove that the action is transitive if we further assume that G has a torsion-free uniform lattice.
In this subsection, we do not assume that G has a lattice, and prove transitivity when G is
a connected nilpotent Lie subgroup of G�.

Proposition 5.6. Let N be a connected nilpotent Lie subgroup of G ´ K Ë Heis, act-
ing cocompactly on the homogeneous space Y ´ .K Ë Heis/=.K Ë AC/. Then

� N acts transitively;

� N is contained in Heis and contains the center of Heisenberg.

Proof. The groupN acts also cocompactly on Y=Z. Let p0WK Ë Heis! A� be defined
by z.aC C a�/k 7! a�, where k 2 K, a˙ 2 A˙, and z is in the center of Heis. Then p0

induces a bijection from Y=Z to A�. Under this identification, n 2 N acts on A� by its
projection to K Ë A�. Hence the projection yN of N to K Ë A� � O.n/ Ë Rn acts cocom-
pactly on A� Š Rn. The group yK ´ pK. yN/ � O.n/ acts trivially on A0´ yN \ A� since
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yN is nilpotent. Let A1 be the orthogonal complement of A0 in A� and define �W yK ! A1
by .k; �.k// 2 yN . Then K 0´ graph.�/ is a subgroup of yN . Moreover, yN D K 0 � A0. Since
K 0 is compact, A0 acts cocompactly on A�. This implies A0 D A� and yK D ¹1º. Thus N is
contained in Heis and its projection to A� is surjective. If N \ AC ¤ ¹0º, then N contains
the center; hence its action on Y is transitive. Otherwise, i.e. if N \ AC D ¹0º, then N acts
freely properly on Y , defining a fibration N ' Rk ! Y ' RnC1 ! NnY . It follows from
the long exact sequence of homotopy groups that all the homotopy groups of the compact
manifold NnY are trivial. This implies that it is a point; hence N acts transitively on Y and
has dimension nC 1. We claim that N contains the center. Indeed, if N is not abelian, then it
contains ŒN;N � D Z, the center of Heis. Otherwise, N is an abelian subgroup of dimension
nC 1 of Heis. It necessarily contains the center, since an abelian subgroup of Heis has maximal
dimension nC 1.

Lemma 5.7. Let N be a connected Lie subgroup of G ´ .R �K/ Ë Heis acting co-
compactly on the homogeneous space

X ´ .R �K/ Ë Heis=K Ë AC:

Then N0´ N \ .K Ë Heis/ acts cocompactly on each .K Ë Heis/-leaf.

Proof. Let W � X be a compact set such that N �W D X . It is sufficient to consider
the (K Ë Heis)-leaf F0´ p�1.0/. Since N is connected and acts cocompactly, it contains
a one-parameter group .s/ such that .p ı /.s/ D s. Since p.W / is compact, we may assume
p.W / � Œ�a; a�. Now take q 2 F0. We can choose an element n 2 N such that nq 2 W . Note
that p.n/ 2 Œ�a; a�. Then n0´ .p.n//�1n 2 N0 and

n0q 2 ..p.n//
�1
�W / \ F0 � W0´ .Œ�a; a�/ �W \ F0I

thus N0 �W0 D F0. Moreover, F0 is compact since Œ�a; a� and W are compact and multipli-
cation is continuous.

Proposition 5.8. LetN be a connected nilpotent Lie subgroup ofG ´ .R �K/ Ë Heis
acting cocompactly on the homogeneous space X ´ .R �K/ Ë Heis=K Ë AC. Then N acts
transitively. Moreover, N0´ N \ .K Ë Heis/ is contained in Heis and contains the center of
Heisenberg.

Proof. This is a straightforward consequence of Proposition 5.6 and Lemma 5.7.

5.3. Standardness of compact quotients.

Definition 5.9 (Standard quotient). Let X D G=I be a homogeneous space, and let
M D �nX be a compact quotient ofX by some discrete subgroup � ofG, acting properly and
freely on X . We say that the quotient manifold M D �nX (or �) is standard if (up to finite
index) � is contained in some connected Lie subgroup N of G acting properly on X .

If �nX is standard, then N necessarily acts cocompactly on X and � is a uniform lattice
in N . In particular, N is closed in G. Hence the quotient �nX is standard if and only if �
admits a syndetic hull in G.
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Definition 5.10 (Semi-standard quotient). Let X D G=I be a homogeneous space, and
M D �nX a compact quotient of X by some discrete subgroup � of G, acting properly and
freely on X . We say that the quotient manifold M D �nX (or �) is semi-standard if there
exists a normal Lie subgroup G0 of G containing I such that

� � \G0 is standard for G0=I ,

� the projection of � to G=G0 is a lattice.

Let � be a discrete subgroup of G� acting properly cocompactly on X�. The following
two theorems are corollaries of Sections 5.1 and 5.2.

Theorem 5.11 (Non-straight case). Any non-straight compact quotient of X� is stan-
dard. More precisely, let � be a non-straight discrete subgroup of G� acting properly and
cocompactly onX�. Then, up to finite index, � has a nilpotent syndetic hullN inG�. Moreover,

� N acts simply transitively on X�,

� N D R ËN0, where R is a 1-parameter group of N with non-trivial projection to the
R-factor in G�, and N0´ N \ .K Ë Heis/. Moreover, N0 � Heis, and it contains the
center of Heisenberg.

Theorem 5.12 (Straight case). Any straight compact quotient of X� is semi-standard.
More precisely, let � be a straight discrete subgroup of G� acting properly and cocompactly
onX� (by Theorem 4.1 (2), up to finite index, � D Z Ë �0, with �0´ � \ Heis). Then �0 has
a syndetic hull N0 in Heis. Moreover, N0 acts transitively on the Heis-leaves and contains the
center of Heisenberg.

We want to study under which conditions a straight compact quotient is even standard.
We proceed similarly to [23, Proposition 8.18]. Let us first recall the following notation. The
Heisenberg group is written as Heis D Z � A, where Z D R, and A´ Cn D AC ˚ A�. Any
connected subgroup N0 of Heis containing the center can be written as N0 D Z � A0 for a sub-
space A0 � A. Let .R˚ k/ Ë heis be the Lie algebra of G�. As described in Section 3, we
have �.t/ D etL for some derivation L of heis that preserves A.

Proposition 5.13. Let � D hyi Ë �0, �0 � Heis, be a straight discrete subgroup of G�
acting properly and cocompactly on X�. Let N0 D Z � A0 � Heis be the Malcev closure of �0
in Heis. Then �nX� is standard if and only if there are elements

.1; �/ 2 R � k; X 2 n0´ Lie.N0/; yt 2 Rn¹0º; and yn 2 N0

such that y D yn exp.yt .1; �;X// and A0 is invariant under LC �.

Proof. The “if” part is clear. We show the “only if” part. Let S be a syndetic hull
of � . The subgroup r.S/ � R �K is connected. SinceK is compact, there is a one-parameter
subgroup c.t/, t 2 R, of r.S/ containing r.y/. Let � 2 k be such that c.t/ D .t; et�/ and
let yt 2 R be such that c.yt / D r.y/. Let zN0 be the unique connected subgroup of Heis for
which .S \ Heis/n zN0 is compact; see [31, Proposition 2.5]. Because S \ Heis acts properly
on Heis=AC, also zN0 acts properly on Heis=AC. Since �0 � S \ Heis � zN0 and zN0 is nil-
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potent, �0 admits a unique Malcev hull in zN0, which is also a Malcev hull in Heis. On the other
hand, N0 is a Malcev hull of �0 in Heis, which implies N0 � zN0. Moreover, zN0 cannot be
larger than N0. Indeed, A0 C AC D A since N0 acts transitively on the Heisenberg leaves. On
the other hand, we have zN0 D Z � zA, where A0 � zA � A, and zN0 acts properly on Heis=AC.
In particular, zA \ AC D 0; thus A0 D zA. We obtain N0 D zN0. Since the subgroup S \ Heis
is normal in S , also N0 D zN0 is normalized by S . Consequently, A0 is invariant under LC �.
Since c.t/ is contained in r.S/, the vector .1; �/ is in the projection of the Lie algebra of
r.S/ ËN0 to R � k. Choose X 2 n0 such that .1; �;X/ is in the Lie algebra of r.S/ ËN0.
Then the projection of exp.yt .1; �;X// equals r.y/. Since y belongs to S � r.S/ ËN0, it
differs from exp.yt .1; �;X// by an element of N0.

As a consequence of Proposition 5.13, we obtain that, in the standard case, there is
a syndetic hull which is an extension of R by a subgroup of Heis.

Corollary 5.14. Let � D hyi Ë �0, �0 � Heis, be a straight discrete subgroup of G�
acting properly and cocompactly onX�. LetN0 be the Malcev closure of �0 in Heis. If �nX� is
standard, then there is a syndetic hull of � inG� of the form R ËN0, where R is a 1-parameter
group of R �K � G� with non-trivial projection to the R-factor.

Proof. The 1-parameter group is given by c.t/ in the proof of the previous proposition.

6. Non-standard phenomena

In this section, we try to understand the non-standard compact quotients �nX� of plane
waves X� D G�=I . In this case, the fundamental group � is necessarily straight: in Exam-
ple 6.3, we give an explicit example of such a situation. The main motivation here is to see
whether � is standard up to embedding G� in some bigger group.

Let � be a straight discrete subgroup ofG� acting properly and cocompactly onX�; then,
up to finite index, � D hyi Ë �0, with �0´ � \ Heis. Let N0 be the Malcev closure of �0 in
Heis. There are two cases.

Case 1: y is not contained in a 1-parameter group of G�. Non-existence of a 1-
parameter group containing y does not imply non-standardness. This is already suggested by
Proposition 5.13. Indeed, it is proved there that, in the standard case, n�10 y is contained in a 1-
parameter group of G� for some n0 2 N0, but not a priori y . Here, we give an example where
this occurs.

Example 6.1. Let eEuc2´ R Ë R2, where R acts by rotations on R2. Let

G� D .R � SO.2// Ë Heis5

be the special polarized Poincaré group in dimension 4 (recall that this is the subgroup of
Isom.Mink1;3/ preserving a lightlike vector). Let c.t/ D .t; eit / be a 1-parameter group in
R � SO.2/. Since it preserves A� ' R2, one can consider S1´ c.t/ Ë A�, which is isomor-
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phic to eEuc2. Define S ´ S1 �R, where R is the center of Heis5. Clearly, S acts properly
cocompactly on X� D Mink1;3. Moreover, S contains straight lattices which are not contained
in the image of the exponential map. Namely, take any lattice �1 in the abelian subgroup
2�Z �R2 �eEuc2 which does not intersect the 2�Z-factor, and consider � D �1 � Z.

Case 2: y is contained in a 1-parameter group of G�. When � is non-standard, we
ask the following question.

Question. Can we find a compact group C acting on Heis and construct an embedding

G ,! yG ´ .R � C �K/ Ë Heis;

and a G-equivariant embedding X ,! yX D yG= yI into a homogeneous space, such that the
quotient �n yX is standard? Here, yI ´ .C 0 �K/ Ë AC, where C 0 is a closed subgroup of C
preserving AC. In particular, we obtain the semi-standard quotient �nX as a submanifold of
the standard quotient �n yX .

The answer to this question is provided in the following theorem.

Theorem 6.2. Let

G� D .R �K/ Ë� Heis; I D K Ë AC; and X� D G�=I:

Let � D hyi Ë �0 be a non-standard straight discrete subgroup acting properly and cocom-
pactly on X�. If y is contained in a 1-parameter group, there is a yG-homogeneous space yX ,
which is a torus bundle over X�, such that � lifts to a standard discrete subgroup of yG.

In order to explain the construction of yX , let us look first at the following non-standard
quotient of a Cahen–Wallach space.

Example 6.3 (A non-standard example). LetK ´ SO.2/ act on Heis5 D R �C2 triv-
ially on the center and by the standard representation on AC and A�. Furthermore, let R
act on Heis5 by t � .v; z1; z2/ D .v; eitz1; eitz2/ and consider G� D .R �K/ Ë� Heis5. Take
˛ 2 R� and define a three-dimensional subgroup N ´ R � A0, where

A0´ SpanR¹c1´ .1; ˛i/; c2´ .�˛i; 1/º � Heis5:

ThenN acts properly onX� D G�=.K Ë AC/ and cocompactly on the Heis-leaves. Take a lat-
tice ƒ in it and define � ´ hyi �ƒ, with y D .2�; 1; 0/. Then � is a discrete subgroup of
G� acting properly and cocompactly on X�. Indeed, by [23, Proposition 4.8], it suffices to
show that eitA0 \ AC D ¹0º for all t 2 R. Since AC D R2, this is satisfied if and only if
the linear equation =.r2eitc1 C r2eitc2/ D 0 for r1; r2 2 R admits only the trivial solution.
Thus the assertion is equivalent to det.=.eitc1; eitc2// D 1C .˛2 � 1/ cos2 t 6D 0 for all t ,
which is obviously satisfied. We want to show that it is non-standard for ˛ ¤ ˙1. By Propo-
sition 5.13, it suffices to show that A0 is not invariant under LC � for any � 2 k. Since LjA
equals multiplication by i and K D SO.2/ preserves A0, the condition .LC �/A0 � A0 would
give SpanR¹c1; c2º D SpanR¹ic1; ic2º, which implies ˛ D ˙1.
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How to make Example 6.3 standard. If one defines yG ´ .R � S1 � SO.2// Ë Heis5,
where R acts like before and S1 acts like R= ker �, then the diagonal 1-parameter group
D´ .t; e�it / in R � S1 acts trivially on Heis5, hence preserves N . The new homogeneous
space yX D yG=.SO.2/ Ë AC/ is a plane wave which is an S1-bundle over X�. We have a natu-
ral embedding by a diagonal morphism map d WG ! yG, d.t; k; h/ D .t; 0; k; h/, which induces
an embedding X ! yX , such that b� ´ d.�/ is standard in yG. Its syndetic hull D �N in yG
does not act transitively on yX .

Some comments.

(1) The compact S1-factor added here does not preserve AC; this is why it cannot be added
to the isotropy. So the dimension here is increased.

(2) In this example, R acts through an elliptic matrix, but in general, there may be a hyper-
bolic and a unipotent part. The problem is formulated in the sequel for general homoge-
neous plane waves.

Modifying the group to have standard quotients. Let

G� D .R �K/ Ë� Heis; I D K Ë AC; and X� D G�=I:

Let � D hyi Ë �0 be a non-standard discrete subgroup acting properly and cocompactly onX�.
Assume that y is contained in some 1-parameter group g.t/ ofG�. We identify the image

of � with a subgroup of Sp2n.R/ and consider the Jordan decomposition

l.t/´ �.r.g.t/// D d.t/ ı u.t/;

where d.t/ is the semi-simple part and u.t/ the unipotent part. Write also d.t/ D e.t/ ı h.t/,
where e.t/ is the elliptic part (with complex eigenvalues) and h.t/ the hyperbolic part (with
real eigenvalues).

Lemma 6.4. Suppose that l.t/ is a 1-parameter group in Sp2n.R/ � Aut.Heis/, and let
l.t/ D e.t/h.t/u.t/ be as above. Assume that l.1/ preserves a subgroup N of Heis. Then h.t/
and u.t/ preserve N for any t .

Proof. It follows from elementary linear algebra that l.1/ preserves N if and only if
e.1/, h.1/, and u.1/ do. Moreover, if h.1/ preserves N , then h.t/ preserves N for any t .
Similarly, if u.1/ preserves N , then u.t/ preserves N for any t .

Let N be the Malcev closure of �0 in Heis. Then �.y/ D l.1/ preserves �0, hence
also N . The elliptic part e.t/ of l.t/ is a 1-parameter subgroup of Aut.Heis/, whose closure
is a torus Td in Aut.Heis/. It follows from Lemma 6.4 above that the 1-parameter group
D´ .t; e.t/�1/ in R � Td preserves N . As in the previous example, one can add the Td -
factor to the group and define yG D .R � Td �K/ Ë Heis. Define a new homogeneous space
yX D yG= yI , where the isotropy is given by yI D .C �K/ Ë AC, with C any compact subgroup

of Td preserving AC. We have a natural injective morphism

d WG� ! yG; d.t; k; h/ D .t; 0; k; h/

inducing an embedding Nd WX� ! yX . Then b� ´ d.�/ is standard in yG, and D ËN (note that
the D-action on N here is generically non-trivial) is a syndetic hull of y� in yG.



Hanounah, Kath, Mehidi and Zeghib, Topology and dynamics of compact plane waves 21

In general, one cannot expect that the extension yX admits a yG-invariant pseudo-Riemann-
ian metric, even in the case yI D I D K Ë AC. Let us take a closer look at the latter situation.
The following proposition characterizes the spaces yX that are indeed extensions in a geometric
sense.

Proposition 6.5. The extension yX admits a left yG-invariant pseudo-Riemannian metric
if and only if the normalizer of aC ˚ z has codimension one in yg. In the latter case, yX admits
a Lorentzian metric such that Nd WX� ,! yX is an isometric embedding.

Proof. Denote by p the projection yg! q´ yg=i. For x 2 yg, we abbreviate p.x/ as Nx.
The adjoint representation of i induces a representation ' of i on q. Recall that yG preserves
a pseudo-Riemannian metric on yG=I if and only if q admits a '-invariant scalar product h.
The Lorentzian metric on X� induces a '-invariant scalar product h � ; � i on p.g�/. Fix some
0 ¤ z 2 z. Then hNz; Nzi D h'a.a0/; Nzi D �ha0; 'a. Nz/i D 0 for suitable a 2 aC, a0 2 a�. Next,
let a0 2 a� and choose a 2 aC such that Œa; a0� D z. Then ha0; Nzi D ha0; 'a.a0/i D 0. Thus
hp.a� ˚ z/; Nzi D 0. Now, take 0 6D a 2 aC, and choose a0 2 a� such that Œa; a0� D z for some
fixed 0 6D z 2 z. Then h'a.L/; a0i D �hL; 'a.a0/i D hL; Nzi 6D 0. Thus a 7! 'a.L/ induces a
bijective map from aC to p.a� ˚ z/=p.z/, since hp.a�/; Nzi D 0. In particular,

(6.1) 'aC.L/ � p.a
�/ mod p.z/:

Suppose that h exists. The same reasoning as above gives h.p.a� ˚ z/; Nz/ D 0. Assume that
h.L; Nz/ D 0. Using (6.1) and taking into account the '-invariance of h, we obtain p.a�/ ? q,
a contradiction. Hence h.L; Nz/ 6D 0. Now, consider u 2 yg, 0 ¤ a 2 aC, and 0 ¤ a0 2 a�. We
write Œa; a0� D !.a; a0/z. Then

h.'a.u/; a
0/ D �h.u; 'a.a0// D �!.a; a

0/h.u; z/:

Hence

(6.2) h.'a.u/; a0/ D �!.a; a
0/h.u; z/:

Set u D L in (6.2). Since (6.1) holds, a0? \ p.a�/ has codimension one in p.a�/. Thus h
is non-degenerate on p.a�/. Then (6.2) implies that Nu 2 Nz? if and only if u belongs to the
normalizer of aC ˚ z. Indeed, if h.u; z/ D 0, then 'a.u/ 2 p.heis/ \ p.a�/? D p.z/. Since
Œu; a� 2 heis, this yields Œu; a� 2 aC ˚ z. Conversely, if we take a0 such that Œa; a0� ¤ 0, then
(6.2) implies h.u; z/ D 0. Since Nz? has codimension one in q, the normalizer of aC ˚ z must
have codimension one in yg. For the converse, take the restriction of h to p.g�/ equal to h � ; � i.
One easily checks that this can be extended to a '-invariant Lorentzian scalar product on q.

7. Equicontinuity of the parallel flow

Let .M; V / be a compact locally homogeneous plane wave. Since M is complete, it is
a quotient �nG�=I by some subgroup � of G� acting properly discontinuously on G�=I .
In this case, the action of the flow of V is given by the Z-action, where Z is the center of
Heisenberg (Fact 3.1). Recall that the flow of V is said to be equicontinuous if it is relatively
compact, considered as a one-parameter subgroup of the isometry group endowed with its Lie
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group topology. Equivalently, the flow is equicontinuous if it preserves a Riemannian metric.
The key point for this equivalence is the fact that the isometry group of a Lorentzian metric
g on M is closed in Homeo.M/ with respect to the compact-open topology (which in fact
coincides on Isom.M; g/ with the Lie group topology); see [30].

7.1. Equicontinuity.

Theorem 7.1. Let .M; V / be a compact locally homogeneous plane wave. The action
of the parallel V -flow is equicontinuous.

Proof. Let X be the universal cover of M ; we have M D �nX , where � � Isom.X/
is a subgroup acting freely, properly discontinuously, and cocompactly on X . In the non-flat
case, Isomı.X/ is isomorphic to G� for some �. In the flat case, since � preserves the lift
of V to X , we can reduce to the subgroup of the Poincaré group preserving a lightlike vec-
tor, namely, SPol which is also isomorphic to G� for some � (see Definition 2). And we
have Isom.M/ D �nNG�.�/. Moreover, by Fact 3.1, the flow of V on M is given by the
left Z-action on the double quotient �nG�=I (the action is well defined, since � central-
izes Z). The equicontinuity of the flow of V is equivalent to �.Z/ being relatively compact
in �nNG�.�/, where � WNG�.�/! �nNG�.�/ is the natural projection. So, to show that the
action is equicontinuous, it is enough to show that �n�Z (here, the closure is in NG�.�/) is
compact. There are two cases.

(1) Straight case. We know from Theorem 5.12 that � contains a finite index sub-
group � 0, which is a cocompact lattice of a closed subgroup Z ËN0 of G�, with N0 a closed
subgroup containing the center Z. On the one hand, Z� 0 � Z ËN0. However, the quotient
� 0n.Z ËN0/ is compact. This implies that the V -flow is equicontinuous on � 0nX , i.e. it pre-
serves a Riemannian metric h on X which is � 0-invariant. Now, averaging h over the represen-
tatives of the (finite) quotient space � 0n� defines a new Riemannian metric h�´

Pr
iD1 

�
i .h/,

where ¹1; : : : ; rº is a set of such representatives, which is �-invariant and preserved by the
flow of V .

(2) Non-straight case. Similarly, � contains a finite index subgroup � 0 which is a co-
compact lattice in some closed Lie subgroup N that contains the center Z (Theorem 5.11).
This implies in the same way as in the straight case that the V -flow preserves a Riemannian
metric on M .

Now we can prove all statements in Theorem 1.3.

Proof of Theorem 1.3. The existence of a parallel vector field V and the last statement
(existence of a parallel line field) are proved in Theorem 2.2. When V is timelike, the isom-
etry group preserving V is SO.n/ Ë R1Cn, so the claim follows from Bieberbach’s theorem.
The case where V is lightlike follows from Theorem 7.1. For V spacelike, examples of non-
equicontinuous Anosov as well as partially hyperbolic flows are given in Example 2.6.

7.2. Equicontinuity from standardness. In the standard case, we can give a more
general proof of equicontinuity of the lightlike parallel flow. In this case, X� identifies with
a Lie group S endowed with a left-invariant Lorentzian metric, and M is finitely covered by
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M 0´ �nS , where � is a uniform torsion-free discrete subgroup of S . The action of the V -
flow on X� induces an action on S which commutes with all left translations. This defines
a left invariant parallel lightlike vector field on S . So equicontinuity of the V -flow on M is
equivalent to the equicontinuity of the induced vector field on �nS . The latter is a consequence
of Theorem 7.2 below.

Theorem 7.2. Let G be a Lie group with a left invariant Lorentzian metric. Let V be
a left-invariant parallel lightlike vector field onG. Then adV is skew-symmetric for a Riemann-
ian scalar product on g.

Proof. Let h � ; � i denote the metric on G and also the induced scalar product on g. The
vector field V is left invariant, so its flow corresponds to the right action of a one-parameter
group, say vt of G. Since the Lorentzian metric on G is left invariant, left multiplication by
vt is isometric. On the other hand, V is parallel, hence Killing. Thus right multiplication by
vt is also isometric. In particular, conjugacy by vt is isometric; hence adV Wg! g is skew
symmetric with respect to h � ; � i.

Assume that h � ; � i restricted to q´ ker adV is degenerate. Since V 2 q is lightlike,
we have q D R � V ˚ q1, where q1 is non-degenerate. Then q0´ q?1 � g is invariant under
adV . So we obtain a skew-symmetric linear map A´ adV jq0 on the Lorentzian space q0. By
construction, kerA D R � V . Since V is lightlike, also V 2 .kerA/? D im.A/ holds. So we
can choose e1 2 q0 such that Ae1 D V . Then he1; V i D 0, which implies that e1 is spacelike.
Moreover, he1; V i D 0 implies e1 2 .kerA/? D im.A/; thus e1 D A.e2/. Now we compute

hV; Œe1; e2�i D hAe1; Œe1; e2�i D �he1; AŒe1; e2�i

D �he1; ŒAe1; e2�i � he1; Œe1; Ae2�i

D �he1; Ae2i D �he1; e1i > 0:

On the other hand, by the Koszul formula, Œg;g�? consists of all elements Y 2 g for which
rY Wg! g is symmetric. Hence V belongs to Œg;g�?, which gives a contradiction. Conse-
quently, q is non-degenerate, thus Lorentzian. This implies g D q˚ q?. We define a Riemann-
ian product . � ; � / on g by . � ; � / D h � ; � ijq? ˚ . � ; � /

0, where . � ; � /0 is any Riemannian scalar
product on q. Then adV is skew-symmetric with respect to . � ; � /.

8. On standardness of more general locally homogeneous structures

In the study of standardness of compact quotients �nX�, we did not use the Lorentzian
nature of the homogeneous spaces X� D G�=I provided by the restrictions on the �-action.
In this section, we give an analogous statement to that in Sections 4 and 5. We consider
G� ´ .R �K/ Ë� Heis, as defined in (1.1), where here � is a general action. Moreover, we
drop the conditions on K, except that it is compact and connected, and we consider also a
potentially smaller isotropy group I D C Ë AC, where C is a closed subgroup of K that
preserves AC. We consider the homogeneous space X� ´ G�=I .

The proof of Theorem 4.1 is based on the existence of automorphisms ‰a of G� which
are the identity on R �K and restricted to Heis of the form

(8.1) haWHeis! Heis; .z; �/ 7! .a2z; a�/
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for a 2 Rn¹0º. The next lemma immediately implies that such automorphisms also exist for
the more general groups G� that are considered in this section (up to replacing G� by an
isomorphic group G�0). Automorphisms of Heis of the form (8.1) are called homotheties (or
dilations).

Lemma 8.1. Let G� be as defined above. Then there exists a homomorphism

�0WR �K ! Aut.Heis/

such that G� and G�0 are isomorphic and �0. � /ha D ha�0. � / for any homothety ha of Heis.

Proof. Since K is compact, we may assume that the action of K preserves the two
factors of Heis D R �Cn. Then K acts trivially on the center R. On Cn, it acts by symplectic
morphisms with respect to the symplectic form ! that defines Heis as an extension of Cn by
R. There exists a K-invariant positive definite scalar product B on R �Cn such that R ? Cn.
Let k be the Lie algebra of K. We decompose Cn D V0 ˚ V1, where

V0´ ¹v 2 V; k.v/ D 0 for all k 2 kº

and V1 is equal to .R � V0/? with respect to B . Note that V1 is spanned by k.v/ for arbitrary
k 2 k and v 2 V . In particular, !.V0; V1/ D 0; thus ! is non-degenerate on V0. Hence R � V0
is a Heisenberg group. Each derivation L of heis which commutes with the action of k satisfies
L.V0/ � R � V0 and L.V1/ � V1. Since R � V0 is a Heisenberg group, there exists an element
h 2 V0 such that L0 D LC ad.h/maps V0 to V0. Since h is in V0, L0 commutes with the action
of k. Thus we may replace the derivation L that generates the action of R on Heis by L0 to
obtain �0. By construction, �0.R �K/ preserves R and Cn, which implies the assertion.

Theorem 8.2. Let G� be defined as in the beginning of this section and let � be a dis-
crete subgroup of G� acting properly cocompactly on X�. Then

(1) � is virtually nilpotent, and X� is standard,

(2) or � Š Z Ë �0, where �0 is virtually nilpotent, and X� is semi-standard.

Moreover, when C D K, the syndetic hull of � (resp. �0) acts transitively on X� (resp. on the
K Ë Heis-leaves).

Proof. We proceed analogously to the proofs of Theorem 5.11 and Theorem 5.12. Either
� is non-straight or straight. In the non-straight case, since the representation � commutes
with Heis homotheties, the same proof as in Theorem 4.1 allows to get that � is generated by
elements in a strong Zassenhaus neighborhood. Hence the existence of a (nilpotent) syndetic
hull by Fact 5.3, and the standardness of �nX�. In the straight case, we get that � Š Z Ë �0,
where �0 � K Ë Heis. Here, we discuss two cases: either �0 has a finite projection to K,
or the projection is not discrete. In the first case, �0 \ Heis has finite index in �0, and its
Malcev closure in Heis acts properly and cocompactly on the Heis-leaves. In the second case,
we proceed as in the non-straight case and show that �0 is generated by elements in a strong
Zassenhaus neighborhood ofK Ë Heis, hence the existence of a (nilpotent) syndetic hull of �0
in K Ë Heis and the semi-standardness of �nX�. Now, when C D K, the transitive action of
the syndetic hull of � (resp. �0) on X� (resp. on a F -leaf) follows from Proposition A.1 and
Proposition A.3.
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Example 8.3 (Non-transitive action). In the modification of Example 6.3, C D SO.2/
andK D S1 � SO.2/. The syndetic hullH of � does not act transitively on yX . Indeed,H acts
freely on yX and we have Hn yX Š S1.

Remark 8.4 (Carnot groups). The Heisenberg group is a particular case of a Carnot
group, to which the notion of a homothety can be generalized. An analogous version of Theo-
rem 8.2 holds for discrete subgroups of .R �K/ Ë� N , where N is a Carnot group admitting
a homothety that commutes with the action of R �K.

Remark 8.5. The homogeneous spaces in Theorem 8.2 are not necessarily Lorentz-
ian (or pseudo-Riemannian), as it appears from Proposition 6.5. An easy situation that occurs
here is when the �-action is trivial, i.e. G� D .R �K/ � Heis. Remember that G� preserves
a Lorentzian metric on G�=I if and only if the ad.I /-action on g=i is an infinitesimal isom-
etry of some Lorentzian scalar product. Here, ad.h/, for h 2 aC, is nilpotent of degree 2, but
a nilpotent non-zero endomorphism of a vector space is an infinitesimal isometry of some
Lorentzian scalar product if and only if its nilpotency order equals 3 (this is a well-known fact
in pseudo-Riemannian geometry; for a proof, see [21, Lemma 5.7]).

A. Cocompact proper actions of Lie groups

In this appendix, we consider cocompact proper actions of Lie groups admitting a torsion-
free uniform lattice.

Proposition A.1. Let G be a connected Lie group which admits a torsion-free uniform
lattice � . Assume thatG acts properly cocompactly on a contractible manifoldX . ThenG acts
transitively.

The proof uses techniques from cohomology theory of discrete groups.

Proof. Since � is torsion-free, �nX is a closed K.�; 1/ manifold. We have by [7, VIII,
(8.1)] that the cohomological dimension of � is equal to dim.�nX/. Now, let K be a maximal
compact subgroup of G. We know that G is diffeomorphic to K �Rk; see [22]. We claim that
�nG=K is aK.�; 1/manifold. Indeed, � acts freely (torsion-free) and cocompactly. Moreover,
� acts properly, since the fiber bundle map � WG ! G=K is a proper map. Hence [7] we get
that dim.�nG=K/ D dim.�nX/, i.e. dim.G/ D dim.K/C dim.X/. Because the G-action is
proper (in particular, the stabilizer of any point is compact), we conclude that the G-orbits are
open. The claim follows from the connectedness of X .

When G is linear, Selberg’s lemma applies. Namely, any finitely generated subgroup of
G is virtually torsion-free. For linear groups, we get the following corollary.

Corollary A.2. Let G be a connected linear Lie group which admits a uniform lat-
tice � . Assume that G acts properly cocompactly on a contractible manifold X . Then G acts
transitively.
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Proposition A.3. G� is linear.

Proof. We have a natural morphism

f WG� ! Aut.Heis/ Ë Heis; f .r; k; h/ D .�.r; k/; h/

(which is not necessarily injective). Moreover, the group Aut.Heis/ Ë Heis is linear. Indeed, it
has a trivial center (due to existence of homotheties); hence the adjoint representation

AdWAut.Heis/ Ë Heis! GL.g/;

where g is the Lie algebra of Aut.Heis/ Ë Heis, is an embedding (faithful). Define now

ˆWG� ! .R �K/ � GL.g/; ˆ.r; k; h/ D .r; k;Ad.f .r; k; h///:

Then ˆ is clearly a faithful morphism into .R �K/ � GL.g/, which is a linear group. The
claim follows.

B. A non-periodic example

Let LD R Ë RnC1, with coordinates .v; y/ 2 RnC1 D R�Rn and the R-action defined
by t � .v; y/ D .v; Rt .y//, whereRt is some periodic elliptic action on Rn. Define a Lorentzian
left-invariant metric g on L such that the induced metric on RnC1 is degenerate and V ´ 𝜕v is
lightlike. Then .L; g/ is a homogeneous plane wave, by [15, Theorem 3]. Let � ´ hyi � �0,
with �0 a lattice in RnC1 and y generates a lattice in the R-factor acting trivially on �0.
Suppose further that �0 does not intersect the subgroup generated by the v-translations. Then
� is a (uniform) lattice in L, and the flow of V is not periodic in �nL.
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